Measurement of W^+W^- production in association with one jet in proton–proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

The production of W boson pairs in association with one jet in pp collisions at $\sqrt{s} = 8$ TeV is studied using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of $|\eta| < 4.5$. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be $\sigma_{\text{fid,1-jet}}^{WW} = 136 \pm 6 \text{ (stat)} \pm 14 \text{ (syst)} \pm 3 \text{ (lumi)}$ fb. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of WW production with zero or one jet is measured to be $\sigma_{\text{fid,\leq1-jet}}^{WW} = 511 \pm 9 \text{ (stat)} \pm 26 \text{ (syst)} \pm 10 \text{ (lumi)}$ fb. The ratio of fiducial cross sections in final states with one and zero jets is determined to be 0.36 \pm 0.05. Finally, a total cross section extrapolated from the fiducial measurement of WW production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement.
1 Introduction

The measurement of the production of two W bosons is a crucial test of the non-Abelian gauge structure of the electroweak theory of the Standard Model (SM). The increasing precision of the experimental measurements at the LHC has elicited improved theoretical descriptions of the process. Progress has been made to extend the next-to-leading-order (NLO) [1] calculation of $pp \to W^+W^-$ production to include next-to-next-to-leading-order (NNLO) effects [2] in perturbative quantum chromodynamics (QCD). A separate calculation of the loop-induced, non-resonant $gg \to W^+W^-$ production process has been made available at order $O(\alpha_s^3)$ [3] in the strong coupling constant α_s. Resonant $WW^* \to W^+W^-$ production via the exchange of a Higgs boson has been calculated to order $O(\alpha_s^3)$ [4] and $O(\alpha_s^4)$ [5]. These predictions can be summed to give an updated prediction for the total cross section of $65.0^{+1.2}_{-1.1}\text{ pb}$ as further detailed in Section 7. In addition to these new calculations, fully differential NNLO predictions [6] have become available, as have dedicated NLO predictions for jet-associated WW production [7, 8] with up to three jets [9]. The resummation of logarithms arising from a selection on the number of jets has been presented at next-to-next-to-leading-logarithm (NNLL) accuracy in Refs. [10, 11]. It is therefore interesting to study WW production in association with jets to confront these calculations with experimental data from the LHC.

A measurement of the jet multiplicity in WW events at the CDF experiment was published in Ref. [12]. At the LHC, the CMS Collaboration has included WW production in association with one jet in their measurement of the total WW production cross section at $\sqrt{s} = 8$ TeV [13], but has not published dedicated fiducial cross sections of jet-associated WW production.

This letter presents a measurement of the fiducial cross section of WW production using the decay chain $W^+W^- \to e^\pm\nu_e\mu^\pm\nu_\mu$ in final states with one associated hadronic jet, further referred to as 1-jet final state. The fiducial region is defined using stable particles at the generator level and is chosen to match the experimental selection as closely as possible.

Only events with exactly one reconstructed jet are selected for the analysis, while events with a larger number of jets suffer from a large background from top-quark production and are not considered. The selected WW candidate event sample is corrected for background processes, detection efficiencies and resolution effects, and the cross section of $WW+1$-jet production is extracted for the fiducial phase-space region. The results are combined with a previous measurement reported in Ref. [14] restricted to final states without any reconstructed jets, referred to as 0-jet final state. The fiducial $WW+\leq1$-jet cross section and the ratio R_1 of the fiducial $WW+1$-jet and fiducial $WW+0$-jet cross sections are determined and compared to different theoretical predictions. The measurement therefore extends the fiducial phase space of the previous measurement of the WW production cross section.

2 Data and Monte Carlo samples

The ATLAS detector [15] is a general-purpose detector measuring collisions at the Large Hadron Collider (LHC) with coverage over the full azimuthal angle ϕ. It consists of an inner detector surrounded by a 2 T solenoid to measure tracks with pseudorapidities of $|\eta| < 2.5$\(^1\), electromagnetic and hadronic calor-
parameters to provide energy measurements for $|\eta| < 4.9$, and a muon spectrometer with a toroidal magnetic field to detect muons with $|\eta| = 2.7$. A three-level trigger system selects events to be read out.

The measurement uses data collected with the ATLAS experiment during the 2012 data-taking period. Only runs with stable proton beams colliding at $\sqrt{s} = 8$ TeV are used in which all relevant detector components were functional. This data sample corresponds to an integrated luminosity of 20.3 fb$^{-1}$ determined with an uncertainty of ±1.9% and derived from beam-separation scans performed in November 2012 [16].

The analysis relies on event simulation to correct the measured event yields for experimental effects and for the study of background processes. Different simulated event samples are used to model the signal from the individual production mechanisms: \(q\bar{q} \rightarrow W^+W^- \) events are simulated using the Powheg 1.0 generator [17–21], which is interfaced to Pythia 8.170 [22]; for the non-resonant \(gg \)-induced \(WW \) signal the gg2ww program (version 3.1.3) [23] is employed and interfaced to Herwig 6.5/Jimmy 4.31 [24, 25]; resonant \(WW \) production via a Higgs boson with a mass of \(m_H = 125 \) GeV is modelled using Powheg+Pythia 8.170. The three event samples are simulated using the CT10 NLO [26] parton distribution function (PDF). Photon radiation is modelled using Photos [27]. The parameter tune used for the underlying event is AU2 [28]. The event samples are normalised to a cross section times branching ratio of 5.58 pb (\(q\bar{q} \rightarrow W^+W^- \) [1]), 0.153 pb (non-resonant \(gg \rightarrow W^+W^- \) [23]) and 0.435 pb (\(gg \rightarrow H \rightarrow W^+W^- \) [4]). The sum of these contributions corresponds to a total \(WW \) cross-section of 58.7$^{+4.2}_{-3.8}$ pb where the uncertainties are due to scale and PDF uncertainties in the cross section calculations. For additional studies a sample of simulated \(q\bar{q} \rightarrow W^+W^- \) events produced with MC@NLO [18] and Jimmy [24, 25] using the AUET2 tune [29] and the CT10 PDF is used.

