B^0 lifetime measurement in the CP-odd decay channel $B^0_s \rightarrow J/\psi f_0(980)$

The lifetime of the B_s^0 meson is measured in the decay channel $B_s^0 \rightarrow J/\psi \pi^+\pi^-$ with $880 \leq M_{\pi^+\pi^-} \leq 1080$ MeV/c^2, which is mainly a CP-odd state and dominated by the $f_0(980)$ resonance. In 10.4 fb$^{-1}$ of data collected with the D0 detector in Run II of the Tevatron, the lifetime of the B_s^0 meson is measured to be $\tau(B_s^0) = 1.70 \pm 0.14 \text{ (stat)} \pm 0.05 \text{ (syst)}$ ps. Neglecting CP violation in B_s^0/B_s^0 mixing, the measurement can be translated into the width of the heavy mass eigenstate of the B_s^0, $\Gamma_H = 0.59 \pm 0.05 \text{ (stat)} \pm 0.02 \text{ (syst)}$ ps$^{-1}$.

PACS numbers: 14.40.Nd, 13.25.Hw

The B_s^0 and B^0 mesons are produced as flavor eigenstates at hadron colliders, but the particles propagate as mass eigenstates. There are two mass eigenstates, the so-called heavy and light states, which are linear combinations of the flavor eigenstates. In the absence of CP-violation in mixing, the mass eigenstates are also CP eigenstates, with the heavier state expected to be the CP-odd state. The lifetimes of the two mass eigenstates can be different from each other and different from the average B_s^0 lifetime. A measurement of the B_s^0 lifetime in either a pure CP-odd state or pure CP-even state would give important additional information about the B_s^0 system.

The $B_s^0 \rightarrow J/\psi f_0(980)$ decay channel corresponds to a pure CP-odd eigenstate decay due to angular momen-

dation conservation, since the parent B_s^0 is spin 0, the $f_0(980)$ has $J^{PC} = 0^{++}$, and the J/ψ has $J^{PC} = 1^{--}$. Throughout this Letter, the appearance of a specific charge state also implies its charge conjugate. This decay channel was first observed by the LHCb collaboration [1], and later confirmed by the Belle [2], CDF [3] and D0 [4] collaborations. A measurement of the B_s^0 lifetime in this channel gives access to the lifetime of the heavy mass eigenstate. The lifetime measurement can be transformed into a measurement of the parameter Γ_H, the decay width of the heavy B^0 mass eigenstate. CDF [3] and LHCb [5] have measured this lifetime, reporting $\tau(B_s^0) = (1.70 \pm 0.12 \pm 0.03)$ ps and $\tau(B_s^0) = (1.70 \pm 0.04 \pm 0.026)$ ps respectively, which are in good agreement with each other and somewhat longer than the mean lifetime $\tau(B_s^0) = (1.52 \pm 0.007)$ ps [6].

In this analysis, we report the lifetime of the B_s^0 meson measured in the decay channel $B_s^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ with $880 \leq M_{\pi^+\pi^-} \leq 1080$ MeV/c^2, which is dominated by the $f_0(980)$ resonance and which is CP-odd at the 99% level [7][8]. The data used in this analysis were collected with the D0 detector during Run II of the Tevatron collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of 10.4 fb$^{-1}$.

The D0 detector is described in detail elsewhere [9]. The detector components most relevant to this analysis are the central tracking and the muon systems. The former consists of a silicon microstrip tracker (SMT) and a central scintillating fiber tracker (CFT) surrounded by a 2 T superconducting solenoidal magnet. The SMT has a design optimized for tracking and vertexing for pseudo-

