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We investigate the impact of spatial topology in 3þ 1-dimensional causal dynamical triangulations (CDT)
by performing numerical simulations with toroidal spatial topology instead of the previously used spherical
topology. In the case of spherical spatial topology, we observed in the so-called phase C an average spatial
volume distribution nðtÞ which after a suitable time redefinition could be identified as the spatial volume
distribution of the four-sphere. Imposing toroidal spatial topology, we find that the average spatial volume
distribution nðtÞ is constant. Bymeasuring the covariance matrix of spatial volume fluctuations, we determine
the form of the effective action. The difference compared to the spherical case is that the effective potential has
changed such that it allows a constant average nðtÞ. This is what we observe and this is what onewould expect
from a minisuperspace GR action, where only the scale factor is kept as dynamical variable. Although no
backgroundgeometry is put in byhand, the full quantum theoryofCDTis alsowith toroidal spatial toplogy able
to identify a classical background geometry around which there are well-defined quantum fluctuations.
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I. INTRODUCTION

Impressive progress in computing power during the last
20 years has made numerical methods an important tool of
contemporary theoretical physics. One example is lattice
QCD which provides solutions for low-energy problems of
strong interactions not tractable by means of analytic or
perturbativemethods. The progress has also been used in the
quest for a theory of quantumgravity,where nonperturbative
approaches play an important role. It is well known that
gravity cannot be formulated as a perturbative quantum field
theory as it is nonrenormalizable [1,2]. However, following
Weinberg’s asymptotic safety conjecture [3], there is hope
that it can be formulated as a predictive theory in a
nonperturbative way. The use of functional renormalization
group equations have provided some evidence in favor of the
asymptotic safety conjecture in the case of gravity [4–10],
but since it involves approximations which are difficult to
control, it is important to test the asymptotic safety scenario
using other methods, and here the lattice models of gravity
may play an important role. The starting point is a lattice
regularization of the gravity path integral,

Z ¼
Z

DM½g�eiSHE½g� ; ð1Þ

where one integrates over geometries, i.e. the equivalence
classes of spacetime metrics g with respect to the diffeo-
morphism group on manifold M, and SHE is a classical
gravitational action. To give meaning to the formal expres-
sion (1), one can introduce a lattice discretization. The finite
lattice spacing a provides a high-energy cutoff, and by
taking a → 0, one can in principle approach the continuum
limit. Using what is known as dynamical triangulations
(DT), one starts out in the Euclidean sector; i.e., the path
integral (1) is changed such that one integrates over
geometries with Euclidean signature and uses the corre-
sponding Euclidean action (iSHE½gL� → −SHE½gE�, where
gL denotes a geometry with Lorentzian signature and gE
denotes a geometry with Euclidean signature). The regu-
larized (Euclidean) path integral is then

Z ¼
X
T

e−SR½T �; ð2Þ

where the sum is over (abstract) triangulationsT . Thus, each
abstract triangulation is viewed as a piecewise linear
geometry, where each link is assigned the length a, and
SR is the discretized Hilbert-Einstein action obtained fol-
lowing Regge’s method for describing piecewise linear
geometries [11]. Such a partition function can be inves-
tigated analytically in d ¼ 2 dimensions [12–14] and by
using numericalMonte Carlo methods when d ≥ 3 [15–20].
A natural question arises: in the path integral (1) and
consequently in the partition function (2), should one only
integrate or sumover geometries of some chosen topologyor
should one also include a summation over various topol-
ogies and, if so, which topologies should be taken into
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account? The problem of summing over all possible topol-
ogies seems to be ill defined even in two (spacetime)
dimensions, where the number of inequivalent geometries
increases factorially with the Euler characteristic. As a
consequence, the path integral (2) is not even Borel sum-
mable, and a theory may have (infinitely) many nonpertur-
bativeversions. The situation is evenworse in dimension four,
where the classification of all possible topologies does not
exist (see [21] for a review of all these issues). Therefore, one
is forced to restrict the class of admissible spacetime
topologies, and usually only one simple topology is taken
into account (in DT this was typically a four-sphere S4).1

Numerical simulations of DT in spacetime dimension four
showed that there exist two distinct phases, none of which
resembles the four-dimensional Universe (see [18–20] and
more recently [23,24]). The phases are separated by a first-
order phase transition [25,26], which makes the possibility of
approaching a continuum limit unlikely; however, the authors
ofRef. [27] claim that such a possibility exists if bare coupling
constants are fine-tuned in a specific way. Simulations using
different topologies (S3 × S1 and T4) led to the same results
[28], as one would expect since phase transitions usually are
associated with bulk properties where global topological
constrains are of little importance. It has been conjectured that
the first-order transition is associated with large fluctuations
of the lattice version of the conformal mode [29].
The causal dynamical triangulation approach (CDT) tries

to change the above situation by starting out with a path
integral defined for geometries with Lorentzian signature
and by assuming that one only integrates over causal
geometries (implemented in the strong form of assuming
that the geometry is globally hyperbolic), thus allowing the
introduction of a global proper-time foliation. Since a
topology change of a spatial slice often is associated with
causality violation one forbids such changes in CDTand, as
a result, the spacetime topology is a product M ¼ Σ × I,
where I denotes a (proper-time) interval and Σ the spatial
surface. All these concepts are linked to the Lorentzian
signature of the geometry. What is unique for CDT
(compared to DT) is that even at the discretized level,
i.e. even in the regularized path integral, each of these
geometries has an analytic continuation to a geometry with
Euclidean signature and in the Euclidean regularized path
integral (2) we sum over this class of geometries. The
restriction is entirely motivated from the Lorentzian starting
point. With such a genuine new set of Euclidean geometries
there is a chance that the phase diagram of the lattice theory
is changed compared to the DT phase diagram. And this is
indeed what happens.
In CDT the time direction is distinguished, and the