Production of pairs of top quarks, \(s \)-channel single top-quark production and \(W \)-associated top-quark production are modelled with the Powheg+Pythia 6 generator with the AU2 [28] tune. Single top-quark production in the \(t \)-channel is described by the Acer 3.7 [30] MC generator interfaced to Pythia 6 [31] with the AUET2B tune [32]. These events samples are normalised to the respective NNLO+NNLL calculations [33–36] to obtain the relative contribution to the total top-quark background, whose overall normalisation is determined from data as detailed in Section 4.

Background from \(W \) and \(Z \) boson production is modelled using Alpgen 2.14 [37] interfaced to Pythia 6 and normalized to NNLO calculations [38] where needed. The AUET2 tune is used for the underlying event. The diboson background processes \(WZ \) and \(ZZ \) are generated using the same settings as employed for the simulated \(q\bar{q} \rightarrow W^+W^- \) event samples. The production of a \(W \) boson and a virtual photon (\(\gamma^* \)) is generated using the Sherpa generator (version 1.4.2) [39]. For \(W\gamma \) production Alpgen+Herwig+Jimmy is employed.

In all simulated event samples, additional \(pp \) collisions accompanying the hard-scatter interactions (pileup) are modelled by overlaying minimum-bias events generated using Pythia 8. To simulate the detector response, the generated events are passed through a detailed simulation of the ATLAS detector [40] based on Geant4 [41] or Geant4 combined with a parameterised calorimeter simulation [42].

pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \). The transverse energy is computed as \(E_T = E \cdot \sin \theta \), while the radial distance between two objects is defined as \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \).
3 Object reconstruction and event selection

Events are selected using reconstructed jets, electrons, muons and missing transverse momentum. The selection follows closely the one in Ref. [14] to facilitate the combination with the WW+0-jet final state. Electrons and muons are identified based on tracks in the inner detector matched either to energy deposits in the electromagnetic calorimeter or combined with tracks in the muon spectrometer, respectively. Electrons are reconstructed within $|\eta| < 2.47$ excluding the transition region between barrel and endcap calorimeters of $1.37 < |\eta| < 1.52$. Muons are required to lie within $|\eta| < 2.4$. The same reconstruction and identification requirements as in Ref. [14] are used, resulting in an event sample with minimal contributions from backgrounds due to particles misidentified as leptons, particularly from W+jets, multijet and $W\gamma$ events. For the selection of WW candidate events, the presence of exactly two isolated, oppositely charged leptons (ℓ, ℓ') with transverse momenta of $p_T^{\ell} > 25$ GeV and $p_T^{\ell'} > 20$ GeV is required. Only final states with one electron and one muon are used. Events with additional leptons with $p_T > 7$ GeV are rejected, which helps to suppress other diboson processes with more than two leptons. It is required that at least one of the leptons has met an online single-lepton selection or both have passed a dilepton trigger with reduced thresholds and less stringent object identification criteria. This setup has an efficiency of 99%-100% with respect to the offline lepton selection.

Jets are formed using calibrated topological clusters of energy [43] reconstructed in the calorimeters using the anti-k_t algorithm [44] with radius parameter $R = 0.4$. Further corrections to the jet energy are applied based on simulation [45] and are followed by a pile-up suppression [46]. Jets are required to have $p_T > 25$ GeV and $|\eta| < 4.5$. More than 50% of the scalar sum of the p_T of all tracks contained within $\Delta R = 0.4$ of the jet axis is required to be from tracks associated with the primary vertex to suppress contributions from additional pp interactions in the event [47] if the jet satisfies $p_T < 50$ GeV and $|\eta| < 2.4$. Only events with exactly one jet meeting the above criteria are selected. Jets containing b-hadrons (so-called b-jets) are identified within the central region of the detector, $|\eta| < 2.5$, using a multivariate approach [48, 49] with an efficiency of 85%. To reduce the background from top-quark production, events containing b-jets with $p_T > 20$ GeV and within $|\eta| < 2.5$ are rejected.

