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Key message Pollen heat acclimation.

Abstract As a consequence of global warming, plants

have to face more severe and more frequently occurring

periods of high temperature stress. While this affects the

whole plant, development of the male gametophyte, the

pollen, seems to be the most sensitive process. Given the

great importance of functioning pollen for the plant life

cycle and for agricultural production, it is necessary to

understand this sensitivity. While changes in temperature

affect different components of all cells and require a cel-

lular response and acclimation, high temperature effects

and responses in developing pollen are distinct from veg-

etative tissues at several points. This could be related to

specific physiological characteristics of developing pollen

and supporting tissues which make them vulnerable to high

temperature, or its derived effects such as ROS accumu-

lation and carbohydrate starvation. But also expression of

heat stress-responsive genes shows unique patterns in

developing pollen when compared to vegetative tissues that

might explain the failure to withstand high temperatures.

As an alternative to viewing pollen failure under high

temperature as a result of inherent sensitivity of a specific

developmental process, we end by discussing whether it

might actually be an adaptation.

Keywords High temperature response � Heat stress �
Pollen development � Male fertility � Acclimation �
Tapetum

Introduction

Plants are exposed to an ever-changing biotic and abiotic

environment and need to constantly adapt their develop-

ment and physiology to maintain organismal and cellular

homeostasis (also referred to as acclimation). An envi-

ronmental parameter that is highly variable, over various

time scales, is ambient temperature. High temperatures

reached during the day can pose various problems for

cellular functioning and strongly affect plant fitness in the

longer term. As a consequence of global warming, hot days

and heat waves are predicted to increase both in frequency

and in intensity in many temperate regions in the coming

decades (IPCC 2014). Given the almost complete depen-

dency of humans on agricultural output for food, under-

standing the reaction of plants to high temperature stress is

of great societal importance. While the majority of studies

on this subject have focussed on the vegetative (sporo-

phytic) stage of plant growth, the development and func-

tioning of the male gametophyte, or pollen, are known to

be among the most temperature-sensitive processes within

the plant life cycle (Zinn et al. 2010). Importantly, heat-

induced pollen defect is associated with reductions in seed

and fruit set. In this review, we will specifically discuss the

high temperature sensitivity and acclimation response of

developing pollen and see how this compares to that of

vegetative tissues. We will also speculate whether previous

experience of high temperature by a plant may induce

higher tolerance of pollen towards subsequent temperature

increases, i.e. leads to acquired thermotolerance, either
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within an individual or in the offspring, and discuss ways in

which pollen thermotolerance may be enhanced.

The effect of heat on pollen

Pollen development

Pollen, the mature male gametophyte (microgametophyte),

is a highly specialized cell type that develops within the

anthers of the flower through a complex series of processes.

This has been reviewed extensively (Borg et al. 2009).

During anther development, the reproductive or sporoge-

nous cells, located centrally within the anther, give rise to

the pollen mother cells (PMCs; microsporocytes), while the

surrounding non-reproductive cells form sporophytic epi-

dermal, cortical and tapetal cell layers. Pollen development

from PMCs can be divided into microsporogenesis and

microgametogenesis. During microsporogenesis, PMCs

undergo a meiotic division, with the four haploid products

(spores) of each meiocyte initially staying together in the

form of a tetrad. These tetrads are enclosed by a thick wall,

mainly consisting of callose, and surrounded by the locular

fluid inside the anther locules. The innermost cell layer of

the locule differentiates as the tapetum, a tissue that is

essential for microsporogenesis through secreting nutrients,

carbohydrates, cell wall components and enzymes into the

locular fluid. Among these are callases that digest the

callose walls of the tetrads, which then release the uni-

cellular microspores. During subsequent microgametoge-

nesis, the microspores undergo vacuolization, expansion

and a mitotic, asymmetric division, resulting in the for-

mation of binuclear pollen grains, harbouring a larger

vegetative and smaller generative cell. At this stage, the

tapetum undergoes programmed cell death. Pollen will then

maturate and desiccate. In the case of tri-nucleate pollen, a

second mitotic division of the generative cell into two

sperm cells occurs before desiccation, while in binucelate

pollen grains this happens after pollen germination.

Heat-induced pollen defects

Developing microspores and pollen have been known for a

long time to be the cells that are most affected by the

occurrence of high ambient temperatures (Iwahori 1965).

Both short-term high and long-term mildly elevated day

and night temperatures negatively affect pollen develop-

ment. An important question is what the primary heat-in-

duced developmental defect(s) during pollen development

are and how this differs between heat profiles.

The earliest heat-induced developmental defects occur

during meiosis. Next to increased frequency of crossing

over and homologous recombination (Boyko et al. 2005;

Francis et al. 2007; Lebel et al. 1993), chromosome beha-

viour and meiotic cell division may be affected, leading to

unbalanced chromosome separation between spores and

formation of diploid dyads (Omidi et al. 2014; Pecrix et al.