number of (discrete) time steps is kept fixed in numerical

simulations. Due to the imposed time foliation, the four-
dimensional triangulation is constructed from two types of
elementary building blocks, the (4, 1) simplex with 4
vertices on spatial hypersurface in time t and 1 vertex in
t� 1, and the (3, 2) simplex with 3 vertices in t and 2
vertices in t� 1. The simplices are glued together along
their three-dimensional faces, and local curvature is defined
by the deficit angle around two-dimensional triangles.
Additionally, trajectories are assumed to satisfy the sim-
plicial manifold condition; i.e., every (sub)simplex with a
given set of vertex labels appears only once. It is also
assumed that lattice spacing in time and spatial directions
may be different, which defines the asymmetry parameter
α, such that:

a2t ¼ α a2s : ð3Þ
The Regge-Einstein-Hilbert action takes the following
form [30],

SR ¼ −ðκ0 þ 6ΔÞN0 þ κ4ðNð4;1Þ þ Nð3;2ÞÞ þ ΔNð4;1Þ; ð4Þ
whereNð4;1Þ,Nð3;2Þ andN0 denote the total number of (4, 1)
simplices, (3, 2) simplices and vertices, respectively, while
κ0, Δ and κ4 are three dimensionless coupling constants
dependent on the bare Newton’s constant, cosmological
constant and the asymmetry parameter α.
In CDT, the topology of spatial hypersurfaces Σ is a

choice. The same is the case in classical GR, where the
choice of topology will affect the possible classical
solutions. Similarly, we can expect the choice of topology
of Σ to affect the possible semiclassical solutions of CDT
around which the geometry will fluctuate in the quantum
theory. In fact, since no background geometry is put into
the path integral in CDT, changing spatial topology is a
very interesting test of the picture that dynamically an
average suitable background geometry is found around
which there are relatively small quantum fluctuations.
Further, since CDT starts out as a lattice theory (before
the lattice spacing is sent to zero), there is even an
additional possibility to effectively defy the topology put
in by hand, since on the lattice topology is only an
approximate concept: while changing topology dynami-
cally in the continuum will often result in infinite derivative
terms, on the lattice such terms will be finite, thus allowing
a change in topology. This could happen if the entropy of
the “wrong” configurations is so large that it overcomes the
action barrier for a topology change. The CDT studies
performed so far provide an example of this. Until now the
computer simulations have been performed with the spatial
topology being S3, while periodic boundary conditions
were imposed in the time direction for purely technical
reasons. Thus the total topology of spacetime imposed was
M ¼ S3 × S1. However, in the so-called phase C (to be
described below) the system effectively arranged itself into
a geometry of topology M ¼ S4 (up to lattice artifacts),

1Note that DT is formulated in the Euclidean regime and
such a choice is compatible with Hartle-Hawking no-boundary
proposal [22].

J. AMBJØRN et al. PHYSICAL REVIEW D 94, 044010 (2016)

044010-2



provided time was chosen sufficiently large. This would not
be possible for smooth classical solutions. However, once
this has happened and one takes the lattice spacing to zero,
only the S4 part will survive. The possibility of such
dynamics makes it additionally interesting to change the
topology of Σ and study the corresponding CDT system.
The CDT studies with topology choice M ¼ S3 × S1

have led to the discovery of four distinct phases of
geometry [31–34], including a physical phase C where a
four-dimensional Universe is observed [31,35] with semi-
classical features closely resembling de Sitter space [36,37]
and quantum fluctuations governed by the minisuperspace
action [37,38]. The physical phase C is separated from
phase A by a first-order phase transition and seemed to be
separated from phase B by a second-order phase transition
line [39,40]. The more recent studies showed the existence
of a new “bifurcation” phase (D) in between phases C and
B [33,34], and most likely the recently discovered C-D
phase transition line is second order [41], thus allowing for
the possibility of taking continuum limit from within the
physically interesting phase C [42,43].
In this work, we investigate the impact of spatial top-

ology change on CDT results. We analyze a system where
the spherical topology S3 is replaced by a toroidal topology
T3 ≡ S1 × S1 × S1. For technical reasons we still keep
time-periodic boundary conditions, and therefore the result-
ing spacetime topology is M ¼ T3 × S1.2

II. SIMULATION DETAILS

The (Wick-rotated) partition function (2) defines a
statistical field theory which can be studied by numerical
Monte Carlo methods. The idea is to define a Markov chain
in the space of all admissible triangulations, where a
triangulation T is generated with probability:

P̂ðT Þ ¼ 1

Z
e−SR½T �: ð5Þ

This can be done by updating triangulations by a series of
local Monte Carlo moves. In four-dimensional CDT, one
typically uses seven types of moves which are causal (i.e.,
they preserve both the chosen spatial topology Σ and the
global spacetime topology M ¼ Σ × S1) and ergodic (i.e.,
any triangulation of topologyM can be obtained from any
other triangulation of topologyM by a sequence of moves
—more details can be found in [30]). In addition, we
require that simplicial manifold conditions be satisfied.
One usually starts the numerical simulation from

an arbitrarily chosen simple triangulation T start, and by

performing the moves one evolves the system in
Monte Carlo time. The moves are accepted or rejected
according to the detailed balance condition which ensures
that after a large number of attempted moves (the so-called
thermalization period) the system tends toward a stationary
state where the probability of generating a triangulation
PðT Þ → P̂ðT Þ. The 7 moves which were used in numerical
simulations for topology S3 × S1 preserve the topology and
causality, and can be applied to any topology Σ × S1. The
missing part is generating an initial triangulation T start for
the new spatial topology Σ ¼ T3.
We start by triangulating a four-dimensional hypercube

into 16 simplices using the triangulation method proposed
by P. S. Mara [44]. The 4-cube has 16 vertices, which can be
seen in the visualization in Fig. 1, and we assume that the
blue vertices (labeled 0–7) belong to the spatial Cauchy
hypersurface (the 3-cube) in time t and the red vertices
(labeled 8–15) belong to the 3-cube in time tþ 1. In the
triangulation, one obtains ten simplices with 4 blue vertices
and 1 red vertex or vice versa, all together being the (4, 1)
simplices:

f0; 1; 2; 4; 8g; f4; 8; 12; 13; 14g; f2; 8; 10; 11; 14g;
f2; 4; 6; 7; 14g; f1; 2; 4; 7; 14g; f1; 8; 11; 13; 14g;
f1; 8; 9; 11; 13g; f1; 4; 5; 7; 13g; f1; 2; 3; 7; 11g;
f7; 11; 13; 14; 15g;
where the numbers in parentheses are vertex labels. One also
obtains six simplices with 3 vertices in one time slice and 2
vertices in another (the (3, 2) simplices), parametrized by

f1; 2; 4; 8; 14g; f1; 4; 8; 13; 14g; f1; 2; 8; 11; 14g;
f1; 4; 7; 13; 14g; f1; 2; 7; 11; 14g; f1; 7; 11; 13; 14g:

FIG. 1. Visualization of a 4-cube.

2Note that the direction of time is still well defined and time is
treated differently than space; i.e., we distinguish between spatial
Cauchy surfaces and keep the number of time steps fixed. The
setup is thus very different from a DT system with
M ¼ T4 ¼ S1 × S1 × S1 × S1.
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By gluing the hypercubes together in all four directions,
we build a four-dimensional initial triangulation T start,
satisfying the regularity constraints. Only those d-
dimensional (sub)simplices which share a d-1-dimensional
face (d-1 simplex) can be glued together. This can be done
by joining together the hypercubes which are mirror images
of each other in each direction. As a result, the number of
hypercubes in each direction is even.
The configuration must be periodic in all four directions,

which can be done by identifying vertex labels of the “last”
hypercube in each direction with that of the “initial”
hypercube. Additionally, we require that each d-simplex
(d ¼ 0;…; 4) with vertex labels fv1;…; vdþ1g appear only
once. To fulfill these requirements, one is forced to use
more than two hypercubes in each direction. We use four
hypercubes in each spatial direction and ttot hypercubes in
the time direction (ttot ≥ 4 and even). A simplified two-
dimensional visualization of the procedure is presented in
Fig. 2. The initial triangulation consists of 64 · ttot 4-cubes
containing 1024 · ttot 4-simplices, out of which there are
384 · ttot (3, 2)-simplices and 640 · ttot (4, 1)-simplices. As a
result, each spatial slice is initially built from 320 equi-
lateral tetrahedra and has 64 vertices.3

It is worth mentioning that the initial triangulation T start is
not the minimal triangulation, i.e. the one containing the
smallest possible number of (sub)simplices, but it is relatively

easy to construct. By applying Monte Carlo moves, we
managed to shrink the triangulation to the onewhich has only
90 tetrahedra and15vertices in each spatial layer. It seems that
the resulting spatial configuration is the smallest possible
triangulation of a torus T3 (by construction the moves do not
allow for spatial topology change). We discuss this result in
detail in Appendix A. Note that the minimal toroidal
triangulation is still much bigger than the minimal spherical
configuration from our previous measurements, which con-
sisted of just 5 tetrahedra and had only 5 vertices in each
spatial layer. Onemay, therefore, expect that finite size effects
are substantial in current numerical studies.

III. THE RESULTS

In order to study CDT quantum gravity numerically, one
needs to define observables whose expectation values or
correlation functions can be measured in Monte Carlo sim-
ulations. The idea is to probe the space of all possible
triangulations with the probability given by (5). As a result,
one obtains a sample of triangulations fT 1; T 2;…; T NMC

g
which canbe used to estimate expectationvalues or correlation
functions:

hO1…Oni ¼
1

Z

X
T

O1ðT Þ…OnðT Þe−SR½T �

≈
1

NMC

XNMC

i¼1

O1ðT iÞ…OnðT iÞ: ð6Þ

One then typically explores the bare couplings parameter
space to check how the observables depend on the position in

FIG. 2. Two-dimensional visualization of the initial triangulation T start. The starting cube (square) is colored in red. Colored and blank
squares are mirror images of each other. The number of cubes (squares) in spatial direction is 4, and the number in time direction is ttot
(ttot ≥ 4 and even). The red and green edge lines are glued together, which is done by identifying the corresponding (sub)simplices (vertices
and links). Such boundary conditions are consistent with toroidal topology of spatial slices resulting in global topology ofM ¼ T1 × S1.