*with visitors from aAugustana College, Sioux Falls, SD 57197, USA, bThe University of Liverpool, Liverpool L69 3BX, UK, cDeutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Germany, dCONACyT, M-03940 Mexico City, Mexico, eSLAC, Menlo Park, CA 94025, USA, fUniversity College London, London WC1E 6BT, UK, gCentro de Investigacion en Computation - IPN, CP 07738 Mexico City, Mexico, hUniversidade Estadual Paulista, Sao Paulo, SP 01140, Brazil, iKarlsruher Institut für Technologie (KIT) - Steinbuch Centre for Computing (SCC), D-76128 Karlsruhe, Germany, jOffice of Science, U.S. Department of Energy, Washington, D.C. 20585, USA, kAmerican Association for the Advancement of Science, Washington, D.C. 20005, USA, lKiev Institute for Nuclear Research (KINR), Kyiv 03680, Ukraine, mUniversity of Maryland, College Park, MD 20742, USA, nEuropean Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland and oPurdue University, West Lafayette, IN 47907, USA. Deceased.
rapidity of $|\eta| < 3$ [10]. For charged particles, the resolution on the distance of closest approach as provided by the tracking system is approximately 50 μm for tracks with $p_T \approx 1$ GeV/c, where p_T is the component of the momentum perpendicular to the beam axis. It improves asymptotically to 15 μm for tracks with $p_T > 10$ GeV/c. Preshower detectors and electromagnetic and hadronic calorimeters surround the tracker. The muon system is located outside the calorimeter, and consists of multilayer drift chambers and scintillation counters inside 1.8 T iron toroidal magnets, and two similar layers outside the toroids. Muon identification and tracking for 1.8 T iron toroidal magnets, and two similar layers out-tilayer drift chambers and scintillation counters inside calorimeters surround the tracker. The muon system Preshower detectors and electromagnetic and hadronic decay vertex, and p_T is the transverse momentum vector of the B_s^0 candidate. The event-by-event value of the proper transverse decay length, λ, for the B_s^0 candidate is given by:

$$\lambda = L_{xy} \frac{cM_B}{p_T},$$

(1)

where M_B is the world average mass value of the B_s^0 meson [13]. In order to remove background, B_s^0 candidates are required to have $\lambda > 0.02$ cm and uncertainties on λ of less than 0.01 cm.

A simultaneous unbinned maximum likelihood fit to the mass and proper decay length distributions is performed to measure the lifetime. The likelihood function L is defined by:

$$L = \prod_{j=1}^{N} \left[N_{\text{sig}} F_{\text{sig}}^j + N_{\text{comb}} F_{\text{comb}}^j + N_{\text{sf}} F_{\text{sf}}^j + N_{B^+} F_{B^+}^j \right],$$

(2)

where N is the total number of events and N_{sig}, N_{comb}, N_{sf} and N_{B^+} are the expected number of signal, combinatorial background, cross-feed contamination and $B^\pm \rightarrow J/\psi K^\pm$ events in the sample, respectively. All these parameters are determined in the fit. The different background contributions are discussed below.

The functions F are the product of three probability density functions that model distributions of the mass m, the proper transverse decay length λ, and the uncertainty on the proper decay length σ_λ for the signal, combinatorial background, cross-feed contamination, and B^\pm events

$$F_a = M_a(m_j) T_a(\lambda_j) \sigma_\lambda(m_j) E_a(\sigma_\lambda),$$

(3)

where m_j, λ_j, and σ_λ represent the mass, the transverse proper decay length, and its uncertainty, respectively, for a given event j. The use of the probability density functions T and E follows the method of reference [15]. The specific models and parameters used in the fit are described below.

For the signal, the mass distribution is modeled by a Gaussian function, $M_{\text{sig}}(m_j) = G(m_j; \mu_m, \sigma_m)$, where

$$G(m_j; \mu_m, \sigma_m) = \frac{1}{\sqrt{2\pi}\sigma_m} e^{-\frac{(m_j-\mu_m)^2}{2\sigma_m^2}},$$

(4)

with μ_m and σ_m the mean and the width of the Gaussian, determined from the fit.

The combinatorial background is primarily due to random combinations of J/ψ’s with additional tracks in the event, and its mass distribution is described by an exponential function

$$M_{\text{comb}}(m_j; a_0) = e^{a_0 m_j},$$

(5)
with \(a_0 \) determined from the likelihood fit.

The physics cross-feed contamination is mainly produced by the combination of \(J/\psi \) mesons from \(b \) hadron decays with other particles produced in the collision, including from the same \(b \) hadron. Other \(b \) hadron decays with final states such as \(B^0 \rightarrow J/\psi K\pi, B^0 \rightarrow J/\psi \pi\pi \) and \(B^+ \rightarrow J/\psi KK \) are reconstructed at mass below the signal of the \(B_s^+ \), either due to the lower mass of the \(B^0 \) or the incorrect mass assignment of the pion mass to a kaon track. Simulations of these decays show that the cross-feed contamination can be described by a single Gaussian component

\[
M_{xf}(m_j) = G(m_j; \mu_{xf}, \sigma_{xf}),
\]

where \(\mu_{xf} \) and \(\sigma_{xf} \) are the mean and the width of the Gaussian, determined from the likelihood fit.

