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Abstract

We investigate the impact of spatial topology in 3+1 dimensional causal dy-
namical triangulations (CDT) by performing numerical simulations with toroidal
spatial topology instead of the previously used spherical topology. In the case of
spherical spatial topology we observed in the so-called phase C an average spatial
volume distribution n(t) which after a suitable time redefinition could be identified
as the spatial volume distribution of the four-sphere. Imposing toroidal spatial
topology we find that the average spatial volume distribution n(t) is constant. By
measuring the covariance matrix of spatial volume fluctuations we determine the
form of the effective action. The difference compared to the spherical case is that
the effective potential has changed such that it allows a constant average n(t).
This is what we observe and this is what one would expect from a minisuperspace
GR action where only the scale factor is kept as dynamical variable. Although
no background geometry is put in by hand, the full quantum theory of CDT is
also with toroidal spatial toplogy able to identify a classical background geometry
around which there are well defined quantum fluctuations.
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1 Introduction
An impressive progress of computing power during last twenty years made numerical
methods an important tools of contemporary theoretical physics. One example is lat-
tice QCD which provides solutions for low-energy problems of strong interactions not
tractable by means of analytic or perturbative methods. The progress has also been
used in the quest for a theory of quantum gravity, where nonperturbative approaches
play an important role. It is well known that gravity cannot be formulated as a per-
turbative quantum field theory as it is non-renormalizable [1, 2]. However, following
Weinberg’s asymptotic safety conjecture [3], there is hope that it can be formulated as
a predictive theory in a nonperturbative way. The use of functional renormalization
group equations have provided some evidence in favor of the asymptotic safety con-
jecture in the case of gravity [4, 5, 6, 7, 8, 9, 10], but since it involves approximations
which are difficult to control, it is important to test the asymptotic safety scenario using
other methods, and here the lattice models of gravity may play an important role. The
starting point is a lattice regularization of the gravity path integral

Z =

∫
DM[g]eiSHE[g] , (1)

where one integrates over geometries, i.e. the equivalence classes of spacetime metrics
g with respect to the diffeomorphism group on manifold M, and SHE is a classical
gravitational action. To give meaning to the formal expression (1), one can introduce
a lattice discretization. The finite lattice spacing a provides a high energy cut-off, and
by taking a → 0 one can in principle approach the continuum limit. Using what is
known as dynamical triangulations (DT) one starts out in the Euclidean sector, i.e. the
path integral (1) is changed such that one integrates over geometries with Euclidean
signature and uses the corresponding Euclidean action (iSHE[gL] → −SHE[gE], where
gL denotes a geometry with Lorentzian signature and gE denotes a geometry with
Euclidean signature). The regularized (Euclidean) path integral is then

Z =
∑
T

e−SR[T ] , (2)

where the sum is over (abstract) triangulations T . Thus each abstract triangulation
is viewed as a piecewise linear geometry where each link is assigned the length a, and
SR is the discretized Hilbert-Einstein action obtained following Regge’s method for
describing piecewise linear geometries [11]. Such a partition function can be inves-
tigated analytically in d = 2 dimensions [12, 13, 14] and by using numerical Monte
Carlo methods when d ≥ 3 [15, 16, 17, 18, 19, 20]. A natural question arises if in
the path integral (1) and consequently in the partition function (2) one should only
integrate/sum over geometries of some chosen topology or one should also include a
summation over various topologies, and if so, which topologies should be taken into
account. The problem of summing over all possible topologies seems to be ill-defined
even in two (spacetime) dimensions, where the number of inequivalent geometries in-
creases factorially with the Euler characteristic. As a consequence, the path integral (2)
is not even Borel summable, and a theory may have (infinitely) many non-perturbative
versions. The situation is even worse in dimension four, where the classification of all
possible topologies does not exist (see [21] for a review of all these issues). Therefore
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one is forced to restrict the class of admissible spacetime topologies, and usually only
one simple topology is taken into account (in DT this was typically a four-sphere S4).1
Numerical simulations of DT in spacetime dimension four showed that there exist two
distinct phases, none of which resembles the four-dimensional Universe (see [18, 19, 20]
and more recent [23, 24]). The phases are separated by a first-order phase transition
[25, 26], which makes the possibility of approaching a continuum limit unlikely, however
authors of Ref. [27] claim that such a possibility exists if bare coupling constants are
fine-tuned in a specific way. Simulations using different topologies (S3 × S1 and T 4)
led to the same results [28], as one would expect since phase transitions usually are
associated with bulk properties where global topological constrains are of little impor-
tance. It has been conjectured that the first order transition is associated with large
fluctuations of the lattice version of the conformal mode [29].