3By construction the number of (4, 1)-simplices is twice the
number of spatial tetrahedra. This is because each spatial tetrahe-
dron in time t is a face of one (4, 1) simplex with the fifth vertex in
tþ 1 and one such a simplex with the fifth vertex in t − 1.
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the parameter space. In principle, various phases can be
identified and investigated using this method. For four
spacetime dimensions, CDT parameter space is spanned by
three bare couplings: κ0,Δ and κ4. κ4 plays the role of the bare
cosmological constant, and the leading behaviour of the
partition function (2) is

Z ∝ eðκc4−κ4ÞN4 ; N4 ¼ Nð4;1Þ þ Nð3;2Þ;

where κc4 ¼ κc4ðκ0;ΔÞ is a critical value for which the theory
becomes exponentially divergent. In numerical simulations,
we fix the total number of simplices, which in practice means
that we approach a critical value κ4 − κc4 ≈ 1=N4 and thus we
are left with a two-dimensional parameter space ðκ0;ΔÞ. One
can then check how the observables scale with increasing
lattice volumeN4 and thus draw conclusions about the infinite
volume limit. In CDT, we typically control the lattice volume
by introducing an additional volume fixing potential to the
bare action (4). Here we use a quadratic volume fixing term

SVF ¼ ϵðNð4;1Þ − V̄4Þ2 ð7Þ

with ϵ ¼ 0.00002 controlling the amplitude of volume
oscillations around V̄4.
For the previously used spherical spatial topology the

parameter space has been investigated in detail, which led
to the discovery of four distinct phases [31–34]. Here, with
toroidal spatial topology, we will focus on one particular
point in the parameter space, namely (κ0 ¼ 2.2, Δ ¼ 0.6),
which in the spherical case was placed in the physical de
Sitter phase C.4

A. Spatial volume profile

An observable investigated in this article is the spatial
volume:

nt ≡ Nð4;1ÞðtÞ; ð8Þ

where Nð4;1ÞðtÞ is the number of (4, 1) simplices having 4
vertices in time t. This is by construction equal to twice the
number of tetrahedra forming a spatial slice in t and, as all
spatial tetrahedra are equilateral, the number is proportional
to the physical 3-volume of a Cauchy hypersurface in t. In
numerical simulations, one can measure the average

n̄t ¼ hnti; ð9Þ

called the volume profile, and the correlator

Ct;t0 ≡ hðnt − n̄tÞðnt0 − n̄t0 Þi; ð10Þ
called the covariance matrix. For the spherical spatial
topology, the volume profile observed inside phase C
had a blob structure which could be very well fitted with
the cos3 function characteristic for the Euclidean de Sitter
solution [36,37] (see Fig. 3, blue line). Now, for the toroidal
topology, up to numerical noise, the spatial volume does
not depend on t, and consequently the profile is a constant
line (see Fig. 3, red line):

n̄t ¼ v̄≡ V̄4

ttot
: ð11Þ

In order to obtain a better understanding of the difference
between n̄t when Σ ¼ S3 and Σ ¼ T3, we will determine
the effective action as a function of nt. In the S3 case, this
effective action was closely related to the classical minis-
uperspace action where only the scale factor of the universe
was kept as a dynamical variable.

B. The effective action

The partition function (2) of CDT can be rewritten in the
following form:

Z ¼
X
T

e−SR½T � ¼
X
fntg

X
T fntg

e−SR½T fntg�; ð12Þ

where the first sum on the right is over (all possible) spatial
volume configurations fntg≡ ðn1; n2;…; nttotÞ, and the
second sum is over the subset of all triangulations con-
sistent with the spatial volume configuration T fntg, i.e.
where ∀t∶Nð4;1ÞðtÞ ¼ nt. By performing the sum

P
T fntg

on the rhs of (12) we obtain an effective action depending
only on fntg:

20 40 60 80
t

2000

4000

6000

8000

FIG. 3. The spatial volume profile hnti measured for the
toroidal (red line) and spherical (blue line) spatial topology,
respectively. Data measured for (κ0 ¼ 2.2, Δ ¼ 0.6).

4For the toroidal case we investigated several points (κ0, Δ) of
the bare parameter space located inside each of the previously
discovered (spherical case) phases: A, B, C and D. Preliminary
results show that similar phases may exist in new topological
conditions; however, it is not easy to distinguish them by using
the methods discussed here. One should also note that finite size
effects are much stronger than for the spherical case, and thus one
has to simulate with much higher lattice volumes to observe the
differences. The results for other points in the parameter space
will be discussed elsewhere.
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Z ¼
X
fntg

e−Seff ½nt�; ð13Þ

This is a minisuperspace theory of the scale factor
(aðtÞ ∝ nðtÞ1=3), but contrary to the ordinary minisuper-
space theory it is exact, since we have integrated out the
other degrees of freedom rather than just dropping them.
A priori it is not clear that Seff ½nt� is useful. It could be very
nonlocal. However, that turned out not to be the case when
the spatial topology was S3. Measurements showed that
Seff ½nt� could be described by a kinetic term and a potential
which were closely related to the terms in the original
Hartle-Hawking minisuperspace model. Further, the mea-
sured minisuperspace action described (up to the numerical
uncertainty inherited in the simulations) both the semi-
classically observed background n̄t and the quantum
fluctuations of nt around this background. We will now
employ the same methods as used for S3 to determine the
effective action when the space topology is T3. First we
observe that the quantum fluctuations around n̄t are
relatively small. Thus it makes sense to expand Seff ½nt�:

Seff ½nt� ¼ Seff ½n̄t þ δnt�

¼ Seff ½n̄t� þ δnt
∂2Seff
∂nt∂nt0

����
n̄t

δnt0 þ o½δn3t � ð14Þ

and the effective propagator is given by the (inverse)
covariance matrix

∂2Seff
∂nt∂nt0

����
n̄t

¼ C−1
t;t0 : ð15Þ

Hence the covariance matrix measurement enables us to
verify any conjectured form of the effective action. Based
on the form of the effective action when topology of space
is S3, we make the following ansatz,

Seff ¼
X
t

� ðnt − ntþ1Þ2
Γðnt þ ntþ1 − 2n0Þ

þ V½nt�
�
; ð16Þ

where Γ and n0 are constants. We call the first term the
kinetic term and the term V½nt� the potential. The constant
volume profile (11) n̄t ¼ v̄ and the ansatz (16) imply that
the inverse covariance matrix should have a simple tri-
diagonal form5

C−1 ¼

0
BBBBBBBB@

2kþ u −k 0 � � � 0 −k
−k 2kþ u −k 0 � � � 0

0 −k 2kþ u −k . .
. ..

.

..

. . .
. . .

. . .
. . .

.
−k

−k 0 0 � � � −k 2kþ u

1
CCCCCCCCA
;

with constant diagonal and sub- or superdiagonal elements
defined by the kinetic and potential coefficients k and u,
respectively,

k ¼ 1

Γðv̄ − n0Þ
; u ¼ V 00½v̄�: ð17Þ

The covariance matrices measured for the point
(κ0 ¼ 2.2, Δ ¼ 0.6) are indeed consistent with this struc-
ture—see Fig. 4, where we show the data measured for
V̄4 ¼ 160000 and ttot ¼ 80 giving v̄ ¼ 2000. In order to
verify if numerical errors are under control, we used two
independent procedures for determining the coefficients k
and u. In the first method, we simply invert the measured
covariance matrix, and take the average of diagonal or sub-
or superdiagonal elements:

k ¼ −hC−1
t;tþ1it; u ¼ hC−1

t;t it − 2k: ð18Þ
Accordingly, the method can be called “first invert then
average.” In the second procedure, we assume that due to a
uniform spatial volume distribution (nt independent of t),
the real dependence of the covariance matrix is on Δt ¼
t − t0 and not on t. As a result, ∀t the matrix elements
Ct;tþΔt are identical up to numerical noise. Based on this
assumption, we calculate the “averaged” covariance matrix
C̄t;tþΔt ≡ hCt;tþΔtit (see Fig. 5) and then invert it. By
construction we get constant (independent on t) diagonal
and sub- or superdiagonal elements, resulting in

k ¼ −C̄−1
t;tþ1 ¼ const; u ¼ C̄−1

t;t − 2k ¼ const: ð19Þ
Therefore, the method can be called “first average then
invert.” We checked that the results of both methods are
very consistent—see Fig. 4, where the blue dashed line and
the red line corresponding to the two methods cannot be
optically distinguished, and also Figs. 6 and 7, where blue
and red dots are obtained by using the two methods,
respectively.
In order to check the dependence on v̄ and thus verify

whether the denominator of the kinetic term in Eq. (16) is
linear and find the shape of the potential part, one is forced
to use a collection of lattice volumes V̄4 and time periods
ttot. The results of such an analysis are shown in Figs. 6
and 7, where we present the measurements for all combi-
nations of V̄4 ¼ 80000, 160000, 240000 and ttot ¼ 10, 40,
160, 200, resulting in 12 different values of v̄. For a
consistency check, this also includes v̄ ¼ 2000, which is
identical to the previously discussed case (V̄4 ¼ 160000;

5Here we already subtracted the impact of the volume fixing
potential (7) which causes a shift of all inverse covariance matrix
elements by a constant 2ϵ. The volume fixing shift is also
subtracted from the measured (inverse) covariance matrix data.
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C
1

FIG. 4. Left: The inverse covariance matrix C−1 measured for (κ0 ¼ 2.2, Δ ¼ 0.6), V̄4 ¼ 160000 and ttot ¼ 80. The structure is
consistent with the assumed form of the effective action (16). Right: The inverse covariance matrix diagonal (positive), sub- or
superdiagonal (negative) and other matrix elements (close to zero). The C−1 matrix elements are plotted as blue solid lines and the blue
dashed lines are the averages (obtained by the “first invert then average”method described in the text). The red lines are matrix elements
obtained by using the method “first average then invert” as described in the text. The results of the two methods are very similar and
cannot be optically distinguished.