2011; Rezaei et al. 2010). In the study of Pecrix et al.

(2011), closer investigation revealed that the behaviour of

chromosomes during cell division was due to aberrant

spindle orientation. High temperatures are known to affect

microtubules and cytoskeleton dynamics, which has been

studied in vegetative tissues, as well as during pollen tube

growth (Muller et al. 2007; Parrotta et al. 2016; Smertenko

et al. 1997). While this requires temperatures of above

40 �C in vegetative cells in Arabidopsis or tobacco, grow-

ing pollen tubes are more sensitive (35 �C, 3 h) and damage

increases with increasing temperature (Parrotta et al. 2016).

In agreement with this, aberrant behaviour of chromosomes

during meiosis seems to occur especially under more severe

heat stress (De Storme and Geelen 2014).

Defects in microsporogenesis have been described in a

number of species, both under extreme heat and long-term

mild heat profiles (Ahmed et al. 1992; Endo et al. 2009;

Kim et al. 2001; Sato et al. 2002). It has been suggested

that a reduction in pollen number and viability might be the

indirect result of defects in the supportive tapetal cells (De

Storme and Geelen 2014; Parish et al. 2012). Aberrations

in the timing of tapetum development and degeneration,

including hypertrophy and premature as well as delayed

degeneration, and morphology of tapetal endoplasmic

reticulum have been observed (Abiko et al. 2005; Ahmed

et al. 1992; Endo et al. 2009; Harsant et al. 2013; Iwahori

1965; Oshino et al. 2007; Saini et al. 1984; Suzuki et al.

2001). Similar tapetal defects are known from cold and

drought stress and occur in different plant species, both

monocots like wheat, barley, Brachypodium distachyon

and rice, and dicots like cowpea (Vigna unguiculata), snap

bean (Phaseolus vulgaris), Arabidopsis and tomato, always

associated with reduced pollen viability (De Storme and

Geelen 2014; Parish et al. 2012).

Finally, the amount of starch and sugars in maturing

pollen grains has been shown to be affected by long-term,

mildly elevated temperature. In pollen of bell pepper and

tomato, starch has been shown to accumulate during

development and reach a maximum after the first pollen

mitosis, a few days before flower anthesis. Subsequently,

the starch content is reduced again and the concentration of

soluble sugars increases (Aloni et al. 2001; Pressman et al.

2002). When grown under continuous mild heat (32 �C/
26 �C day/night), the transient accumulation of starch, as

well as the final accumulation of soluble sugars, was

reduced in developing tomato pollen, correlating with

reduced pollen viability, and tomato cultivars with higher

pollen thermotolerance were able to maintain higher starch

and sugar levels than heat-sensitive lines (Firon et al. 2006;
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Pressman et al. 2002). It could be speculated that high

temperatures lead to depletion of these reserves due to

increased respiration to sustain adaptive metabolic activity

in developing pollen. Alternatively, the carbohydrate-re-

lated defects may be the result of decreased hexose supply

by the tapetum or due to developmental aberrations during

earlier microsporogenesis.

How heat affects the above developmental processes

remains to be determined. Studies in vegetative cells have

identified several cellular effects of high temperature,

including increased membrane fluidity, misfolding of pro-

teins, changes in the specificity and kinetics of enzyme

reactions and accumulation of reactive oxygen species

(ROS) (Alfonso et al. 2001; Atkin and Tjoelker 2003;

Sangwan et al. 2002).

Heat responses during pollen development

To cope with the various effects of high temperatures and

to maintain cellular homeostasis, plants have a sophisti-

cated heat stress response. While this is well studied in

vegetative stages of different plant species, especially using

Arabidopsis seedlings and tomato cell cultures (Kotak et al.

2007; Scharf et al. 2012), little is known about these

mechanisms in developing pollen. Transcriptomic studies

of developing Arabidopsis and maize (Zea mays) pollen

have shown that, in comparison with vegetative and other

generative tissues, developing pollen is a relatively unique

cell type (Becker et al. 2003; Davidson et al. 2011). This

means that knowledge obtained from vegetative stages is

not necessarily applicable to developing pollen and argues

for performance of pollen-specific studies.

Heat sensing

Heat stress leads to broad transcriptomic changes in plants.

Genes differentially expressed under high temperatures

include heat stress transcription factors (HSFs) and heat

shock proteins (HSPs), but they only a account for small

proportion of total transcriptomic changes. Transcriptomic

studies in wheat and Arabidopsis showed that 5–10 % of

all transcripts were differentially expressed under short

heat stress, including genes that putatively encode proteins

and transcription factors involved in phosphorylation,

hormone biosynthesis and signalling, calcium, sugar and

lipid signalling pathways, regulation of transcription and

translation, primary and secondary metabolism and

responses to different biotic and abiotic stresses (Larkin-

dale and Vierling 2008; Mittler et al. 2012; Qin et al.

