Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS Collaboration

Abstract

A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb$^{-1}$ of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at $\sqrt{s} = 13$ TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Models of TeV-scale gravity postulate that the fundamental scale of gravity, M_D, in a higher-dimensional space–time is much lower than is measured in our four-dimensional space–time. In large extra-dimensional models (e.g. the model proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD) [1,2]) there are n additional flat extra dimensions, assumed to be compactified on a torus with a common radius much larger than $1/M_D$. Another class of models (e.g. that of Randall and Sundrum (RS) [3,4]) uses one extra dimension in a highly warped anti-de-Sitter space. Both of these types of model can address the large difference between the scale of electroweak interactions, $\mathcal{O}(0.1 \text{ TeV})$, and that of gravity, the Planck scale, $M_{Pl} = \mathcal{O}(10^{16} \text{ TeV})$, in a natural way. Interesting signatures are expected in these models in the form of non-perturbative gravitational states such as microscopic black holes [5,6]. Such final states could be produced in proton–proton (pp) interactions at the Large Hadron Collider (LHC) [7]. In the absence of a full theory of quantum gravity, predictions for production cross-sections and decays of black holes rely on semi-classical approximations which are expected to be valid if the mass of the black hole is well above M_D and also higher than the Hawking temperature [8]. A strong rise in the production rate of such states is expected when the energy scale of the interactions reaches the order of M_D. Since the gravitational interaction couples to the energy–momentum tensor rather than gauge quantum numbers, final states are expected to be populated “democratically”, according to the number of available Standard Model degrees of freedom. For this reason, it is expected that a significant fraction of final states would contain leptons. This search exploits this feature to enhance the signal contribution in comparison with the dominant background at the LHC, which arises from quark and gluon scattering processes forming hadronic final states. Final states with at least three high transverse momentum (p_T) objects are selected, of which at least one must be an electron or muon (leptons in what follows) and the others can be either leptons or hadronic jets. The discriminating variable used in this search, $\sum p_T$, is the scalar sum of the transverse momenta of high p_T objects in an event. The signal is expected to appear at high $\sum p_T$. Searches by ATLAS [9–12] and CMS [13,14] during Run 1 of the LHC did not reveal any significant excesses over expected background levels. An ATLAS analysis [15] of Run-2 data at 13 TeV also found no evidence of new effects in multijet final states. This work extends the reach of the analysis in Ref. [12], performed at a centre-of-mass energy of 8 TeV, with 3.2 fb$^{-1}$ of data recorded by ATLAS in 2015 at 13 TeV. This search is potentially sensitive to other forms of new physics at high-mass and involving the electroweak sector.

2. ATLAS detector

ATLAS [16] is a multipurpose detector with a forward–backward symmetric cylindrical geometry and nearly 4π coverage in solid
angle. The inner detector (ID) utilises fine-granularity pixel and microstrip detectors over the pseudorapidity range \(|\eta| < 2.5 \) to provide precise track parameter and secondary vertex measurements. For Run 2 of the LHC, a new pixel layer has been added at a radius of 3.3 cm [17]. A gas-filled straw-tube tracker complements the silicon tracker at larger radii. The tracking detectors are immersed in a 2 T magnetic field produced by a thin superconducting solenoid. The electromagnetic (EM) calorimeters employ lead absorbers and use liquid argon as the active medium. The barrel EM calorimeter covers \(|\eta| < 1.5 \) and the end-cap EM calorimeters cover \(1.4 < |\eta| < 3.2 \). Hadronic calorimetry in the region \(|\eta| < 1.7 \) is performed using steel absorbers with scintillator tiles as the active medium. Liquid-argon calorimetry with copper absorbers is used in the hadronic end-cap calorimeters, which cover the region \(1.5 < |\eta| < 3.2 \). The forward calorimeters \((3.1 < |\eta| < 4.9) \) use copper and tungsten as absorber with liquid argon as active material. The muon spectrometer (MS) measures the deflection of muon trajectories in the region \(|\eta| < 2.7 \), using three stations of precision drift tubes (with cathode strip chambers in the innermost station for \(|\eta| > 2.0 \)) located in a toroidal magnetic field of approximately 0.5 T and 1 T in the central and end-cap regions, respectively. The muon spectrometer is also instrumented with separate trigger chambers covering \(|\eta| < 2.4 \). Events are selected using a first-level trigger implemented in custom electronics, designed to reduce the event rate down to 100 kHz using a subset of detector information [18]. Software algorithms with access to the full detector information are then used to yield a recorded event rate of about 1 kHz.