40 20 20 40

20000

20000

40000

60000

80000

100000
C , C

FIG. 5. Illustration of the procedure “first average then invert” described in the text. The upper chart presents a sample row (t ¼ 40) of
the measured covariance matrix Ct;t0 plotted as a function of Δt ¼ t − t0 (blue line) and the “averaged” covariance matrix C̄t;tþΔt ≡
hCt;tþΔtit (red line). The lower chart presents the covariance matrix before (left) and after (right) applying the averaging procedure.
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ttot ¼ 80). We checked that the k and u coefficients
measured for such v̄ do not depend on the particular choice
of (V̄4; ttot) (green points in Figs. 6 and 7).
The results obtained for various v̄ show that the (inverse)

kinetic coefficients k−1 are indeed consistent with the
expected linear behavior Γðv̄ − n0Þ, and that the best fit
of the potential coefficients of form u½v̄� ¼ μðγ2 þ γÞv̄−γ−2
gives μ > 0 and γ ¼ 1.16� 0.02, resulting in the following
form of the effective action consistent with ansatz (16)6:

Seff ¼
X
t

� ðnt − ntþ1Þ2
Γðnt þ ntþ1 − 2n0Þ

þ μn−γt þ λnt

�
: ð20Þ

Major difference in the effective action between the
spherical and toroidal case is visible in the potential term. In
the former case, the potential term is proportional to v1=3

and is exactly the same as in the minisuperspace model.
Such a term is a consequence of a constant, positive
intrinsic curvature of spherical geometry and can be
verified by a direct calculation of the action.
The minisuperspace model reduces degrees of freedom to

the scale factor aðtÞ ∝ vðtÞ1=3, and theminisuperspace action
is obtained by inserting a maximally symmetric metric,

ds2 ¼ dt2 þ a2ðtÞdΩ2;

into the (Euclidean) Einstein-Hilbert action. For a unit three-
sphere, the line element in spherical coordinates is given by

dΩ2 ¼ dx22 þ sin2x2dx23 þ sin2x2sin2x3dx24:

Calculation of the Christoffel symbols and subsequently the
Riemann tensor gives the scalar curvature R ¼ 6

a2 ð− _a2−
aäþ 1Þ. Integration by parts leads to the minisuperspace
action,

S ¼ 1

16πG

Z
dt
Z

dΩ
ffiffiffi
g

p ðR − 2ΛÞ

∝
1

G

Z
dt

�
a _a2 −

Λ
3
a3 þ a

�
;

or equivalently in terms of the spatial volume observable to

S ¼
Z

dt

�
1

Γ
_v2

v
− λvþ μv1=3

�
:

On the other hand, for a toroidal geometry the metric is
Euclidean dΩ2 ¼ dx22 þ dx23 þ dx24 and the intrinsic curva-
ture vanishes. The scalar curvature R ¼ 6

a2 ð− _a2 − aäÞ
produces the toroidal minisuperspace action:

S ∝
1

G

Z
dt

�
a _a2 −

Λ
3
a3
�

thus S ¼
Z

dt

�
1

Γ
_v2

v
− λv

�
:

Lack of the classical potential term might simplify obser-
vations of quantum corrections.

IV. DISCUSSION

We used the computer generated numerical data to
measure the spatial volume profile and the covariance of
spatial volume fluctuations in 3þ 1-dimensional CDTwith

5000 10000 15000 20000 25000
v N41 t tot

100000

200000

300000

400000

500000

600000

1 k

C 1

C
1

FIG. 6. The (inverse) kinetic coefficients k ¼ −C−1
t;tþ1 as a

function of v̄ ¼ V̄4=ttot obtained for a collection of 12 measure-
ments with V̄4 ¼ 80000, 160000, 240000 and ttot ¼ 10, 40, 160,
200. The linear relation is consistent with Eq. (17) and thus the
ansatz (16). Blue points were obtained by applying the procedure
“first invert then average,” and red points by the procedure “first
average then invert,” described in the text. The results of the two
methods are (almost) identical. Green dots are the results
obtained for V̄4 ¼ 160000, ttot ¼ 80 and thus v̄ ¼ 2000. The
dots are indistinguishable from the results for V̄4 ¼ 80000,
ttot ¼ 40 resulting in the same v̄ ¼ 2000.

500 1000 2000 5000
v N41 t tot

10 7

10 6

10 5

10 4

10 3

u V'' v

C 1

C
1

FIG. 7. The potential coefficients u ¼ C−1
t;t − 2k as a function of

v̄ ¼ V̄4=ttot obtained for a collection of 12 measurements with
V̄4 ¼ 80000, 160000, 240000 and ttot ¼ 10, 40, 160, 200 (data
for v̄ > 5000 were skipped as they were indistinguishable from
numeric noise). The plot is in the log-log scale and the dashed line
is consistent with a potential V½v̄� ¼ μv̄−γ—see Eq. (17)—and the
best fit is for γ ¼ 1.16� 0.02. Blue points were obtained by
applying the procedure “first invert then average,” and red points
by the procedure “first average then invert.” The results of the two
methods are (almost) identical. Green dots are the results
obtained for V̄4 ¼ 160000, ttot ¼ 80 and thus v̄ ¼ 2000. The
dots are indistinguishable from the results for V̄4 ¼ 80000, ttot ¼
40 resulting in the same v̄ ¼ 2000.