Selection requirements on the missing transverse momentum in the candidate events are used to reduce the contribution of events from $Z/\gamma^* \rightarrow \tau\tau$ (Drell–Yan) production where both τ-leptons decay leptonically. Missing transverse momentum is reconstructed from the vector sum of the transverse momenta of identified particles [50] to which either reconstructed jets and calorimetric depositions not associated with any particle are added. Missing transverse momentum induced by mismeasurements of the energy of leptons is further reduced in the calorimeter-based measurement by projecting the missing transverse momentum E_T^{miss} onto nearby leptons, to calculate the so-called relative missing transverse momentum $E_T^{\text{miss}}/\text{Rel}$. A lepton is considered nearby if the azimuthal separation to the E_T^{miss} direction is small, $\Delta\phi(E_T^{\text{miss}}, \ell) < \pi/2$, and only in this case, $E_T^{\text{miss}}/\text{Rel}$ is modified to yield $E_T^{\text{miss}}/\text{Rel} = E_T^{\text{miss}} \times \sin(\Delta\phi(E_T^{\text{miss}}, \ell))$, otherwise $E_T^{\text{miss}}/\text{Rel} = E_T^{\text{miss}}$. The relative missing transverse momentum is required to be $E_T^{\text{miss}}/\text{Rel} > 15$ GeV. An additional track-based measure of the missing transverse momentum (p_T^{miss}) is constructed by adding the momenta of tracks associated with the primary vertex to the vector sum of the transverse momenta of identified electrons and muons. By construction, p_T^{miss} is less sensitive to energy deposits from additional interactions and it is required to be $p_T^{\text{miss}} > 20$ GeV. To further reduce the sensitivity to fluctuations in either of the missing transverse momentum variables used, the azimuthal separation between E_T^{miss} and p_T^{miss} must satisfy $\Delta\phi(E_T^{\text{miss}}, p_T^{\text{miss}}) < 2.0$.

The invariant mass of the two selected leptons, $m_{\ell\ell}$, is required to be greater than 10 GeV to suppress
contributions from misidentified leptons produced in multijet and $W+\text{jets}$ events. Apart from the requirements on the jets and $\Delta\phi(E_{T}^{\text{miss}}, p_{T}^{\text{miss}})$, this event selection is identical to the one employed in Ref. [14].

4 Determination of backgrounds

The experimental signature of exactly one electron and one muon with opposite electric charge, and missing transverse momentum can be produced by a variety of SM processes which are treated as backgrounds. Top quarks decay almost exclusively to a b-quark and a W boson. This makes $t\bar{t}$ and single top-quark production the dominant background to WW production, in particular for events with jets in the final state. The background yield from top-quark production is determined using a method proposed in Ref. [51]. The event yield is extrapolated from a control sample enriched in events from top-quark production. It is defined by the nominal selection requirements but must contain exactly one identified b-jet with $p_T > 25$ GeV and within $|\eta| < 2.5$, instead of requiring the absence of identified b-jets. The factor to extrapolate from this control sample to the signal sample is determined as the ratio of jets passing or failing the b-jet requirement in additional control samples, defined by the presence of two jets, at least one of which passes the b-tag requirement. Systematic effects resulting from the choice of the control sample are corrected for by an additional factor estimated from simulated event samples. The correction introduces experimental systematic uncertainties of $\pm 3.1\%$, mainly from the uncertainty in the jet energy scale. Theoretical uncertainties are found to amount to $\pm 2.5\%$ and are dominated by differences in simulated $t\bar{t}$ event samples produced with Powheg and MC@NLO, and uncertainties in the Wt production cross section. Statistical uncertainties from the limited size of the control samples in data and simulation introduce an uncertainty of $\pm 3.5\%$, resulting in an overall precision in the estimated top-quark background yield of $\pm 5.2\%$.

The estimation of the remaining background processes closely follows the methodology described in Ref. [14]. Data-driven estimates of the yields of $W+\text{jets}$ and multijet production are determined in an event sample in data that is selected with relaxed identification and isolation criteria for the leptons. The composition of this event sample with genuine and misidentified leptons can be inferred using the probabilities of genuine and misidentified leptons selected with the relaxed criteria to satisfy the nominal lepton selection criteria. The yield of background from Drell–Yan production is obtained from a simultaneous fit of the distribution of simulated event samples to the $\Delta\phi(E_{T}^{\text{miss}}, p_{T}^{\text{miss}})$ distribution of the data in the signal region and in a control sample, defined by a selection of $5 \text{ GeV} < p_{T}^{\text{miss}} < 20 \text{ GeV}$ and no selection on $\Delta\phi(E_{T}^{\text{miss}}, p_{T}^{\text{miss}})$. The yields of the diboson processes, WZ, ZZ and $W\gamma$ production, are determined using simulation and are normalised to NLO predictions [1]. The uncertainties assigned to the NLO predictions are inflated to cover differences from the calculations in Refs. [52, 53]. For $W\gamma$ production a K-factor is calculated from Ref. [54] and applied to the NLO prediction.

The observed data and the estimated signal and background yields are summarised in Table 1. Half of the events selected in data are estimated to originate from background processes, where top-quark production represents the largest contribution. The transverse momentum distribution of the selected jet after the final event selection is shown in Figure 1(b), where data is shown together with the simulated WW signal events and the estimated background yields. Good agreement between the data and the estimated yields is observed for the selected $WW+1$-jet candidate sample.
Table 1: Summary of the event yields in the selected WW+1-jet events observed in data and estimated from signal and background contributions. The estimated event yields for the WW signal are determined from simulated event samples which are scaled to a total cross section of $58.7_{-5.8}^{+4.2}$ pb. The estimated yields from diboson production are determined from simulated event samples whereas the yields of all other backgrounds are estimated using data-driven methods. The statistical and systematic uncertainties are shown separately. For reference, the numbers of observed, expected signal and background events for the WW+0-jet measurement [14] are also given.