2008). Prior to these transcriptomic adjustments, plants

have to sense changes in temperatures. Four systems have

been described that can sense temperature changes and are

thought integrate these to induce heat-responsive gene

expression (Mittler et al. 2012). An increase in membrane

fluidity is among the first consequences of increasing

temperatures, and a calcium channel located in the plasma

membrane is considered to be the main sensor. Activated

by increasing temperatures, it leads to the accumulation of

Ca2? in the cytoplasm and the expression of heat-induced

genes, for example by feeding into the HSF pathway as

discussed later (Balogh et al. 2013; Mittler et al. 2012).

Second, proteins that unfold due to increasing temperatures

are sensed by the cytoplasmic and ER unfolded protein

response (UPR) and serve as a thermosensor (Moreno and

Orellana 2011). The UPR in the cytoplasm involves

HSFA2, a major regulator of the HSR, and certain splice

variants of HSFA2. In the endoplasmic reticulum, the

presence of unfolded proteins leads to the release of bZip

transcription factors that enter the nucleus and lead to the

expression of heat stress-responsive genes as well (Che

et al. 2010). Thirdly, the early accumulation of reactive

oxygen species (ROS) is considered one of the first steps in

the heat stress signalling cascades. While ROS are con-

stantly produced under normal conditions, especially in

mitochondria, chloroplasts and peroxisomes, and directly

detoxified by different pathways within these organelles or

their vicinity, under high temperatures the balance between

production and detoxification seems to be disturbed, lead-

ing to the accumulation of ROS (Sharma et al. 2012). And

last, a specific histone variant, H2A.Z that is incorporated

into nucleosomes especially around the transcriptional start

site of genes, seems to regulate nucleosome occupancy at

this position in a temperature-sensitive manner (Kumar and

Wigge 2010). In a model proposed by Kumar and Wigge

(2010), the occupancy of H2A.Z containing nucleosomes

declines with increasing temperatures allowing the pro-

gression of the polymerase II and transcriptional regulators

to access gene-specific regulatory cis-elements, normally

occluded by nucleosomes.

It seems likely that the same systems act in developing

pollen. Indeed, recently, a calcium channel has been

determined to be important for thermotolerance (cycling

between 40 �C day and -1 �C night temperature) of Ara-

bidopsis pollen (Tunc-Ozdemir et al. 2013). Mutant plants

showed no defects under control conditions, but were more

sensitive to high temperature stress and failed to induce

expression of heat-responsive transcription factors. Also,

accumulation of ROS in pollen upon a short heat shock

(42 �C, 2 h) has been reported (Kumar et al. 2014), and this

may play a role in acclimation.

Heat stress transcription factors

Central to the HSR is a network of heat shock transcription

factors (HSF) that can bind a specific palindromic DNA
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sequence, the heat shock element (HSE), and induce the

expression of heat-responsive genes (for review Kotak

et al. 2007; Scharf et al. 2012). Tomato, for example,

possesses 27 different HSFs that can be divided into three

different clades (Scharf et al. 2012). These contain differ-

ent motifs, among which a DNA-binding domain to rec-

ognize HSE and an oligomerization domain to form

heterooligomers. The division into three different clades is

based on structural differences in this oligomerization

domain. Under normal temperature conditions, HSFA1, the

master regulator of the HSR is located in the cytoplasm and

kept inactive by interaction with HSP70 and HSP90 (Hahn

et al. 2011). Upon high temperature stress, HSFA1 is

activated and together with HSFB1, another HSF that

rapidly accumulates under HT and acts as co-activator

induces the expression of heat-responsive genes that help

to maintain cellular homeostasis and different HSFs that

further amplify the HSR (Liu et al. 2011). Among these

heat-induced HSFs is HSFA2, which, by oligomerization

with HSFA1, forms a so-called superactivator complex that

amplifies the HSR (Chan-Schaminet et al. 2009).

High temperature-induced expression of different HSFs

has been reported in developing pollen of different species.

HSFA2 and HSFA3 are upregulated in tomato microspores,

and HSFA2 and HSFB1 are also upregulated in developing

pollen of Arabidopsis under a short heat shock (Frank et al.

2009; Giorno et al. 2010; Tunc-Ozdemir et al. 2013).