The final contribution arises from \(B^\pm \rightarrow J/\psi K^\pm \) decays in which the kaon has been assigned a pion mass, and an additional track accidentally forms a vertex with the \(J/\psi K^\pm \). The candidate mass is reconstructed in the region of real \(B^0 \) events. If the higher \(PT \) non-\(\mu \)-track in \(B_s^0 \) candidates is assigned a kaon mass, a clear \(B^\pm \) signal emerges. Events in this \(B^\pm \) mass peak, when interpreted as \(J/\psi \pi\pi \), are used as a template to determine the mass distribution of the \(B^\pm \rightarrow J/\psi K^\pm \) contamination in the \(B_s^0 \) candidates.

The \(\lambda \) distribution for the signal is parameterized by an exponential decay convoluted with a resolution function

\[
T_{\text{sig}}(\lambda | \sigma_{\lambda}) = \frac{1}{\lambda_B} \int_0^\infty G(x; \lambda, \sigma_{\lambda}) \exp \left(-\frac{x}{\lambda_B} \right) dx,
\]

with \(\lambda_B = c \tau \) of the \(B_s^0 \) to be measured. The \(\lambda \) distribution for the background components is parameterized by the sum of two exponential decay functions modeling combinatorial background \(T_{\text{comb}}(\lambda_j) \), an exponential decay for the cross-feed contamination \(T_{\text{xf}}(\lambda_j) \), and an exponential decay function that describes \(T_{B^\pm}(\lambda_j) \) for \(B^\pm \) contamination.

The distribution of the \(\lambda \) uncertainty \(E_{\text{sig}}(\sigma_{\lambda}) \) is described by a phenomenological model, using an exponential with decay constant \(1/\zeta \), convoluted with a Gaussian with mean \(\epsilon \) and width \(\delta \):

\[
E_{\text{sig}}(\sigma_{\lambda}; \zeta, \epsilon, \delta) = \frac{1}{\zeta} e^{-\sigma_{\lambda}/\zeta} \otimes G(\sigma_{\lambda}; \epsilon, \delta),
\]

where the parameters \(\zeta, \epsilon \) and width \(\delta \) are determined from the fit in the sample of events. The uncertainties in \(\lambda \) for the background components are treated in the same manner.

The fit yields \(c\tau(B_s^0) = 504 \pm 42 \) \(\mu \)m and the numbers of signal decays to be 494 \(\pm 85 \). Figure 1 shows the mass, \(\lambda \) and \(\lambda \) uncertainty distributions for data with the fit results superimposed.

Each of the different background components is indicated in the figure. The fit yields \(c\tau(B_s^0) = 504 \pm 42 \) \(\mu \)m.

FIG. 1: Distributions of (a) invariant mass, (b) proper transverse decay length, and (c) proper transverse decay length uncertainty for \(B_s^0 \) candidates, with the fit results superimposed.
FIG. 2: $M(\pi^+\pi^-)$ distribution for events with $M(\mu^+\mu^-\pi^+\pi^-)$ within ±1σ of the B_s^0 mass.
Institute of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science Foundation of China (China); and Ministry of Education and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine).

[2] J. Li et al. (Belle Collaboration), *Observation of $B_s^0 \to J/\psi f_0(980)$ and Evidence for $B_s^0 \to J/\psi f_0(1370)$*, Phys. Rev. Lett. 106, 121802 (2011).
[4] V.M. Abazov et al. (D0 Collaboration), *Measurement of the relative branching ratio of $B_s^0 \to J/\psi f_0(980)$ to $B_s^0 \to J/\psi \phi_0$*, Phys. Rev. D 85, 011103(R) (2012).
[10] $\eta = -\ln[\tan(\theta/2)]$, where θ is the polar angle with respect to the beamline.
[14] The primary vertex of the $p\bar{p}$ interaction is determined for each event using the average transverse position of the beam-collision point as a constraint.
[20] V.M. Abazov et al., *Measurement of the Λ^0_b Lifetime in the Decay $\Lambda^0_b \to J/\psi \Lambda^0$ with the D0 Detector*, Phys. Rev. Lett. 94, 102001 (2005).