<table>
<thead>
<tr>
<th>Process</th>
<th>WW+1-jet</th>
<th>WW+0-jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed Events</td>
<td>3458</td>
<td>5067</td>
</tr>
<tr>
<td>Total expected events (Signal + background)</td>
<td>$3310 \pm 50 \pm 340$</td>
<td>$4420 \pm 30 \pm 320$</td>
</tr>
<tr>
<td>WW signal</td>
<td>$1490 \pm 10 \pm 330$</td>
<td>$3240 \pm 10 \pm 280$</td>
</tr>
<tr>
<td>Top Quark</td>
<td>$1236 \pm 43 \pm 49$</td>
<td>$609 \pm 18 \pm 52$</td>
</tr>
<tr>
<td>W+jets</td>
<td>$121 \pm 15 \pm 50$</td>
<td>$250 \pm 20 \pm 140$</td>
</tr>
<tr>
<td>Drell–Yan</td>
<td>$267 \pm 12 \pm 49$</td>
<td>$175 \pm 3 \pm 18$</td>
</tr>
<tr>
<td>Other diboson</td>
<td>$195 \pm 5 \pm 53$</td>
<td>$150 \pm 4 \pm 30$</td>
</tr>
<tr>
<td>Total background</td>
<td>$1820 \pm 50 \pm 100$</td>
<td>$1180 \pm 30 \pm 150$</td>
</tr>
</tbody>
</table>

Figure 1: (a) Distributions of the transverse momentum of the selected jet in the control region enriched in events from top-quark production. The sum in quadrature of statistical, experimental and theoretical uncertainties in the MC prediction are shown as a hatched band. (b) Distributions of the transverse momentum of the selected jet after final event selection. Data are shown together with the yields from WW signal as estimated from simulated event samples which are scaled to a total cross section of $58.7_{-5.8}^{+4.2}$ pb, and the estimated background contributions. The sum in quadrature of statistical, experimental and theoretical uncertainties is shown as a hatched band. In both figures the last bin of the distribution is an overflow bin.
5 Cross-section measurement

The cross section for WW production in the $e\mu$ final state with exactly one jet is measured. The definition of the fiducial phase space is derived from the selection applied to reconstructed events. Leptons are recombined with any final-state photons from QED radiation within a surrounding cone of size $\Delta R = 0.1$, to form so-called ‘dressed leptons’. Furthermore, electrons and muons are required to be oppositely charged and to originate directly from W decays. The same selection requirements on transverse momentum and pseudorapidity as at reconstruction level are applied to the dressed leptons. Stable particles with a lifetime $\tau > 30$ ps, excluding muons and neutrinos, are used to form particle-level jets using the anti-k_t algorithm with a radius parameter of $R = 0.4$. They are selected if $p_T > 25$ GeV and $|\eta| < 4.5$. To remove jets originating from electrons, jets which are a distance $\Delta R < 0.3$ from any electron from W decays selected as detailed above are ignored. The four-momentum sum of the neutrinos originating from the W boson decays is used for the calculation of both p_T^{miss} and $E_T^{\text{miss},\text{Rel}}$ at generator level.

The number of selected WW candidate events with exactly one associated jet may receive contributions from events with different jet multiplicities due to the detector resolution. After subtracting the background contributions, N_b, from the number of observed events, N_{obs}, the observed signal yield, $N_s = N_{\text{obs}} - N_b$, is corrected for detector inefficiencies, resolution and jet migration effects using a correction matrix R_{ij}. The correction matrix also accounts for jets originating from pileup which increase the expected signal yield by 5%. It is evaluated using simulated WW event samples as the ratio of the number of events reconstructed in jet-bin i and generated in jet-bin j, $N_{\text{reco}}^{i}N_{\text{gen}}^{j}$, to the number of events generated in the fiducial volume with j associated jets, $N_{\text{fid}}^{\text{gen}j}$:

$$ R_{ij} = \frac{N_{\text{reco}}^{i}N_{\text{gen}}^{j}}{N_{\text{fid}}^{\text{gen}j}} $$

where all jet multiplicities $j > 1$ are contained in $N_{\text{reco}}^{i}N_{\text{gen}}^{j}$ in the jet-bin corresponding to $j = 1$ to account for migrations into the event sample.

Electrons and muons from non-prompt τ-lepton decays are accounted for in the numerator of Eq. (1) but not in the denominator, which effectively removes the contribution of $W \rightarrow \tau\nu$ decays. This allows a definition of the fiducial region for prompt decays of W bosons into electrons and muons only. While the calculation of the total $pp \rightarrow W^+W^-$ cross section at NNLO does not include b-quarks, such events can occur in the simulated event samples from gluon splitting, $g \rightarrow b\bar{b}$. The veto on identified b-jets affects these contributions in the calculation of the correction matrix R_{ij}. The effect on the measured cross section is less than 1%. The values of the matrix R_{ij} are given in Table 2 together with their total uncertainties. Events reconstructed with the wrong jet multiplicity cause non-zero values for R_{ij} with $i \neq j$.

The fiducial WW cross section in jet-bin j is given by the measured signal yields in jet-bins $i = 0, 1$:

$$ \sigma_{WW}^{\text{fid}j} = \frac{1}{L} \sum_{i=0}^{1} R_{i}^{j}N_{s}^{i} $$

where L is the integrated luminosity and N_{s}^{i} the background-subtracted events yield in jet bin i. The cross sections for WW production with zero and one associated jet are extracted simultaneously using a profile likelihood fit [55, 56] to data observed in 0-jet and 1-jet final states. Information from both the 0-jet
Table 2: Numerical values of the correction matrix R_{ij} which accounts for the full detector efficiency migrations between jet bins, and the factor A_{WW} which accounts for the extrapolation from the $WW+\leq1$-jet final state to the total phase space. For both variables the total uncertainties are shown.