Similar to what was found for vegetative tissue, HSFA2

suppression reduced the tolerance of tomato pollen towards

a short high temperature stress (39 �C, 3 h) during the

stages of meiosis and early microspore formation

(Fragkostefanakis et al. 2016). On the other hand, HSF

function also seems to diverge between leaf and anther to

some extent, because a considerable difference in the heat-

induced genes was found between leaf and anther, as well

as in the set of HSFA2-dependent genes (Fragkostefanakis

et al. 2016). And, while in vegetative stages of tomato,

HSFA2 is solely expressed under high temperature condi-

tions, HSFA2 transcripts are already abundant under con-

trol conditions in young developmental stages of tomato

pollen (Fragkostefanakis et al. 2016; Frank et al. 2009;

Giorno et al. 2010); thus, HSFs might play an additional,

developmental role in pollen development. The same

expression pattern is found for AtRen1, an HSFA5-like

gene that is important for pollen development. Knockout of

Ren1 leads to abnormal pollen development, as well as to

higher temperature sensitivity of developing pollen (Renak

et al. 2014). Since nucleolar appearance was different, the

authors concluded that Ren1 might be related to RNA

biogenesis. HSFA5, the closest homologue of Ren1, is also

upregulated in developing pollen of Arabidopsis and soy

bean, but at later stages than Ren1 (Haerizadeh et al. 2009;

Renak et al. 2014). In a tomato protoplast system, HSFA5

was found to inhibit the function of HSFA4, a positive

regulator of the HSR also expressed in developing pollen

(von Koskull-Doring et al. 2007). Taken together, from the

few HSFs that have been studied in pollen under high

temperatures, it seems that most of them are induced in

response to high temperature like in vegetative tissues,

suggesting that HSFs play a similar, major role in the heat

response in pollen. Additional functional genomic studies

are needed to test this hypothesis.

Heat shock proteins

Protecting and stabilizing proteins in their native confor-

mation are one of the most important aspects for cells to

survive high temperatures stress. This is carried out by

high-molecular-weight chaperones called heat shock pro-

teins (HSPs). Especially under high temperature, cells

accumulate massive amounts of these proteins to prevent

irreversible high temperature damage (Vierling 1991).

HSPs are divided into classes according to their molecular

weight in kDa (HSP100, HSP90, HSP70, HSP60, HSP40

and small HSP with low molecular weights) and stabilize

unfolding proteins, prevent the formation of aggregates,

resolubilize aggregated proteins and return them to their

native conformation (Hartl et al. 2011; Kotak et al. 2007;

Vierling 1991). Low-molecular-weight HSPs also play

roles in maintaining the cell membrane integrity (Tsvet-

kova et al. 2002).

In young developmental stages of tomato pollen, several

small HSPs and HSP70 are abundant, suggesting a devel-

opmentally controlled process that might help to prepare

the cells for environmental stresses (‘‘developmental stress

priming’’; Chaturvedi et al. (2013); Gagliardi et al. (1995);

Volkov et al. (2005)). This fits with the finding that HSFA2

is expressed and activates some of its targets in young

anthers under non-stress conditions (Fragkostefanakis et al.

2016; Giorno et al. 2010). Furthermore, HSPs and small

HSPs are induced in pollen after a short intense high

temperature stress (Chaturvedi et al. 2015; Frank et al.

2009; Kumar et al. 2014). However, this might not apply to

all HSPs typically expressed in vegetative stages: studies in

different species have shown that in developing, mature

and germinating pollen, certain heat-responsive proteins,

like HSP100, HSP70 and small HSPs, accumulate less

under high temperatures than in vegetative tissue (Cooper

et al. 1984; Dupuis and Dumas 1990; Gagliardi et al. 1995;

Volkov et al. 2005). A recent study in tomato comes to a

similar conclusion, namely that HSFA2, HSP100 and

HSP17 are upregulated in developing pollen in response to

a short heat stress (39 �C, 3 h), but to a considerably lesser

extent than in vegetative tissues (Fragkostefanakis et al.

2016). Similarly, promotor-GUS fusions have shown that

in response to high temperatures the promotor of a small
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HSP from soy bean is active in all vegetative tissues of

Arabidopsis, but not in developing pollen (Crone et al.

2001). The failure of developing pollen to express certain

HSP has long been thought to be responsible the high

temperature sensitivity of pollen (Frova et al. 1989), and

indeed, transgenic overexpression of HSP100, which is not

detectable in wild-type pollen of tobacco and cotton under

high temperatures, resulted in higher pollen thermotoler-

ance when receiving a short heat stress (46 �C, 3 h or

50 �C, 7 min) during germination and higher bolt and seed

production in greenhouse and field trials (Burke and Chen

2015). Recent microarray studies seem to deliver con-

trasting results, though detecting transcripts of small HSPs,

HSP70 and HSP80 and related DNAJ proteins in pollen

under short heat stress (Bita et al. 2011; Endo et al. 2009;

Zhang et al. 2014). However, these studies used whole

anthers or panicles, contributing a significant amount of

vegetative tissues that might mask the unique response of

developing pollen. Apart from the common HSPs, other

putative chaperones have been detected in developing

pollen under heat stress (Cooper et al. 1984; Hopf et al.