6Note that in the potential part we have included a linear term
þλnt. The term is not recorded in the measured covariance matrix
data which depend on second derivatives of the effective action
only. We have chosen the “þ” sign (with λ > 0) based on
different measurement methods which will be described in a
forthcoming article.
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toroidal spatial topology boundary conditions and to
determine the effective action. The form of the action
observed for the 3þ 1-dimensional toroidal case (20),

SðT
3Þ

eff ¼
X
t

� ðnt − ntþ1Þ2
Γðnt þ ntþ1 − 2n0Þ

þ λnt þ μn−γt

�
; ð21Þ

with γ ≈ 1.16 can be compared with the minisuperspace
action of the 3þ 1-dimensional spherical case [37,38],

SðS
3Þ

eff ¼
X
t

� ðnt − ntþ1Þ2
Γðnt þ ntþ1 − 2n0Þ

− λnt þ μn1=3t

�
: ð22Þ

The kinetic term present in both actions is a classical term
in the sense that precisely such a term is present in the
minisuperspace reduction of the Einstein-Hilbert action
both for the spatial topology S3 and T3. Interestingly, the
numerical value of the effective parameter Γ ≈ 26.3 mea-
sured in the point (κ0 ¼ 2.2, Δ ¼ 0.6) is, up to statistical
precision, identical in both cases. The potential term μ n1=3t
in (22) is also a classical term as it is present in the
minisuperspace model when the spatial topology is S3, and
it is responsible for the semiclassical S4-like background
solution observed in the computer simulations. However,
such a term is not present in suitable minisuperspace
reduction when the spatial topology is T3, and we do
not observe it in the computer simulations. The term we do
observe, n−γt , is numerically quite small and has the
interpretation of a genuine quantum correction. The poten-
tial term is purely due to quantum corrections. It would be
very interesting to calculate analytically the exponent γ.
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APPENDIX A: MINIMAL CONFIGURATION
OF A THREE-TORUS

In the presented setup, spatial slices are three-dimensional
simplicial manifolds of a toroidal topology build of tetra-
hedra. In this appendix, we investigate the smallest

triangulation of a three-torus, i.e. possessing a minimal
number of vertices (N0) and tetrahedra (N3). It is also a very
interesting problem from a mathematical point of view.
By construction, CDT triangulations do not allow for

distinct edges with the same endpoints. Thus, the shortest
loop consists of three vertices and three links (it is a triangle).
Naively, the minimal triangulation would be a Cartesian
product of three such loops (one in each direction) consisting
of 33 ¼ 27 points. Surprisingly, the smallest observed
spatial slice has only 15 points. This is possible, because
the loops in different directions interlace. The found
configuration consists of N0 ¼ 15 points, N1 ¼ ð15

2
Þ ¼

105 links, N2 ¼ 180 triangles and N3 ¼ 90 tetrahedra. It
is a good candidate for the smallest triangulation of T3

because it has a well-defined structure, and for N0 ¼ 15,
only one combination of N1 and N3 was observed.

1. Layered structure

The structure of the discovered minimal configuration is
codified by links. The number of links N1 saturates the
upper bound for 15 points which means that each vertex is
connected to the other. There are only two types of links:
(i) with coordination number (order) equal to 4 and (ii) with
coordination number equal to 6. Each point has identical
vicinity shown in Fig. 8—8 outgoing links of order 6 and 6
outgoing links of order 4. The latter links are marked with a
thick red line and define the x, y and z axis (in both

1

4

11

13

14

12

10

15

6

5

7 8

9

2

3

x

z

y

ω
=

+1/2

ω
=

−1/2

1+ = 
ω

ω = 0

1− = 
ω

FIG. 8. Neighborhood of vertex 1. The six outgoing links of
order 4 are marked with a thick red line, they determine the x, y
and z directions. Vertices 2, 3, 4 and 5 lie in the same layer L0 (x-z
plane) as vertex 1. The eight outgoing links of order 6 are marked
with a thick green line. The structure for each point is identical.
Note that each vertex is connected to each other.
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directions). They also introduce a notion of layers, which
can be identified with the x-z planes. Each of the three
layers contains 5 vertices and is enumerated by a discrete
coordinate y ¼ 0, 1, 2.
The layers are visualized in Fig. 9, the vertices have been

relabeled so that the layers are L0 ¼ f1; 2; 3; 4; 5g, L1 ¼
f6; 7; 8; 9; 10g and L2 ¼ f11; 12; 13; 14; 15g. Horizontal
and vertical lines have coordination number 4 and are
drawn with a red line. Taking a step to the right increases
the x coordinate by 1 and the vertex label also by 1 (modulo
5), going upward by one step increases the z coordinate by
1 but the vertex label by 2 (modulo 5) so that there are no
two links with the same endpoints. Each layer is periodic in
x and z direction with period 5. The layers also form a
structure with period 3 (L0 → L1 → L2 → L0). One layer
forms the smallest square grid with two nonequivalent and
noncontractible loops. There are also lines orthogonal to
the plot which connect different layers (different y). The
layers visualized in Fig. 2. should be viewed as placed on
top of each other, so that e.g. vertex 1 is connected to vertex
6 by a link of order 4.
However, the whole picture is more complicated. There

are also links of order 6, marked with a green line in Fig. 8
and Fig. 9, which always connect different layers. They
change the y coordinate by � 1

2
. The layers are interlaced in

such a way, that a layer y ¼ þ1 (connected by links of
order 4) is at the same time at y ¼ −1=2 (connected by
links of order 6). For example, layer L2 is simultaneously
lying two steps above L0, one step below or half step above.