<table>
<thead>
<tr>
<th>R_{ij} ($i = n_{\text{jet}}^{\text{rec}}$, $j = n_{\text{jet}}^{\text{gen}}$)</th>
<th>R_{00}</th>
<th>R_{01}</th>
<th>R_{10}</th>
<th>R_{11}</th>
<th>A_{WW}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q\bar{q} \rightarrow W^+W^-$</td>
<td>0.501</td>
<td>0.036</td>
<td>0.050</td>
<td>0.458</td>
<td>0.327</td>
</tr>
<tr>
<td>$gg \rightarrow W^+W^-$</td>
<td>0.502</td>
<td>0.061</td>
<td>0.067</td>
<td>0.450</td>
<td>0.447</td>
</tr>
<tr>
<td>$gg \rightarrow H \rightarrow W^+W^-$</td>
<td>0.410</td>
<td>0.035</td>
<td>0.055</td>
<td>0.423</td>
<td>0.169</td>
</tr>
<tr>
<td>Total WW</td>
<td>0.499</td>
<td>0.037</td>
<td>0.051</td>
<td>0.456</td>
<td>0.319</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>4%</td>
<td>45%</td>
<td>24%</td>
<td>6%</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

Here, the acceptance A_{WW} is defined as the ratio of events generated in the ≤1-jet fiducial volume to all generated events. The acceptance correction factor is $A_{WW} = 0.319$, which is roughly 40% larger than for pure $WW+0$-jet final states [14]. The $W \rightarrow \ell\nu$, $\ell = e, \mu$ or τ, branching fraction is $B = 0.1083$ [57].

6 Systematic uncertainties

Systematic uncertainties arising from the limited knowledge of the event reconstruction efficiency and the determination of the particle four-momenta are propagated to the measurement by varying the corresponding parameters in the calculation of the correction matrix R_{ij}. Uncertainties in the efficiency of the trigger and the selection of the leptons result in an uncertainty of $\pm1.8\%$ in the fiducial cross section [58–62]. An uncertainty of $\pm2.9\%$ [49] is attributed to the identification and rejection of jets containing b-hadrons.

Uncertainties in the jet energy scale and the jet energy resolution affect the matrix elements R_{ij} especially for events with jets near the transverse momentum threshold of $p_T = 25$ GeV, resulting in uncertainties that can be as large as $\pm40\%$ for R_{ij} with $i \neq j$. The effect on the $WW+1$-jet cross section is found to be $\pm4.2\%$ and $\pm1.0\%$ from the jet energy scale and resolution [45, 63], respectively. The uncertainty due to E_T^{miss} scale and resolution as well as p_T^{miss} scale and resolution account for $\pm0.4\%$ in total [64]. The uncertainty from the modelling of additional pp interactions occurring in the same or nearby bunch crossings is less than $\pm0.6\%$.

Uncertainties in the fiducial cross section due to the theoretical modelling of the correction matrix R_{ij} are evaluated using alternative simulated $q\bar{q} \rightarrow W^+W^-$ event samples. The uncertainty due to the choice of generator and parton shower model is estimated by comparing simulated event samples generated with POWHEG+PYTHIA 8 and with MC@NLO+JIMMY. The resulting uncertainty in the measured cross section is $\pm2.4\%$. The effect of higher-order corrections is estimated by varying the renormalisation and factorisation scales simultaneously by factors of 0.5 and 2 and comparing the resulting correction matrices.
The associated uncertainty in the measured 1-jet cross section amounts to ±0.5%. The uncertainty due to the choice of PDF is calculated according to Ref. [65] and amounts to less than ±0.1%. Accounting for migrations from higher jet multiplicities introduces uncertainties of ±2.1%. The uncertainty in the correction matrix due to the relative normalisations of the different signal samples, \(q\bar{q} \rightarrow W^+W^-\), non-resonant \(gg\) and resonant \(gg \rightarrow H\) production, is found to be negligible in comparison to other uncertainties.

The extrapolation from the fiducial to the total phase space introduces additional uncertainties. These are assessed separately for the \(q\bar{q} \rightarrow W^+W^-\), non-resonant \(gg \rightarrow W^+W^-\) and resonant \(gg \rightarrow H \rightarrow W^+W^-\) processes and amount to ±1.9% for the MC generator and parton shower uncertainty evaluated as described above. The PDF-induced uncertainty is estimated to be ±0.8%. The uncertainties due to potential contributions from higher-order effects are determined to be ±4.0% originating from the restriction to specific jet multiplicities. They are computed in the total phase space by considering the scale dependence of successive inclusive jet-binned cross sections to be uncorrelated [66]. The scale dependence of the remaining selection criteria is assessed without applying any jet requirements and is found to be ±0.2%.