1992), as well as proteins with chaperone-related functions.

Recent studies have shown that members of the BAG

family, involved in recruiting HSPs to client proteins, are

expressed in developing tomato pollen under heat stress

and might be under control of HSFA2 in vegetative tissues

in tomato (Fragkostefanakis et al. 2015; Frank et al. 2009;

Giorno et al. 2010). Studies in Arabidopsis have shown that

these genes are involved in thermotolerance and overex-

pression resulted in higher tolerance to a variety of other

abiotic stresses, too (Doukhanina et al. 2006).

Thus, in agreement with the findings on HSF expression,

pollen seems to be able to mount a classical heat stress

response regarding the activation of many HSPs, but it is

different from that in vegetative tissue.

Reactive oxygen species

Mitochondria, chloroplasts and peroxisomes are of great

importance for energy-related metabolism in plant cells.

However, along with the ordinary reactions, these cellular

compartments also produce reactive oxygen species (ROS)

that are cytotoxic and are detoxified by a specialized cel-

lular machinery (Sharma et al. 2012). While ROS pro-

duction and scavenging are well balanced under normal

conditions, preventing damages to cellular components,

abiotic stresses are well known to greatly increase ROS

production and disturb this balance (Bhattacharjee 2013;

Foyer and Noctor 2005; Vacca et al. 2004). In vegetative

tissues of different plant species, ROS scavenging enzymes

and antioxidants are known to be highly induced under

high temperatures and contribute to plant thermotolerance

(Chao et al. 2009; Mittal et al. 2012; Sairam et al. 2000).

Increasing antioxidant activity has been shown to increase

vegetative thermotolerance in different plant species

(Almeselmani et al. 2006; Chen et al. 2013; Rui et al. 1990;

Sairam et al. 2000; Sengupta et al. 1993; Wu et al. 2012)

and might also be of importance for developing pollen.

Pollen and tapetum cells are known to accumulate great

numbers of mitochondria, twenty times more than in veg-

etative tissue, and show fast respiration during develop-

ment and pollen tube growth (Lee and Warmke 1979;

Selinski and Scheibe 2014). Under high temperatures, this

great amount of mitochondria might lead to a dramatic

increase in ROS, stressing the capacities of the ROS

scavenging machinery. The only study into this, performed

in wheat, indeed shows that pollen hydrogen peroxide level

increases dramatically upon a short heat treatment (42 �C,
2 h), together with antioxidant capacity (Kumar et al.

2014). A proteomic as well as transcriptomic studies have

shown that an ascorbate peroxidase is upregulated in

developing tomato and wheat pollen in response to a short

heat treatment (Chaturvedi et al. 2015; Frank et al. 2009;

Kumar et al. 2014). Also in rice, a number of ROS-related

genes were shown to be heat responsive (Zhang et al.

2014), although the use of whole panicles prevents drawing

conclusions on developing pollen, specifically. When

subjected to high temperatures, plants also accumulate

antioxidant substances, like flavonoids, that can scavenge

and detoxify ROS (Wahid et al. 2007). Accumulation of

these antioxidants during pollen development is essential

for pollen germination and pollen tube growth (Coberly

and Rausher 2003; Derksen et al. 1999; Schijlen et al.

2007). In response to a short heat stress, pollen accumu-

lates even higher levels of ascorbate and phenolic com-

pounds, like flavonoids, that might imply a role in the high

temperature response (Kumar et al. 2014).

Hormones

Various plant hormones have been linked to heat stress

signalling and pollen heat acclimation (Bokszczanin et al.

2013; Mittler et al. 2012). Transcripts related to ethylene

signalling are higher expressed after a short heat stress in

developing tomato pollen (Frank et al. 2009). Supporting a

role of ethylene in acclimation of tomato pollen to heat,

pollen of an ethylene insensitive tomato mutant was shown

to be more sensitive chronic mild heat stress (32/26 �C,
day/night), which was associated with reduced accumula-

tion of sucrose in the mature stage (Firon et al. 2012).