3. Analysis

3.1. Signal simulation

Signal samples are generated by using the CHARYBDIS2 1.04 generator [19] to simulate the production and decay of rotating black holes in models with \(n = 2, 4 \) and 6 extra dimensions and values of \(M_D \) ranging from 2 TeV to 5 TeV. Black holes are assumed to be produced over a continuous range of mass values above a threshold \(M_{th} \), set so as to avoid the theoretical uncertainties associated with the region close to \(M_P \). The analysis is guided by two benchmark signal models, the first of which has \(M_D = 2 \text{ TeV} \) and \(M_{th} = 7 \text{ TeV} \), resulting in a cross-section of 0.72 pb. The second has \(M_D = 4 \text{ TeV}, M_{th} = 6 \text{ TeV} \), and a cross-section of 0.93 pb. In these simulations, no initial-state gravitational radiation is permitted, while the final decay of the black-hole remnant produces a variable number of particles, whose multiplicity is drawn from a Poisson distribution in accordance with the CHARYBDIS2 default. The \(T(n) \) parton distribution functions (PDFs) are used as taken from Ref. [20], while the final-state fragmentation and parton showering is modelled using PYTHIA [21]. The detector response is modelled using a fast simulation of the response of the calorimeters [22] and GEANT4 [23] for other parts of the detector. Events from minimum-bias interactions are also simulated with PYTHIA. They are overlaid on the simulated signal and background events according to the luminosity profile of the recorded data. Interactions within the same bunch crossing as the hard-scattering process and in neighbouring bunch crossings are both simulated and are referred to as pile-up.

3.2. Event selection

Events are selected from a sample with an integrated luminosity of \(3.2 \pm 0.2 \text{ fb}^{-1} \). The luminosity estimate is derived following the same methodology as that detailed in Ref. [24], from a calibration of the luminosity scale using a pair of \(x-y \) beam-separation scans performed in August 2015. The event selection uses the lowest-threshold single-lepton triggers available in each data-taking period with good operational conditions. The single-electron trigger uses a minimum threshold of \(p_T = 50 \text{ GeV} \). All the final-state objects are required to satisfy basic criteria to ensure that they are well reconstructed and originate from the primary interaction. Candidate electrons and muons are required to have \(p_T > 10 \text{ GeV} \) and pseudorapidity \(|\eta| < 2.47 \) (electrons) or \(|\eta| < 2.5 \) (muons). They are also required to satisfy baseline identification criteria (the “Loose” operating point of Ref. [25] for electrons and the “Medium” criteria of Ref. [26] for muons). Jets of hadrons are reconstructed using the anti-\(k_t \) algorithm with a radius parameter of 0.4 [27] and are required to be of at least “loose” quality [28] and to have a calibrated [29] \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.8 \).Jets containing \(b \)-hadrons are identified using the “\(b \)-tagging” techniques described in Refs. [30,31]. To avoid double-counting of reconstructed objects, electrons sharing an inner detector track with a muon are removed. Following this, jet candidates that are not \(b \)-tagged are removed if they are within \(\Delta R < 0.2 \) of an electron candidate. Finally, lepton candidates are removed if they lie within \(\Delta R < 0.4 \) of a surviving jet candidate that is not tagged as originating from pile-up [32]. The remaining electrons are required to satisfy the “Tight” operating point of Ref. [25]. Leptons are required to be isolated from other activity using a relatively loose criterion designed to pass 99% of leptons from \(Z \) decays [26,33]. Events are sorted into electron and muon channels according to the flavour of the highest \(p_T \) lepton. Two signal regions (SRs) are defined, requiring a leading lepton with \(p_T > 100 \text{ GeV} \) and at least two other objects (leptons or jets) with \(p_T > 100 \text{ GeV} \), and \(\sum p_T > 2 \text{ TeV} \), where \(\sum p_T \) includes all objects in the event with \(p_T > 60 \text{ GeV} \). The first signal region (named \(SR > 2 \text{ TeV} \)) allows the search to cover the parameter space near the existing limits, while the second (named \(SR > 3 \text{ TeV} \)) provides sensitivity at the highest \(\sum p_T \) accessible. The \(SR > 3 \text{ TeV} \) selection gives efficiency \(\times \) acceptance values for the benchmark signal models of 19\% (for the model at \(M_D = 2 \text{ TeV}, M_{th} = 7 \text{ TeV} \)) and 8\% (for the model at \(M_D = 4 \text{ TeV}, M_{th} = 6 \text{ TeV} \)).