7 Results

The cross section for \(WW+1\)-jet production in the fiducial region is measured to be:

\[
\sigma_{WW}^{\text{fid,1-jet}} = 136 \pm 6 \text{(stat)} \pm 14 \text{(syst)} \pm 3 \text{(lumi)} \text{ fb.} \tag{4}
\]

The total relative uncertainty of the measured value is ±15% and correlated with the uncertainty of the fiducial \(WW+0\)-jet cross section of \(\sigma_{WW}^{\text{fid,0-jet}} = 374 \pm 7 \text{(stat)}^{+25}_{-23} \text{(syst)}^{+8}_{-7} \text{(lumi)} \text{ fb presented in Ref. [14]. The correlation coefficient between the total uncertainties of the 0- and the 1-jet fiducial measurements is found to be } \rho = -0.051. The measured cross sections and uncertainties can be used to compute a cross section defined in the fiducial \(WW+\leq1\)-jet region:

\[
\sigma_{WW}^{\text{fid,\leq1-jet}} = 511 \pm 9 \text{(stat)} \pm 26 \text{(syst)} \pm 10 \text{(lumi)} \text{ fb.} \tag{5}
\]

Uncertainties causing migrations of events between jet bins are significantly reduced when comparing the fiducial \(WW+0\)-jet cross section and the \(WW+\leq1\)-jet cross section. The previously dominant experimental uncertainty in the jet energy scale is reduced by a factor of 2.5 by extending the measurement to include 1-jet final states.

Additional uncertainties introduced by the rejection of \(b\)-jets and increased uncertainties in the estimation of background contributions cause the overall experimental uncertainty to be lower by only 18%.

The ratio of jet-binned fiducial cross sections \(R_1\) is measured to be:

\[
R_1 = \frac{\sigma_{WW}^{\text{fid,1-jet}}}{\sigma_{WW}^{\text{fid,0-jet}}} = 0.36 \pm 0.05 \tag{6}
\]

and allows a test of theoretical calculations without knowing the total cross section.

Theoretical predictions of the fiducial cross sections are obtained by combining three separate theoretical calculations of the total cross sections with their respective acceptance correction factors \(A_{WW}\). These
factors are calculated using the simulated event samples generated at lower order in the perturbative expansion for the three separate processes contributing to WW production.

The theoretical calculation of $pp \to W^+W^-$ to order $O(\alpha_s^2)$ [2] is used, which formally includes the loop-induced gg contribution at order $O(\alpha_s^2)$. This gg contribution is subtracted and replaced by a calculation of the gg loop-process to order $O(\alpha_s^3)$ [3] instead. To this non-resonant WW prediction, the prediction for resonant WW^* production via a Higgs boson with a subsequent decay into two W bosons at order $O(\alpha_s^4)$ [67] is added to yield the total cross-section prediction of 65.0$^{+1.2}_{-1.1}$ pb,\(^2\) where the contributions from resonant and non-resonant $gg \to W^+W^-$ production amount to 6.4% and 4.2% of the total cross section, respectively. Theoretical uncertainties in the acceptance are assigned as described in Section 6.

The approximate theoretical fiducial cross sections are found to be:

\[
\sigma_{WW}^{\text{fid,1-jet}} = 141 \pm 30 \text{ fb} \tag{7}
\]
\[
\sigma_{WW}^{\text{fid,\leq1-jet}} = 487 \pm 22 \text{ fb}. \tag{8}
\]

A comparison of the measured and predicted fiducial cross sections is given in Figure 2(a). While the fiducial WW+0-jet cross section was measured slightly higher than the theoretical prediction, the fiducial WW+1-jet and WW+\leq1-jet cross-section measurements agree well with the theoretical prediction.

The ratio of the jet-binned fiducial cross sections R_1 measured in data is compared to several theoretical predictions in Figure 2(b). All theoretical values agree well with the measurement within uncertainties. The first two theoretical predictions are taken from either the POWHEG+PYTHIA 8 or the MC@NLO+JIMMY $q\bar{q} \to W^+W^-$ samples. The theoretical uncertainty in these predictions is assessed by varying the renormalisation and factorisation scales independently by factors of 0.5 and 2 with the constraint $0.5 < \mu_F/\mu_R < 2$. The contributions from resonant and non-resonant $gg \to W^+W^-$ production are taken in both cases from the respective POWHEG+PYTHIA 8 and $gg2ww$ samples, which increase the prediction for R_1 due to more initial-state radiation from gluons than quarks. The full effect of omitting the $gg \to W^+W^-$ contributions is assigned as further theoretical uncertainty. To investigate resummation effects, a third prediction is obtained from the $q\bar{q} \to W^+W^-$ and $gg \to W^+W^-$ samples as discussed above, but with the POWHEG+PYTHIA 8 $q\bar{q} \to W^+W^-$ sample reweighted to reproduce the $p_{T,WW}$ distribution as predicted by the NLO+NNLL calculation in Ref. [10]. In addition to renormalisation and factorisation scales, the resummation scale is varied here. Finally, predictions for R_1 are obtained by using recent fixed-order calculations for the $q\bar{q} \to W^+W^-$ and non-resonant $gg \to W^+W^-$ processes from MATRIX at NNLO [6] and MCFM at NLO, where the latter uses the implementations of inclusive WW production [1] and WW+1-jet production [8]. These programs allow the application of the fiducial lepton and missing transverse momentum selections avoiding the use of acceptance factors derived from lower-order programs. Jets are clustered from the final state partons using the anti-k_t algorithm with the radius parameter $R = 0.4$. A correction for non-perturbative effects from hadronisation and the underlying event is derived by comparing samples of MADGRAPH [68] using the CT10 PDF interfaced with PYTHIA 8 and the AU2 tune with these effects enabled or disabled. A systematic uncertainty is derived by interfacing the MADGRAPH samples with HERWIG++ [69] and the AUET2 tune. The renormalisation and factorisation scales for the MATRIX and MCFM predictions are set to $\mu_R = \mu_F = m_W$ and an uncertainty is obtained by varying those independently by factors of 0.5 and 2 with the constraint $0.5 < \mu_F/\mu_R < 2$. In both of these calculations, the non-resonant $gg \to W^+W^-$ production only contributes in the denominator of R_1.