The causal dynamical triangulation approach (CDT) tries to change the above situ-
ation by starting out with a path integral defined for geometries with Lorentzian signa-
ture and by assuming that one only integrates over causal geometries (implemented in
the strong form of assuming that the geometry is globally hyperbolic), thus allowing the
introduction of a global proper-time foliation. Since a topology change of a spatial slice
often is associated with causality violation one forbids such changes in CDT and as a
result the spacetime topology is a productM = Σ×I, where I denotes a (proper-time)
interval and Σ the spatial surface. All these concepts are linked to the Lorentzian sig-
nature of the geometry. What is unique for CDT (compared to DT) is that even at the
discretized level, i.e. even in the regularized path integral, each of these geometries has
an analytic continuation to a geometry with Euclidean signature and in the Euclidean
regularized path integral (2) we sum over this class of geometries. The restriction is
entirely motivated from the Lorentzian starting point. With such a genuine new set of
Euclidean geometries there is a chance that the phase diagram of the lattice theory is
changed compared to the DT phase diagram. And this is indeed what happens.

In CDT the time direction is distinguished, and the number of (discrete) time steps
is kept fixed in numerical simulations. Due to the imposed time foliation, the four-
dimensional triangulation is constructed from two types of elementary building blocks,
the (4, 1) simplex with 4 vertices on spatial hypersurface in time t and 1 vertex in t±1,
and the (3, 2) simplex with 3 vertices in t and 2 vertices in t ± 1. The simplices are
glued together along their three-dimensional faces, and local curvature is defined by the
deficit angle around two-dimensional triangles. Additionally, trajectories are assumed
to satisfy the simplicial manifold condition, i.e. every (sub-)simplex with a given set
of vertex labels appears only once. It is also assumed that lattice spacing in time and
spatial directions may be different, which defines the asymmetry parameter α, such
that:

a2
t = α a2

s . (3)

The Regge-Einstein-Hilbert action takes the following form [30]

SR = − (κ0 + 6∆)N0 + κ4

(
N(4,1) +N(3,2)

)
+ ∆ N(4,1) , (4)

where N(4,1), N(3,2) and N0 denote the total number of (4, 1) simplices, (3, 2) simplices
and vertices, respectively, while κ0, ∆ and κ4 are three dimensionless coupling constants

1Note that DT is formulated in the Euclidean regime and such a choice is compatible with Hartle-
Hawking no-boundary proposal [22].
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dependent on the bare Newton’s constant, cosmological constant and the asymmetry
parameter α.

In CDT the topology of spatial hypersurfaces Σ is a choice. The same is the case
in classical GR, where the choice of topology will affect the possible classical solutions.
Similarly, we can expect the choice of topology of Σ to affect the possible semiclassical
solutions of CDT around which the geometry will fluctuate in the quantum theory. In
fact, since no background geometry is put into the path integral in CDT, changing
spatial topology is a very interesting test of the picture that dynamically an average
suitable background geometry is found around which there are relatively small quantum
fluctuations. Further, since CDT starts out as a lattice theory (before the lattice spacing
is sent to zero), there is even an additional possibility to effectively defy the topology
put in by hand, since on the lattice topology is only an approximate concept: while
changing topology dynamically in the continuum will often result in infinite derivative
terms, on the lattice such terms will be finite, thus allowing a change in topology. This
could happen if the entropy of the “wrong” configurations is so large that it overcomes
the action barrier for a topology change. The CDT studies performed so far provide
an example of this. Until now the computer simulations have been performed with the
spatial topology being S3, while periodic boundary conditions were imposed in the time
direction for purely technical reasons. Thus the total topology of spacetime imposed
was M = S3 × S1. However, in the so-called phase C (to be described below) the
system effectively arranged itself into a geometry of topology M = S4 (up to lattice
artifacts), provided time was chosen sufficiently large. This would not be possible for
smooth classical solutions. However, once this has happened and one takes the lattice
spacing to zero, only the S4 part will survive. The possibility of such dynamics makes it
additionally interesting to change the topology of Σ and study the corresponding CDT
system.