Additionally, chemical induction of ethylene production

prior to a short heat stress (50 �C, 2 h) treatment improved

pollen thermotolerance, while application of an ethylene

inhibitor reduced it (Firon et al. 2012). Auxin synthesis in

anthers of Arabidopsis and barley is reduced upon high

temperatures, in contrast to the response in vegetative
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tissue. This reduction does not seem to be an acclimation

response for pollen per se, though, but rather a defect, as

exogenous application of auxin improved pollen thermo-

tolerance to continuous mild heat stress in barley (30 �C/
25 �C, day/night) and Arabidopsis (31–33 �C) (Higashitani
2013; Sakata et al. 2010). Similarly, a microarray study in

rice found that among tapetum-specific genes that were

downregulated under continuous mild heat stress (39 �C/
30 �C, day/night) several were related to GA signalling

(Endo et al. 2009) and a wheat GA hyposensitive mutant

was shown to be hypersensitive to long-term high tem-

perature treatments regarding seed set (Alghabari et al.

2014), while a higher GA content correlated with a higher

pollen viability under continuous mild heat stress in rice

(Tang et al. 2008). Reduced GA signalling may thus be

considered a defect, too. Notably, it could be related to

developmental defects observed under heat, as a GA

insensitive mutant was shown to have abnormal tapetal

development, showing delayed or inhibited programmed

cell death and pollen developmental arrest at the micro-

spore stage (Aya et al. 2009; Tsuji et al. 2006). Abscisic

acid (ABA) is another plant hormone involved in vegeta-

tive thermotolerance (Baron et al. 2012; Larkindale and

Huang 2005). However, ABA accumulation seems to

negatively affect pollen development (Ji et al. 2011; Parish

et al. 2013). In rice florets, exposed to reoccurring heat

stress for five days, ABA concentrations were higher than

under control conditions, but ABA concentrations have not

been measured in pollen itself (Tang et al. 2008). Thus, it

seems that ABA accumulation could be a consequence of

heat stress with adverse effects on pollen. However, evi-

dence is still scarce and further studies that specifically

analyse ABA content in anther tissues are needed to shed

light on its role in pollen heat stress effects and response.

Sugar metabolism

The effect of heat stress on pollen characteristics is asso-

ciated with changes in carbohydrate metabolism and con-

tent in the developing anthers, but there are species-specific

effects. In reproductive organs of rice, sugar transporters

have been shown to be more active under continuous mild

heat, resulting in higher starch levels of mature pollen

(Chung et al. 2014). Also in bell pepper, mild heat stress

was reported to result in higher starch levels in maturing

pollen (Aloni et al. 2001). By contrast, in tomato, contin-

uous mild heat stress was found to cause a reduction in cell

wall-bound acid invertase activity in whole anthers of

flower buds five days before anthesis, which correlated

with reduced starch accumulation two days later (Pressman

et al. 2006). Acid invertase catalyses hydrolysis of sucrose,

which normally accumulates at the final stage of pollen

development. The same reaction may be performed by

sucrose synthase, and activity of this enzyme, too, has been

reported to be negatively affected by high temperature

([ 40/25 �C; day/night) in anthers (Kaur et al. 2015). After

sucrose is hydrolysed by acid invertase or sucrose synthase,

glucose and fructose must be further metabolized. Fruc-

tokinase activity, the first step in metabolizing fructose, in

bell pepper pollen was also reduced under high tempera-

tures, while hexokinase activity was low and did not show

any changes in response to temperature (Karni and Aloni

2002). Interestingly, under higher atmospheric levels of

CO2, both enzymes showed increased activity and pollen

germination potential under high temperatures was

improved (Aloni et al. 2001; Karni and Aloni 2002). Fol-

lowing the phosphorylation, hexoses are further metabo-

lized in glycolysis. Genes related to glycolysis are

expressed in tapetal cells and developing pollen, and

knockout of these genes results in male sterility, accom-

panied by defects in tapetal development (Munoz-Ber-

tomeu et al. 2010). Whether changes in sugar and starch

levels in developing pollen are an adverse consequence of

high temperature (via effects on gene expression or enzyme

structure/activity) or the result of active adjustments of the

primary metabolism as part of the pollen heat response is

currently unclear.

Acquired thermotolerance of pollen development

While plants possess the ability to withstand a sudden heat

shock, they have been shown to be more tolerant to a

gradual increase in temperature over time that allows them

to acclimate. Similarly, plants are able to survive an

otherwise lethal heat stress when preceded by a sub-lethal

high temperature treatment. This phenomenon is known as

acquired thermotolerance (ATT) and has been studied

extensively in vegetative tissues. Various genes and sig-

nalling pathways have been described that are necessary

for ATT; among these are HSFs and HSPs, different plant

hormones, ROS and other signals like miRNA398 (Bok-

szczanin et al. 2013; Guan et al. 2013; Larkindale and

Vierling 2008; Scharf et al. 2012). It is thought that upon a

sub-lethal high temperature treatment a set of stress sig-

nalling and defensive proteins are produced by the plant

and remain present in the cell for some time beyond the

initial stress period. Then, upon a second heat stress, pro-

tective proteins are already available, while the pre-formed

signalling components enable the plant to induce tran-

scription of heat-responsive genes faster and at higher

levels. As an alternative mechanism, the faster gene

expression response has been suggested to depend on his-

tone H3K4 hyper-methylation (Lamke et al. 2015). Among

the HSFs and HSPs, some play a very prominent role in

ATT; especially, HSFA2 seems to be a major regulator of
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ATT in Arabidopsis and HSP100 one of the major working

horses as knockouts of each of these genes will result in

greatly reduced ATT (Hong and Vierling 2000; Schramm

et al. 2006; Yang et al. 2006). In vegetative tissues, ethy-

lene signalling has also been related to ATT (Larkindale

and Vierling 2008).