\(^2\) The prediction for the total cross section is slightly larger than the one cited in Ref. [14] due to the inclusion of the higher-order calculation of the loop-induced gg processes and the use of an alternative scale choice in the calculation of the $q\bar{q} \to W^+W^-$ process.
ATLAS
E = 8 TeV, 20.3 fb⁻¹

(a) Ratio of measurement to prediction, \(\sigma_{WW}^{\text{ fid, meas.}} / \sigma_{WW}^{\text{ fid, theo.}} \)

(b) Jet-binned fiducial cross-section ratio \(R_1 \) measured in data and compared to theoretical predictions.

Figure 2: (a) Comparison of the measured cross sections in the 0-jet, 1-jet and \(\leq 1 \)-jet fiducial regions. The ratio of the measured cross sections to their respective theoretical prediction is shown. The theoretical predictions were obtained by multiplying the total cross section of 65.0\(^{+1.2}_{-1.1}\) pb with the total acceptance obtained by combining the acceptance correction factors \(A_{WW} \) for the WW processes according to their contribution. (b) Jet-binned fiducial cross-section ratio \(R_1 \) measured in data and compared to theoretical predictions. The values are obtained for two different \(q\bar{q} \to W^+ W^- \) generators and by reweighting Powheg+Pythia 8 to a resummation calculation at NLO+NNLL. Contributions from resonant and non-resonant \(gg \to W^+ W^- \) production are added to all three theoretical values. Fixed-order calculations at NNLO using Matrix [6] and at NLO using MCFM [1, 8] are also shown, where contributions from non-resonant \(gg \to H \to W^+ W^- \) production are added using simulated Powheg+Pythia 8 samples. For the measured cross sections in (a) and (b) the combined statistical and systematic uncertainties are shown as a blue band. When statistical uncertainties are given they are indicated as horizontal error bars. The uncertainties in theoretical cross sections are shown as a grey band.

Contributions from resonant \(gg \to H \to W^+ W^- \) production are included using event samples simulated with Powheg+Pythia 8.

The total \(WW \) cross section is extrapolated from the fiducial \(WW+\leq 1 \)-jet cross section using Eq. (3) and found to be:

\[
\sigma_{WW}^{\text{tot}} = 68.2 \pm 1.2(\text{stat}) \pm 3.4(\text{syst}) \pm 2.8(\text{theo}) \pm 1.4(\text{lumi}) \text{ pb.} \tag{9}
\]

The result presented here is 12% more precise than the previous ATLAS measurement based on \(WW+0 \)-jet candidate events only [14] due to smaller experimental uncertainties in the fiducial \(WW+\leq 1 \)-jet cross-section measurement. The measured cross section is compatible with the theoretical prediction of 65.0\(^{+1.2}_{-1.1}\) pb.

8 Conclusion

The production of \(W \) boson pairs in association with a hadronic jet was studied in \(pp \) collisions at a centre-of-mass energy of \(\sqrt{s} = 8 \) TeV using data with an integrated luminosity of 20.3 fb⁻¹ collected by the ATLAS detector at the LHC. The analysis extends a previous analysis to final states with one jet. The fiducial \(WW+1 \)-jet cross section is measured to be 136 ± 16 fb within the fiducial volume defined.
by the kinematic requirements placed in the analysis. It is found to be in very good agreement with
the theoretical prediction obtained by combining the total cross-section calculations of $q\bar{q} \to W^+W^-$ at
$O(\alpha_s^3)$, non-resonant $gg \to W^+W^-$ at $O(\alpha_s^2)$, and resonant $gg \to W^+W^-$ at $O(\alpha_s^4)$ and multiplying them
with their respective acceptance factor A_{WW}. Similarly, the measured fiducial $WW+\leq 1$-jet cross section
of 511 ± 29 fb agrees within the uncertainty with the prediction. The fiducial $WW+\leq 1$-jet cross section is
extrapolated to the total phase space, yielding a measurement of the total $pp \to W^+W^-$ cross section of
68.2 ± 4.7 pb. This result is compared to the highest-order theory calculation available of 65.0 ± 1.2 pb.

The total cross section extrapolated from the ≤ 1-jet fiducial volume is in better agreement with the theory
calculation than the total cross section extrapolated from the 0-jet fiducial volume. The uncertainty is
improved by 12%.