The CDT studies with topology choice M = S3 × S1 have led to the discovery of
four distinct phases of geometry [31, 32, 33, 34], including a physical phase C where a
4-dimensional universe is observed [31, 35] with semiclassical features closely resembling
de Sitter space [36, 37] and quantum fluctuations governed by the minisuperspace action
[37, 38]. The physical phase C is separated from phase A by a first order phase transition
and seemed to be separated from phase B by a second order phase transition line
[39, 40]. The more recent studies showed the existence of a new "bifurcation" phase
(D) in between phases C and B [33, 34], and most likely the recently discovered C-D
phase transition line is second order [41], thus allowing for the possibility of taking
continuum limit from within the physically interesting phase C [42, 43].

In this work we investigate the impact of spatial topology change on CDT results.
We analyze a system where the spherical topology S3 is replaced by a toroidal topology
T 3 ≡ S1×S1×S1. For technical reasons we still keep time-periodic boundary conditions,
and therefore the resulting spacetime topology isM = T 3 × S1.2

2Note that the direction of time is still well defined and time is treated differently than space, i.e.
we distinguish between spatial Cauchy surfaces and keep the number of time steps fixed. The set up
is thus very different from a f DT system withM = T 4 = S1 × S1 × S1 × S1.
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2 Simulation details
The (Wick rotated) partition function (2) defines a statistical field theory which can
be studied by numerical Monte Carlo methods. The idea is to define a Markov chain
in the space of all admissible triangulations, where a triangulation T is generated with
probability

P̂ (T ) =
1

Z
e−SR[T ]. (5)

This can be done by updating triangulations by a series of local Monte Carlo moves.
In four-dimensional CDT one typically uses 7 types of moves which are causal, i.e.
they preserve both the chosen spatial topology Σ and the global spacetime topology
M = Σ× S1, and ergodic, i.e. any triangulation of topologyM can be obtained from
any other triangulation of topology M by a sequence of moves (more details can be
found in [30]). In addition we require that simplicial manifold conditions be satisfied.

One usually starts the numerical simulation from an arbitrarily chosen simple tri-
angulation Tstart , and by performing the moves one evolves the system in Monte Carlo
time. The moves are accepted or rejected according to the detailed balance condition
which ensures that after a large number of attempted moves (the so-called thermal-
ization period) the system tends toward a stationary state where the probability of
generating a triangulation P (T ) → P̂ (T ). The 7 moves which were used in numerical
simulations for topology S3×S1 preserve the topology and causality, and can be applied
to any topology Σ × S1. The missing part is generating an initial triangulation Tstart
for the new spatial topology Σ = T 3.

We start by triangulating a four-dimensional hypercube into 16 simplices by using
the triangulation method proposed by P.S. Mara [44]. The 4-cube has 16 vertices, which
can be seen in the visualization in Fig. 1, and we assume that the blue vertices (labelled
0 − 7) belong to the spatial Cauchy hypersurface (the 3-cube) in time t and the red
vertices (labelled 8 − 15) belong to the 3-cube in time t + 1. In the triangulation one
obtains ten simplices with 4 blue vertices and 1 red vertex or vice-versa, all together
being the (4, 1) simplices:

{0, 1, 2, 4, 8}, {4, 8, 12, 13, 14}, {2, 8, 10, 11, 14}, {2, 4, 6, 7, 14}, {1, 2, 4, 7, 14},
{1, 8, 11, 13, 14}, {1, 8, 9, 11, 13}, {1, 4, 5, 7, 13}, {1, 2, 3, 7, 11}, {7, 11, 13, 14, 15},

where the numbers in parentheses are vertex labels. One also obtains six simplices with
3 vertices in one time slice and 2 vertices in another (the (3, 2) simplices), parametrized
by:

{1, 2, 4, 8, 14}, {1, 4, 8, 13, 14}, {1, 2, 8, 11, 14},
{1, 4, 7, 13, 14}, {1, 2, 7, 11, 14}, {1, 7, 11, 13, 14}.
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Figure 1: Visualization of a 4-cube.

By gluing the hypercubes together in all four directions we build a four-dimensional
initial triangulation Tstart, satisfying the regularity constraints. Only those d-dimensional
(sub)simplices which share a d-1 dimensional face (d-1 simplex) can be glued together.
This can be done by joining together the hypercubes which are mirror images of each
other in each direction. As a result the number of hypercubes in each direction is even.