While the effect of ATT is described to last for hours up

to a few days, there are a few examples that imply that

plants might be able to acquire thermotolerance also over

longer periods (Charng et al. 2007). In wheat, plants that

received two high temperature treatments at earlier devel-

opmental stages were performing better when subjected to

high temperatures several weeks later, after anthesis (Wang

et al. 2011, 2012). In these studies, the authors measured

photosynthetic activity of the flag leaf, starch mobilization

from the stem and accumulation in the grains. All of them

were less affected by high temperatures when plants

received acclimation treatments before anthesis.

There is some evidence to suggest that a similar type of

ATT also occurs in pollen. Late stages of tomato pollen are

able to acquire thermotolerance against a short high tem-

perature stress, and this seems to be dependent on ethylene

signalling (Firon et al. 2012). Application of an ethylene

inhibitor affected the ability of pollen to acquire thermo-

tolerance and chemical induction of ethylene, prior to a

high temperature treatment, increased pollen thermotoler-

ance (Firon et al. 2012). Also, the offspring of Arabidopsis

plants grown under continuous mild heat stress for two

subsequent generations and one generation at control

conditions produced significantly more seeds under con-

tinuous mild heat than plants grown under control condi-

tions for three generations prior to the stress (Whittle et al.

2009). Unfortunately, pollen quality was not tested in this

study, so it remains unclear whether the increased seed set

under high temperatures correlated with increased pollen

thermotolerance.

Conclusions and future perspectives

While the first detailed studies of pollen development

under high temperature date back half a century (Iwahori

1965), the reason for the hypersensitivity of pollen to heat

relative to vegetative tissue still remains elusive. We have

provided an overview of effects heat on pollen and high-

lighted differences between the heat stress response of

pollen and vegetative tissues. From this, it seems that

various factors could contribute to high temperature sen-

sitivity (Fig. 1). One possible explanation could be that

pollen is not able to mount a proper HSR. HSFs and HSPs

are essential for the heat stress response, and perturbation

of this stress defence pathway greatly impairs thermotol-

erance (Mishra et al. 2002; Schramm et al. 2006). The

major HSFs and most HSPs seem to be normally heat

responsive in pollen, but several typical HSPs (HSP100

and certain small HSPs) accumulate less in developing

pollen than in vegetative tissue under high temperature.

Thus, this may hamper the full protection against unfolding

of proteins. Support comes from the finding that transgenic

expression of Arabidopsis HSP100 in cotton and tobacco

improved pollen thermotolerance (Burke and Chen 2015).

So, why would a microspore have a weak HSR? It could be

speculated that a cell that needs to go through a comp

series of developmental steps in a very defined/short period

time has limited opportunity to respond to environmental

influences. In other words, a strong heat response could be

expected to severely affect developmental progression of a

microspore, which it might not be able to recover from.

Developmental priming has been proposed to compensate

for a weak HSR, but it is experimentally difficult to sep-

arate heat-independent and heat-dependent protective gene

expression, which would be required for testing this

hypothesis. Alternatively, specific physiological charac-

teristics of pollen and tapetum might be related to tem-

perature sensitivity. Pollen and tapetum seem to have an

unusually strong demand for energy, as indicated by the

high number of mitochondria in these cells. Differences in

starch and sugar accumulation are usually observed under

mild continuous heat conditions. Depletion in energy

reserves might thus affect tapetum and pollen more than

other cells. Several authors have suggested that problems

with sugar metabolism constitute the primary heat defect

causing pollen failure, but proper experimental testing is

urgently needed to clarify whether this is the case, or

whether it is merely the consequence of preceding devel-

opmental deviations. From the available literature, it seems

that at least pollen induces ROS scavengers upon high

temperatures and accumulates compounds that act as

antioxidants. However, given the great number of mito-

chondria in pollen and tapetum, it is tempting to speculate

that upon heat, these produce a disproportionate amount of

ROS that cannot be counteracted by the detoxifying

machinery. Measuring ROS at cell level has proved diffi-

cult, explaining the gap in knowledge regarding pollen and

tapetum. There might be an opportunity to use genetically

encoded biosensors to this end, which may even be eval-

uated in histological sections (Fujikawa et al. 2016; Meyer

et al. 2007). Interestingly, high temperature defects in

developing pollen and tapetum share some similarities with

plants showing cytoplasmic male sterility (CMS), a phe-

nomenon not completely understood yet, but thought to be

linked to mitochondrial function and ROS activity (Hu

et al. 2014). About half of the described CMS phenotypes

are sensitive to temperatures, and all of them are limited to

the development of the male gametophyte. Like under high

temperature, aberrations in tapetum development, such as
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hypertrophy or delayed and inhibited PCD, are observed in