2. Proof of toroidal topology

To prove that the minimal triangulation indeed has a
topology of a three-torus, we have to show that there are
three noncontractible and nonequivalent loops. To

demonstrate that all single winded loops can be split into
three equivalence classes, we assign a weight ω to each
link. Loops within one class can be continuously trans-
formed into each other, but not between different classes. A
link’s weight basically corresponds to change in the y
direction. Because every loop can be continuously trans-
formed into a path consisting only of edges present in the
triangulation, we restrict our considerations to such loops.
The weights are assigned according to the following

rules, which are summarized in Table I. Theweight of a link
depends only on its coordination number, orientation and
the layers it connects. Edges that connect vertices lying in
the same layer have weight ω ¼ 0 (horizontal and vertical
red links in Fig. 9). Links of order 4 connecting layers in an
increasing order (i.e L0 → L1 → L2 → L0) have weight
ω ¼ þ1, while links of order 6 connecting layers in a
decreasing order (e.g. L0 → L2) have weight ω ¼ þ1=2
(diagonal green links in Fig. 9). Edges with opposite
orientation have opposite weights. The weight of a path
is a sum of the weights of links that build that path.
The clue to the proof is that any continuous trans-

formation of a loop does not change its weight. It can be
inferred from Fig. 8 that each tetrahedron has two links of
order 4, which don’t meet, and four links of order 6. An

FIG. 9. Vertices of the minimal triangulation of T3 can be divided into three disjoint layers of equal size. The layers can be viewed as
x-z planes indexed by coordinate y. Red lines denote links of order 4 which connect points belonging to the same layer, while green lines
denote links of order six. Links of order four which connect adjacent layers are not visible. Vertices lying in a given layer are marked
with color dots. Gray dots denote vertices connected by links of order six which belong to a layer shifted by a half step in the y direction.
Each layer is periodic in the x and z direction with period 5.

TABLE I. Weights ω of links with given order and endpoint
layers. The orientation is important.

Order Connection Weight

4 Ly → Lyþ1 ω ¼ þ1
4 Ly → Ly−1 ω ¼ −1
4 Ly → Ly ω ¼ 0
6 Ly → Ly−1 ω ¼ þ1=2
6 Ly → Lyþ1 ω ¼ −1=2
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example of such a tetrahedron is visualized in Fig. 10 on the
left. This means that every triangle consists of two links of
order 6 with weight ω ¼ �1=2 and one link of order 4 with
weight ω ¼ −1, 0,þ1. Thus every fundamental continuous
transformation of a loop consists of changing one edge of a
triangle into the two other or vice versa. It is easy to show
that in all cases the total weight is preserved.
Case I Let the red link connect layers Ly → Lyþ1. It has a
weight ω ¼ þ1. Because the third point is connected by
links of order 6 it cannot lie in layer Ly nor Lyþ1 and has to
belong to layer Lyþ2. Thus, the green lines connect layers
Ly → Lyþ2 and Lyþ2 → Lyþ1 and both have weight ω ¼
þ1=2 which gives in total ω ¼ þ1.
Case II Similarly, when the red link connects points in the
same layer Ly → Ly it has a weight ω ¼ 0. The third point
has to be placed either in layer Ly−1 or Lyþ1. The green
links are then Ly → Lyþ1 and Lyþ1 → Ly with total weight
ω ¼ −1=2þ 1=2 ¼ 0 or Ly → Ly−1 and Ly−1 → Ly with
total weight ω ¼ þ1=2 − 1=2 ¼ 0.
Taking the orientation properly into account, we can prove
all remaining cases (e.g. transformation of a red and a green
link into a green link).
The next step is to identify the equivalence classes of

loops. Let us consider the following representatives:

First loop

1ðL0Þ⟶4

ω¼0
2ðL0Þ⟶4

ω¼0
5ðL0Þ⟶4

ω¼0
1ðL0Þ

Numbers in bold are labels of vertices belonging to the
path, in parentheses are vertex layers. Arrows denote
links with endpoints on sides, the numbers above are
link orders. The weight can be derived from rules in
Table I. This loop is completely embedded in layer
L0 and its total weight is ω ¼ 0. All contractible
loops of length three form a triangle present in the
triangulation. Because there are no triangles composed
exclusively of links of order 4, this loop is non-
contractible.

Second loop

1ðL0Þ ⟶
6

ω¼1=2
13ðL2Þ ⟶

6

ω¼1=2
10ðL1Þ ⟶

6

ω¼1=2
1ðL0Þ

This loop passes through all layers in a descending
order along links with coordination number 6 (weight
þ1=2). The total weight equals ω ¼ 3=2. Because the
weight is nonzero, it cannot be a contractible loop.

Third loop

1ðL0Þ⟶4

ω¼1
6ðL1Þ⟶4

ω¼1
11ðL2Þ⟶4

ω¼1
1ðL0Þ

This loop passes through consecutive layers along
links of order 4 (weight þ1). The total weight equals
ω ¼ 3, and because it is nonzero the loop is non-
contractible. It is also too short to be a loop of second
type winded twice.

Moreover, the foregoing loops are noncontractible because
they have length three but do not form a triangle present in the
simplicial manifold. Because they have different weights,
they necessarily belong to separate equivalence classes. This
ends the proof of toroidal topology of the considered
triangulation. It is also noteworthy that the minimal toroidal
triangulation consists of 90 tetrahedra, which is much more
than for a spherical topology (5 tetrahedra).
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