To investigate further how well current predictions are able to describe the relative contributions of these
exclusive jet cross sections, the ratio of the fiducial $WW+1$-jet to the fiducial $WW+0$-jet cross section,
R_1, is determined to be 0.36 ± 0.05 and compared to various theoretical predictions, which are all found
to agree with the measurement within the uncertainties.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our
institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and
FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,
Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT
CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-
DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong
Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan;
CNRS, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal;
MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia;
MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and
Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST,
Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition,
individual groups and members have received support from BCKDF, the Canada Council, CANARIE,
CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7,
Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and
Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Ger-
many; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF,
GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the
Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from
CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-
IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC
(Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource pro-
viders. Major contributors of computing resources are listed in Ref. [70].
References

The ATLAS Collaboration

Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey

5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France

6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America

7 Department of Physics, University of Arizona, Tucson AZ, United States of America

8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America

9 Physics Department, University of Athens, Athens, Greece

10 Physics Department, National Technical University of Athens, Zografou, Greece

11 Department of Physics, The University of Texas at Austin, Austin TX, United States of America

12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain

14 Institute of Physics, University of Belgrade, Belgrade, Serbia

15 Department for Physics and Technology, University of Bergen, Bergen, Norway

16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America

17 Department of Physics, Humboldt University, Berlin, Germany

18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey; (e) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey, Turkey

21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy

23 Physikalisches Institut, University of Bonn, Bonn, Germany

24 Department of Physics, Boston University, Boston MA, United States of America

25 Department of Physics, Brandeis University, Waltham MA, United States of America

26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSGJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

27 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

28 (a) Transilvania University of Brasov, Brasov, Romania; (b) National Institute of Physics and Nuclear Engineering, Bucharest; (c) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (d) University Politehnica Bucharest, Bucharest; (e) West University in Timisoara, Timisoara, Romania

29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

31 Department of Physics, Carleton University, Ottawa ON, Canada

32 CERN, Geneva, Switzerland

33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

34 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
37 Nevis Laboratory, Columbia University, Irvington NY, United States of America
38 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
39 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
40 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
41 Institute of Nuclear Physics Academy of Sciences, Krakow, Poland
42 Physics Department, Southern Methodist University, Dallas TX, United States of America
43 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
44 DESY, Hamburg and Zeuthen, Germany
45 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
46 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
47 Department of Physics, Duke University, Durham NC, United States of America
48 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
49 INFN Laboratori Nazionali di Frascati, Frascati, Italy
50 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
51 Section de Physique, Université de Genève, Geneva, Switzerland
52 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
53 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi, Georgia
54 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
55 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
56 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
57 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
58 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
59 Department of Modern Physics, University of Science and Technology of China, Anhui, China
60 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
63 Department of Physics, Indiana University, Bloomington IN, United States of America
64 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
65 University of Iowa, Iowa City IA, United States of America
66 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
67 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
68 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
69 Graduate School of Science, Kobe University, Kobe, Japan
70 Faculty of Science, Kyoto University, Kyoto, Japan
71 Kyoto University of Education, Kyoto, Japan
72 Department of Physics, Kyushu University, Fukuoka, Japan

29
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston LA, United States of America
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
(a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Cosmology, Shanghai Jiao Tong University, Shanghai; (also affiliated with PKU-CHEP), China

142 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

143 Department of Physics, Shinshu University, Nagano, Japan

144 Fachbereich Physik, Universität Siegen, Siegen, Germany

145 Department of Physics, Simon Fraser University, Burnaby BC, Canada

146 SLAC National Accelerator Laboratory, Stanford CA, United States of America

147 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

148 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

149 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

152 School of Physics, University of Sydney, Sydney, Australia

153 Institute of Physics, Academia Sinica, Taipei, Taiwan

154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

157 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

160 Tomsk State University, Tomsk, Russia, Russia

161 Department of Physics, University of Toronto, Toronto ON, Canada

162 (a) INFN-TIFPA; (b) University of Trento, Trento, Italy, Italy

163 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

164 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

165 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

166 Department of Physics, University of Illinois, Urbana IL, United States of America

167 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

168 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

169 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

170 Department of Physics, University of Illinois, Urbana IL, United States of America

171 Instituto de Fisica Corpuscular (IFIC) and Departamento de Fisica Atomica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

172 Department of Physics, University of British Columbia, Vancouver BC, Canada

173 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

174 Department of Physics, University of Warwick, Coventry, United Kingdom

32
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America
f Also at Physics Department, An-Najah National University, Nablus, Palestine
g Also at Department of Physics, California State University, Fresno CA, United States of America
h Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
i Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
j Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal
k Also at Tomsk State University, Tomsk, Russia, Russia
l Also at Universita di Napoli Parthenope, Napoli, Italy
m Also at Institute of Particle Physics (IPP), Canada
n Also at National Institute of Physics and Nuclear Engineering, Bucharest, Romania
o Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
p Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
q Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa
r Also at Louisiana Tech University, Ruston LA, United States of America
s Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
t Also at Graduate School of Science, Osaka University, Osaka, Japan
u Also at Department of Physics, National Tsing Hua University, Taiwan
v Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
w Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
x Also at CERN, Geneva, Switzerland
y Also at Georgian Technical University (GTU),Tbilisi, Georgia
z Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
aa Also at Manhattan College, New York NY, United States of America
ab Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
ac Also at School of Physics, Shandong University, Shandong, China
ad Also at Department of Physics, California State University, Sacramento CA, United States of America
ae Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
af Also at Section de Physique, Université de Genève, Geneva, Switzerland
ag Also at Eotvos Lorand University, Budapest, Hungary
ah Also at Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook
NY, United States of America
a Also at International School for Advanced Studies (SISSA), Trieste, Italy
a Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
ak Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
a Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
al Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
am Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
am Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
an Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
ao Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
ao Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
as Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
as Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
at Also at Department of Physics, Stanford University, Stanford CA, United States of America
au Also at Department of Physics, Stanford University, Stanford CA, United States of America
au Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
* Deceased