3.3. Backgrounds

The dominant backgrounds originate from \(W \) and \(Z \) boson production associated with hadronic jets (\(W \) +jets and \(Z \) +jets) and from \(t\bar{t} \) production. For these backgrounds, the distributions in kinematic quantities are predicted by Monte Carlo (MC) simulations, which are normalised to data in dedicated control regions (CRs). Each CR uses selections which enhance the contribution of the relevant background while maintaining a negligible expected signal contribution. Single-top-quark and diboson production processes give small contributions that are estimated directly from simulations, with normalisations taken from Refs. [34,35] and from the generator, respectively. The bosonic background processes are simulated using SHERPA 2.1 [36], while POWHEG [37–39] in conjunction with PYTHIA [40] is used for top quark production processes. All these background simulations use the CT10 PDF set [41]. The detector response is modelled using GEANT4. The electron channel also contains background events from hadronic jets which are incorrectly reconstructed as electrons. This background, called “multijet”, is estimated from the data using a sample of

1. ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the \(z \)-axis along the beam direction. The \(x \)-axis points from the IP to the centre of the LHC ring, and the \(y \)-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the beam direction. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \). Object separations are measured using \(\Delta R = \sqrt{\Delta\phi^2 + (\Delta\eta)^2} \).
events selected with loosened identification criteria using the Matrix Method [42]. The rate of background muons from hadronic jets is negligible.

The background CR selection criteria are summarised in Table 1. All of the CRs select events with \(750 < \sum p_T < 1500 \text{ GeV} \), including at least three objects with \(p_T > 60 \text{ GeV} \) of which one is required to be a lepton. The \(Z + \) jets CR additionally requires exactly two leptons with a same charge and opposite charge and an invariant mass \(m_{\ell\ell} \) in the range 80–100 GeV. The \(W + \) jets CR requires events with exactly one lepton and a missing transverse momentum \(E_T^{\text{miss}} \) [43] exceeding 60 GeV. In this CR, in order to suppress background from top quark production, none of the jets may be \(b \)-tagged. The \(t\bar{t} \) CR also requires exactly one lepton, but there must be at least four jets of which at least two are \(b \)-tagged. In order to use information about the shape of the \(\sum p_T \) distribution to more accurately constrain the normalisation of the \(W + \) jets, \(Z + \) jets and \(t\bar{t} \) backgrounds in the SRs, each control region is divided into three 250-GeV-wide bins.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Control regions</th>
<th>(Z +) jets</th>
<th>(W +) jets</th>
<th>(t\bar{t})</th>
<th>Signal regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum p_T) (750-1500 \text{ GeV})</td>
<td>(\geq 3) objects with (p_T > 60 \text{ GeV})</td>
<td>(\geq 3) objects with (p_T > 100 \text{ GeV})</td>
<td>(\geq 3) objects with (p_T > 100 \text{ GeV})</td>
<td>(> 20000, 20000 \text{ GeV})</td>
<td></td>
</tr>
<tr>
<td>Number of objects (leptons or jets)</td>
<td>(\geq 3) objects with (p_T > 60 \text{ GeV})</td>
<td>(\geq 3) objects with (p_T > 100 \text{ GeV})</td>
<td>(\geq 3) objects with (p_T > 100 \text{ GeV})</td>
<td>(> 20000, 20000 \text{ GeV})</td>
<td></td>
</tr>
<tr>
<td>Leading lepton (electron or muon)</td>
<td>Isolated with (p_T > 60 \text{ GeV})</td>
<td>Isolated with (p_T > 100 \text{ GeV})</td>
<td>Isolated with (p_T > 100 \text{ GeV})</td>
<td>(> 20000, 20000 \text{ GeV})</td>
<td></td>
</tr>
<tr>
<td>(m_{\ell\ell}) (80-100 \text{ GeV})</td>
<td>(\geq 60 \text{ GeV})</td>
<td>(\geq 60 \text{ GeV})</td>
<td>(\geq 60 \text{ GeV})</td>
<td>(> 20000, 20000 \text{ GeV})</td>
<td></td>
</tr>
<tr>
<td>Number of leptons</td>
<td>(\geq 2), opposite sign same flavour</td>
<td>(= 1)</td>
<td>(\geq 1)</td>
<td>(> 20000, 20000 \text{ GeV})</td>
<td></td>
</tr>
<tr>
<td>Number of (b)-tagged jets</td>
<td>(n/a)</td>
<td>(\geq 2)</td>
<td>(n/a)</td>
<td>(> 20000, 20000 \text{ GeV})</td>
<td></td>
</tr>
<tr>
<td>Number of jets</td>
<td>(n/a)</td>
<td>(\geq 4)</td>
<td>(n/a)</td>
<td>(> 20000, 20000 \text{ GeV})</td>
<td></td>
</tr>
</tbody>
</table>