CMS plants (Holford et al. 1991; Liu et al. 2009; Schnable

and Wise 1998; Smith et al. 2002). This phenotype also

closely resembles that of signalling mutants in the GA

pathway, which might be involved in pollen thermotoler-

ance (Chhun et al. 2007; Jacobsen and Olszewski 1991;

Koornneef and van der Veen 1980; Tang et al. 2008).

Whether these similarities are a coincidence or if there is a

mechanistic relation in triggering pollen defects remains to

be seen.

Taken together, both the development of pollen and

tapetum and the high temperature response of developing

pollen show some unique characteristics that might explain

the high temperature sensitivity of pollen. A contrasting as

yet unexplored alternative explanation could be that pollen

heat sensitivity is in fact an adaptation by itself. Firstly,

because the subsequent processes of embryo and fruit

development are adversely affected by high temperature

(Bac-Molenaar et al. 2015; Mulholland et al. 2003), pre-

venting investment in reproduction at too high tempera-

tures through regulated reduction in fertility might be

beneficial for plant fitness. Support for this hypothesis

comes from the specific decrease in auxin levels in anthers

upon heat, while in vegetative tissues it increases (Du et al.

2013; Sakata et al. 2010). Insight into the molecular reg-

ulation of the two contrasting responses might shed light on

this. Secondly, it could be hypothesized that under stress

conditions, it could be advantageous to keep the female

gametophyte and kill the male gametes. This would pro-

mote outcrossing and thus result in higher genetic vari-

ability among offspring, which could increase the chance

of genetic adaption to adverse conditions. This idea fits

Pollen

premature 
degenera�on

starch 
accumula�on

denaturing
proteins

carbohydrates/
nutri�on

microtubules/
cytoskeleton 

HSFs
weak
HSR

carbohydrates

ROSTapetum

Developing
pollen

oxida�ve damage

ROS

Fig. 1 Possible defects related to pollen failure under heat. Devel-

oping pollen and the surrounding tapetal cells show a high sensitivity

to heat stress (lightning symbol) that often results in premature

degeneration of tapetal cells and aberrant developmental or pro-

grammed cell death of developing pollen. While the cause of this

sensitivity remains unknown, we suggest several physiological

characteristics of developing pollen that might be related to pollen

failure under heat. Firstly, developing pollen and tapetal cells contain

high numbers of mitochondria. Therefore, increased respiration as

adaptation to heat might result in the production of a disproportional

amount of reactive oxygen species (ROS) that cannot be sufficiently

detoxified by the protective cellular mechanisms, causing damages to

different cellular components. Secondly, premature tapetum degen-

eration or effects on specific metabolic enzymes under heat stress

might result in reduced delivery of carbohydrates and other

compounds necessary for normal pollen development. Together, the

reduced availability of carbohydrates and the increased respiration

with a high number of mitochondria might lead to the depletion of

energy reserves and defects during subsequent development. Thirdly,

heat results in the unfolding of proteins. This effect is normally

mitigated by the classical chaperone heat stress response (HSR). In

pollen, heat activates HSFs, important signalling components of the

HSR; however, the cell fails to mount a full HSR comparable to

vegetative tissues, which is then insufficient to protect and refold

proteins. Finally, microtubules and the cytoskeleton are known to be

sensitive to ROS and heat stress. During the meiotic cell division, heat

affects the orientation of the spindle apparatus leading aberrant

chromosome behaviour and subsequent failure of pollen development
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with the finding that plants under stress conditions,

including heat, show higher homologous recombination

frequency (Boyko et al. 2010).

For the future, obtaining knowledge on the genetic basis

of (natural) variation in pollen thermotolerance, by apply-

ing a forward genetic approach, which has been highly

fruitful in many areas of plant research, may be necessary

to really get a grip on this aspect of plant biology. Further

challenges lie in understanding the similarity in problems

caused by and responses to other abiotic stresses, such as

drought and high salinity, which also affect male gameto-

phyte development (Storme and Geelen 2013). The com-

mon co-occurrence of these stress factors in natural

situations argues for studying how they interact.
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