The configuration must be periodic in all 4 directions, which can be done by iden-
tifying vertex labels of the "last" hypercube in each direction with that of the "initial"
hypercube. Additionally we require that each d-simplex (d = 0, ..., 4) with vertex la-
bels {v1, ..., vd+1} appear only once. To fulfill these requirements one is forced to use
more than two hypercubes in each direction. We use 4 hypercubes in each spatial
direction and ttot hypercubes in the time direction (ttot ≥ 4 and even). A simplified
two-dimensional visualization of the procedure is presented in Fig. 2. The initial trian-
gulation consists of 64 · ttot 4-cubes containing 1024 · ttot 4-simplices, out of which there
are 384 · ttot (3, 2)-simplices and 640 · ttot (4, 1)-simplices. As a result each spatial slice
is initially built from 320 equilateral tetrahedra and has 64 vertices.3

It is worth mentioning that the initial triangulation Tstart is not the minimal trian-
gulation, i.e. the one containing the smallest possible number of (sub)simplices, but
it is relatively easy to construct. By applying Monte Carlo moves, we managed to
shrink the triangulation to the one which has only 90 tetrahedra and 15 vertices in each
spatial layer. It seems that the resulting spatial configuration is the smallest possible
triangulation of a torus T 3 (by construction the moves do not allow for spatial topology
change). We discuss this result in detail in Appendix 1. Note that the minimal toroidal
triangulation is still much bigger than the minimal spherical configuration from our
previous measurements, which consisted of just 5 tetrahedra and had only 5 vertices in
each spatial layer. One may therefore expect that finite size effects are substantial in
current numerical studies.

3By construction the number of (4, 1)-simplices is twice the number of spatial tetrahedra. This is
because each spatial tetrahedron in time t is a face of one (4, 1) simplex with the fifth vertex in t+ 1
and one such a simplex with the fifth vertex in t− 1.
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Figure 2: Two-dimensional visualization of the initial triangulation Tstart. The starting
cube (square) is colored in red. Colored and blank squares are mirror images of each
other. The number of cubes (squares) in spatial direction is 4, and the number in time
direction is ttot (ttot ≥ 4 and even). The red and green edge lines are glued together,
which is done by identifying the corresponding (sub)simplices (vertices and links). Such
boundary conditions are consistent with toroidal topology of spatial slices resulting in
global topology ofM = T 1 × S1.

3 The results
In order to study CDT quantum gravity numerically, one needs to define observables
whose expectation values or correlation functions can be measured in Monte Carlo simu-
lations. The idea is to probe the space of all possible triangulations with the probability
given by (5). As a result one obtains a sample of triangulations {T1, T2, ..., TNMC

} which
can be used to estimate expectation values or correlation functions:

〈O1...On〉 =
1

Z
∑
T

O1(T )...On(T )e−SR[T ]

≈ 1

NMC

NMC∑
i=1

O1(Ti)...On(Ti) . (6)

One then typically explores the bare couplings parameter space to check how the ob-
servables depend on the position in the parameter space. In principle, various phases
can be identified and investigated using this method. For four spacetime dimensions,
CDT parameter space is spanned by three bare couplings: κ0,∆ and κ4. κ4 plays
the role of the bare cosmological constant, and the leading behaviour of the partition
function (2) is

Z ∝ e(κc4−κ4)N4 , N4 = N(4,1) +N(3,2),

where κc4 = κc4(κ0,∆) is a critical value for which the theory becomes exponentially
divergent. In numerical simulations we fix the total number of simplices, which in
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practice means that we approach a critical value κ4 − κc4 ≈ 1/N4 and thus we are
left with a two-dimensional parameter space (κ0,∆). One can then check how the
observables scale with increasing lattice volume N4 and thus draw conclusions about
the infinite volume limit. In CDT we typically control the lattice volume by introducing
an additional volume fixing potential to the bare action (4). Here we use a quadratic
volume fixing term

SV F = ε
(
N(4,1) − V̄4

)2 (7)

with ε = 0.00002 controlling the amplitude of volume oscillations around V̄4.
For the previously used spherical spatial topology the parameter space has been

investigated in detail, which led to the discovery of four distinct phases [31, 32, 33,
34]. Here, with toroidal spatial topology, we will focus on one particular point in the
parameter space, namely (κ0 = 2.2,∆ = 0.6), which in the spherical case was placed in
the physical de Sitter phase C.4