4. Results

Results are extracted from profile likelihood fits using three background normalisation parameters for the \(W + \) jets, \(Z + \) jets and \(t\bar{t} \) backgrounds. These normalisation parameters are freely floating in the fits. Nuisance parameters are included in the fits to describe the systematic uncertainties, taking into account the correlations across the processes and regions involved in each fit. A background likelihood fit to all control regions of both lepton channels, assuming no signal contribution, is used to predict the expected yields in validation regions (VRs) and to test the hypothesis that the data is well described with no signal in these regions. The VRs are defined using the same event selections as the signal regions, but in the range \(1500 < \sum p_T < 2000 \text{ GeV} \). As in the CRs, any signal contamination in the VRs is expected to be small, based on previous analyses [12] and on signal simulations. Comparisons between the data and the predictions in the control regions, where the background predictions are adjusted by the background likelihood fit, may be seen in Fig. 1. The MC simulation provides a good description of the CR data, with scale factors of 0.81 ± 0.07, 1.01 ± 0.08 and 0.95 ± 0.08 for \(W + \) jets, \(Z + \) jets and \(t\bar{t} \) respectively. No significant deviation from the background prediction is observed in the VRs.

Fig. 2 shows the data and background predictions for \(\sum p_T \) in the electron and muon channels following the background likelihood fit, with two signal models overlaid. This figure uses the SR selection except for the final requirement on \(\sum p_T \). The data are in good agreement with the background prediction across the range of \(\sum p_T \) which can be tested with the present data, with the size and pattern of deviations between data and background prediction being consistent with statistical fluctuations and the size of the systematic uncertainties. Table 2 presents the data and background predictions in the signal regions. The number of events observed in \(\text{SR-3\text{TeV}} \) is higher than the background estimate in the electron channel with a \(p \)-value of 1% when tested against the background-only hypothesis. The excess is not sufficiently significant to be considered as evidence of any new physics effect. The final results are therefore derived from the combination of the two channels. The observed numbers of events in \(\text{SR-2\text{TeV}} \) and \(\text{SR-3\text{TeV}} \) are 192 and 13 respectively for the combination of the electron and muon channels, to be compared with fitted background predictions of 181 ± 11 and 9.9 ± 1.4.

Model-independent cross-section upper limits on any potential new physics contribution are obtained from fits to all control regions and to signal regions combining the electron and muon channels, with potential signal contributions included via a freely-floating parameter in those signal regions. Model-independent upper limits of 12.1 fb (3.4 fb) at the 95% confidence level (CL) are set on the maximum observable cross-section (defined as cross-
section × acceptance × efficiency) allowed for any form of new physics in the SR-2TeV (SR-3TeV) region which produces a lepton in conjunction with at least two other objects, each with $p_T > 100$ GeV.

