The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/162489

Please be advised that this information was generated on 2019-11-14 and may be subject to change.
Nederlab: Towards a single portal and research environment for
diachronic Dutch text corpora

Hennie Brugman1, Martin Reynaert23, Nicoline van der Sijs12, René van Stipriaan1,
Erik Tjong Kim Sang1, Antal van den Bosch2, Jan Pieter Kunst1, Rob Zeeman1,
Dieuwertje Kooij1, Ineke Brussee1, Matthijs Brouwer1, Marc Kemps-Snijders1, Hans Bennis1
Meertens Institute1, CLST / Radboud University2, TiCC / Tilburg University3
The Netherlands

1. Introduction
Many digital Dutch text collections, from the eighth century to the present day, are available for digital humanities researchers. These texts reflect the dynamic development of Dutch language and culture. However, these collections typically are hosted by different institutions, are described with different metadata, and cannot be searched simultaneously. [FP]1

The Nederlab project is building a comprehensive research corpus that brings together collections from various sources in the Netherlands and Flanders. It also brings together relevant tools for processing, searching and analyzing these data, in one virtual research environment2 that primarily supports historians, literary scholars, and linguists. The specific focus of Nederlab is on patterns of change over time and space.

Collections that are aggregated and integrated into Nederlab are processed using a carefully designed Nederlab collection pipeline (see Section 3). [FP] To all texts we apply sentence splitting, tokenization, lemmatization, part of speech tagging, and named entity recognition. This uniform annotation treatment enables us to obtain the necessary statistics for word tokens and types, lemmata and PoS tags across all incorporated corpora. Federated Search (Stehouwer et al., 2012) across non-uniformly annotated corpora simply cannot provide this.

Metadata, text and linguistic annotations are indexed in one large, powerful search index. [FP]

Section 2 of this abstract introduces the Nederlab project. Section 3 discusses how we integrate collection data into Nederlab, while Section 4 focuses on how we subsequently search and exploit these data. Section 5 presents a number of additional web services that we built, and that are valuable services in other contexts as well.

2. The Nederlab project
The Nederlab project started in 2013. It aims to bring together all digitized texts relevant to Dutch national heritage, in particular to the history of Dutch language and culture, in one user-friendly and tool-enriched open access web interface, allowing scholars to simultaneously search and analyze data from texts spanning the full recorded history of the Netherlands. The project ties in with other major projects and initiatives: for collections Nederlab collaborates with academic libraries and institutions in the Netherlands and Flanders, for infrastructure with CLARIN (Odijk, 2010) and CLARIAH3, for tools with eHumanities programmes such as NWO CATCH and IMPACT. The Nederlab project is currently about halfway. We have a solid collection pipeline in place for processing metadata, text content, and vocabularies, and have tested and applied this pipeline on three collections. The Nederlab index now contains 13.5 million searchable documents. We developed software for end users, the Research Portal, and have produced scripts and interactive tools for our back-office processes. The main focus for the rest of project period is on search and analysis of linguistic annotations on a massive scale, drawing on results of the current CLARIAH project MTAS, and on providing analytic tools in the context of scientific use cases. Efficiently adding new collections to Nederlab is also a major point of attention. In this Nederlab acts as a 'user' to the CLARIAH project PICCL in which a corpus building work flow is further being developed (Reynaert et al., 2015).

3. The Nederlab collection pipeline
Within the CLARIN project considerable experience has been gained with harvesting and harmonizing metadata descriptions from various sources using the CMDI metadata framework (Broeder et al., 2010). Within Nederlab the CMDI approach in principle has been selected as the preferred method of metadata delivery as this provides better chances for automated mapping and ingest procedures. However, in practice the number of collection providers following the CMDI approach is still limited. [FP] In almost all cases Nederlab has to deal with customized import processes to ingest metadata and data into the portal. These are the steps in our per-collection workflow:

Acquisition and IPR arrangements Early in the discussions with potential collection providers Intellectual Property Rights are addressed. We aim for a simple, standard contract and explicit agreement on what access policies we will implement to enforce this contract.

Quality Assessment and collection description We systematically collect information about each collection. This

1We mark by [FP] the parts of our abstract that are to be expanded in the Full Paper.
2Online at http://www.nederlab.nl/
3http://www.clariah.nl/en/
information is used to support internal data processing and curation, and to inform end users about status and quality of the collection’s data.

Metadata mapping We designed a fixed metadata schema for the four basic Nederlab resource types (Titles - in the sense of a work; Dependent Titles - only existing as part of another Title; Series - like newspapers or periodicals; and Persons - most importantly Authors) and represented and documented this schema using the CMDI framework. Metadata of incoming collections is either mapped to Nederlab metadata, or imported as ‘collection specific’ metadata, or ignored. This mapping is executed by the Nederlab editorial staff with a tailor-made metadata mapping tool.

Metadata conversion For each collection custom conversion scripts are written. The converted metadata is stored in a project-internal relational database. This database is then used for all curation tools and for the indexing process.

Text extraction and conversion Text content is extracted from the collection resources, sometimes with a different granularity than the original (e.g. each newspaper article is extracted as a separate Nederlab title). It is then converted to the FoLiA XML format (van Gompel and Reynaert, 2013) and stored on a project internal FoLiA store. Subsequent text enrichment or indexing processes are performed on the FoLiA documents in the store.

Curation by editorial staff To facilitate the need for high quality data the ingest process is supervised and monitored by an editorial team. Metadata is manually curated. Authors and titles are ‘thesaurized’: in a semi-automated process authors and titles from newly integrated collections are linked to already existing authors and titles. [FP]

Text processing and enrichment Since part of the Nederlab corpus consists of rather low quality data that have been automatically digitized through Optical Character Recognition (OCR) techniques it was deemed necessary to raise the quality of these digitized texts. For this, a customized version of TICCL (Text-Induced Corpus Cleanup) (Reynaert, 2010) is used to reduce the amount of spelling variation introduced by the OCR process. Furthermore, the data is automatically enriched with lemmata and POS tags and Named Entities labels by means of Frog (Van den Bosch et al., 2007). Frog is developed for modern Dutch, and the results for historical variants of OCR-post-corrected Dutch vary from reasonable to mediocre; we are working on improving this. [FP]

Indexing Incoming metadata and texts are periodically indexed. This index allows the user to efficiently search text and metadata, and to select a personal research corpus out of the main corpus. Currently, we are working on the next generation of our indexing and search software, that, in addition, is capable of searching for complex patterns of multi-layered linguistic annotations. We closely collaborate with the Institute for Dutch Lexicology (INL), who provide the corpus back-end BlackLab and intend to use front-end WhiteLab, further being developed in the CLARIN-NL project OpenSoNaR-CGN, the sequel to (Reynaert et al., 2014).

4. Virtual Research Environment

Since March 2015 a beta version of the Nederlab Research Portal is online. It provides access to the first three of many collections. One collection, the DBNL (Digital Library of Dutch Literature) collection, contains high-quality transcribed texts and extensive, well-curated metadata. The second collection, Early Dutch Books Online, contains historic digital texts digitized by means of OCR. For this collection, Nederlab contains two alternative text versions per paragraph: the original OCR text and an automatically OCR post-corrected version for which (Reynaert, 2014) offers a description and an evaluation. The third collection was chosen partly to test scalability issues: the KB’s newspaper collection up to 1900. All researchers have access to the Nederlab search interface. They can select the way in which their search results are represented: as a pageable list of result snippets, as keyword-in-context concordance or, visually, as a time distribution graphic showing the numbers of matching documents over time. [FP] To enjoy all the functionalities, users have to log in with a user account in the CLARIN federation. Authorized users have three additional benefits over non-authorized users: they are allowed to inspect more text content, they are able to store their queries as virtual research collections in their personal workspace, and they have access to a growing number of analytical tools to work on these virtual research collections. Currently, an initial set of analytical tools is available. These tools are mainly focused on exploring and visualizing metadata such as distributions over genre, locations, or gender and age information of authors. It also is possible to visualize combinations of these dimensions. These visualizations do not only provide visual means for representing metadata, they also provide new ways of filtering and searching as the visualizations can be made navigable. At this time we only provide for document count, not for term count. However, we are working on a new search index that allows for term counts as well. The next step is to expand the set of available analytical tools. As a first step, we will make the functionality of WhiteLab available. [FP]

5. Additional web services

Nederlab makes use of a number of web services that in principle can also be used on their own, in other contexts.

Lexicon service The INL contributions to Nederlab include a historical Dutch lexicon. This lexicon is accessible using a RESTful web service.\(^4\)

\(^4\)https://github.com/INL/BlackLab/wiki

\(^5\)https://github.com/TiCCSoftware/WhiteLab

\(^6\)http://www.dbnl.org/

\(^7\)http://www.earlydutchbooksonline.nl/nl/edbo

\(^8\)http://www.delpher.nl/nl/kranten/

\(^9\)http://sk.taalbanknederlands.inl.nl/LexiconService/
User annotations and Alexandria Huygens ING builds Alexandria, a repository for text and annotations for Nederlab. It will be used to store and retrieve user generated annotations for all kinds of objects and object segments in Nederlab.

R based visualization service We chose to base Nederlab visualizations on an separate web service that is based on the R open source software environment for statistical computing and graphics. This allows us, and potentially end users as well, to plug in custom R modules in the future.

6. Conclusion
Half way through the Nederlab project we have versions of most required components in place. We cover the whole trajectory from selecting and evaluating source collections all the way to generating statistical analyses over these collections in the context of all the other collections. Some of these components are still rudimentary, most of them need further development. We have tested all of this by processing three very different collections. We make these collections available in our Research Portal in a homogeneous and useful way, although we have not reached the full potential. We have gained insight in the processes and technology we need and in scalability issues. At this stage, Nederlab is constructed as an extensible framework. It can be extended by adding a variety of scholarly tools, as well as more collections, both during and after the remaining project period.

7. Acknowledgements
The Nederlab project described in this paper has been made possible through project grants from the Netherlands Organisation for Scientific Research (NWO), KNAW, CLARIN-NL, and CLARIAH.

8. References