Fits including predicted signal yields in all control and signal regions simultaneously are used to extract exclusion limits for specific black-hole signal models. Since the signal regions overlap in $\sum p_T$, these exclusion fits are performed for $\sum p_T > 3$ TeV, combining the electron and muon data. Confidence levels are evaluated using the CLs procedure [49]. The results are shown in Fig. 3, together with the corresponding limit from the Run 1 analysis at $\sqrt{s} = 8$ TeV [12]. The impact on the M_{D} limit for $n = 6$ due to the PDF-induced uncertainties in the signal cross-section varies from ±200 GeV to ±100 GeV as M_{D} varies from 2 TeV to 5 TeV. The limit on M_{D} is more stringent than that from the Run 1 search by almost 3 TeV at $M_{\text{D}} = 2$ TeV and by more than 2 TeV at
Fig. 2. The $\sum p_T$ distributions in (a) the electron channel and (b) the muon channel. The selection is that of the signal regions except for the final requirement on $\sum p_T$. The data are shown as points with error bars; all expected backgrounds are shown as stacked coloured histograms, with the total background uncertainty shown as a shaded band. Two representative signal distributions for rotating black holes with $n = 6$ are overlaid to illustrate the signal properties. The lower panels show the ratio of the data to the expected background. The t, $W + \text{jets}$ and $Z + \text{jets}$ backgrounds are normalised by the factors 0.95, 0.81 and 1.01 as obtained from the background likelihood fit. The single-top-quark and diboson background normalisations are taken from the simulation. The multijet background is obtained using a data-driven method. Additionally, the likelihood fit may constrain nuisance parameters for certain systematic uncertainties, altering the normalisation and shape of some of the distributions.

Table 2

Background fit results for regions SR–2TeV ($\sum p_T > 2$ TeV) and SR–3TeV ($\sum p_T > 3$ TeV) for the electron and muons channels. The errors shown are the statistical plus systematic uncertainties. The uncertainty in the total background count includes correlations between nuisance parameters and so does not reflect a quadrature sum of the uncertainties in the individual background components.

<table>
<thead>
<tr>
<th></th>
<th>SR–2TeV (electron)</th>
<th>SR–2TeV (muon)</th>
<th>SR–3TeV (electron)</th>
<th>SR–3TeV (muon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>12.3</td>
<td>69</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Expected bg events</td>
<td>104 ± 9</td>
<td>78 ± 6</td>
<td>4.6 ± 0.8</td>
<td>5.3 ± 1.2</td>
</tr>
<tr>
<td>Expected t events</td>
<td>13.8 ± 3.1</td>
<td>11.4 ± 2.5</td>
<td>0.65 ± 0.18</td>
<td>0.55 ± 0.15</td>
</tr>
<tr>
<td>Expected $W + \text{jets}$ events</td>
<td>32.0 ± 3.5</td>
<td>33.9 ± 3.2</td>
<td>1.76 ± 0.31</td>
<td>2.0 ± 0.4</td>
</tr>
<tr>
<td>Expected $Z + \text{jets}$ events</td>
<td>16.6 ± 1.5</td>
<td>12.6 ± 1.4</td>
<td>1.09 ± 0.18</td>
<td>0.77 ± 0.24</td>
</tr>
<tr>
<td>Exp. single-top-quark events</td>
<td>6.1 ± 0.9</td>
<td>5.2 ± 0.7</td>
<td>0.59 ± 0.18</td>
<td>0.54 ± 0.14</td>
</tr>
<tr>
<td>Expected diboson events</td>
<td>11.4 ± 1.4</td>
<td>14.5 ± 1.5</td>
<td>0.22 ± 0.18</td>
<td>1.5 ± 0.5</td>
</tr>
<tr>
<td>Expected multijet events</td>
<td>24 ± 7</td>
<td>0.0 ± 0.0</td>
<td>0.32 ± 0.24</td>
<td>0.0 ± 0.0</td>
</tr>
</tbody>
</table>

$M_D = 4$ TeV. For a model of rotating black holes with two extra dimensions, the 95% CL lower limit on the threshold mass M_{th} is set at 7.8 TeV for $M_D = 2$ TeV. For a model with six extra dimensions, the limit is set at 7.4 TeV for $M_D = 5$ TeV.

5. Conclusion

A search has been performed for signatures of TeV-scale gravity in high-mass final states including at least one lepton in conjunction with at least two other leptons or hadronic jets each with $p_T > 100$ GeV, using 3.2 fb$^{-1}$ of proton–proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy of 13 TeV. No significant deviation from the background predictions is observed. Upper limits are therefore set on the possible contribution of new physics processes in this class of final states at 12.1 fb (3.4 fb) at 95% CL for $\sum p_T > 2$ TeV (3 TeV). Constraints are placed on production of microscopic black holes in models with two to six extra space dimensions which substantially extend the excluded range of model parameters. The results of this analysis could potentially be used to constrain other models predicting new phenomena at the TeV scale involving decays to leptons and jets.
References