3.1 Spatial volume profile

An observable investigated in this article is the spatial volume:

nt ≡ N(4,1)(t), (8)

where N(4,1)(t) is the number of (4, 1) simplices having 4 vertices in time t. This is
by construction equal to twice the number of tetrahedra forming a spatial slice in t
and, as all spatial tetrahedra are equilateral, the number is proportional to the physical
3-volume of a Cauchy hypersurface in t. In numerical simulations one can measure the
average

n̄t = 〈nt〉, (9)

called the volume profile, and the correlator

Ct,t′ ≡ 〈(nt − n̄t)(nt′ − n̄t′)〉, (10)

called the covariance matrix. For the spherical spatial topology, the volume profile
observed inside phase C had a blob structure which could be very well fitted with the
cos3 function characteristic for the Euclidean de Sitter solution [36, 37] (see Fig. 3 -
blue line). Now, for the toroidal topology, up to numerical noise, the spatial volume
does not depend on t, and consequently the profile is a constant line (see Fig. 3 - red
line):

n̄t = v̄ ≡ V̄4

ttot
. (11)

In order to obtain a better understanding of the difference between n̄t when Σ = S3

and Σ = T 3 we will determine the effective action as a function of nt. In the S3 case
4For the toroidal case we investigated several points (κ0,∆) of the bare parameter space located

inside each of the previously discovered (spherical case) phases: A, B, C and D. Preliminary results
show that similar phases may exist in new topological conditions, however it is not easy to distinguish
them by using the methods discussed here. One should also note that finite size effects are much
stronger than for the spherical case, and thus one has to simulate with much higher lattice volumes to
observe the differences. The results for other points in the parameter space will be discussed elsewhere.
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this effective action was closely related to the classical minisuperspace action where
only the scale factor of the universe was kept as a dynamical variable.

20 40 60 80
t

2000

4000

6000

8000

〈nt 〉

Figure 3: The spatial volume profile 〈nt〉 measured for the toroidal (red line) and
spherical (blue line) spatial topology, respectively. Data measured for (κ0 = 2.2 , ∆ =
0.6).

3.2 The effective action

The partition function (2) of CDT can be rewritten in the following form:

Z =
∑
T

e−SR[T ] =
∑
{nt}

∑
T{nt}

e−SR[T{nt}], (12)

where the first sum on the right is over (all possible) spatial volume configurations
{nt} ≡ (n1, n2, ..., nttot), and the second sum is over the subset of all triangulations
consistent with the spatial volume configuration T{nt}, i.e. where ∀t : N(4,1)(t) = nt.
By performing the sum

∑
T{nt}

on the rhs of (12) we obtain an effective action depending
only on {nt}:

Z =
∑
{nt}

e−Seff [nt], (13)

This is a minisuperspace theory of the scale factor (a(t) ∝ n(t)1/3), but contrary to
the ordinary minisuperspace theory it is exact, since we have integrated out the other
degrees of freedom rather than just dropping them. A priori it is not clear that Seff [nt]
is useful. It could be very nonlocal. However that turned out not to be the case
when the spatial topology was S3. Measurements showed that Seff [nt] could be de-
scribed by a kinetic term and a potential which were closely related to the terms in the
original Hartle-Hawking minisuperspace model. Further, the measured minisuperspace
action described (up to the numerical uncertainty inherited in the simulations) both
the semiclassically observed background n̄t and the quantum fluctuations of nt around
this background. We will now employ the same methods as used for S3 to determine
the effective action when the space topology is T 3. First we observe that the quantum

9



fluctuations around n̄t are relatively small. Thus it makes sense to expand Seff [nt]:

Seff [nt] = Seff [n̄t + δnt] = Seff [n̄t] + δnt
∂2Seff
∂nt∂nt′

∣∣∣∣
n̄t

δnt′ + o[δn3
t ] (14)

and the effective propagator is given by the (inverse) covariance matrix

∂2Seff
∂nt∂nt′

∣∣∣∣
n̄t

= C−1
t,t′ . (15)

Hence the covariance matrix measurement enables us to verify any conjectured form of
the effective action. Based on the form of the effective action when topology of space
is S3 we make the following Ansatz:

Seff =
∑
t


(
nt − nt+1

)2

Γ(nt + nt+1 − 2n0)
+ V [nt]

 , (16)

where Γ and n0 are constants. We call the first term the kinetic term and the term
V [nt] the potential. The constant volume profile (11) n̄t = v̄ and the Ansatz (16) imply
that the inverse covariance matrix should have a simple tridiagonal form5

C−1 =


2k + u −k 0 · · · 0 −k
−k 2k + u −k 0 · · · 0

0 −k 2k + u −k
. . .

...
...

. . .
. . .

. . .
. . . −k

−k 0 0 · · · −k 2k + u

 ,

with constant diagonal and sub/super diagonal elements defined by the kinetic and
potential coefficients k and u, respectively

k =
1

Γ(v̄ − n0)
, u = V ”[v̄] . (17)

5Here we already subtracted the impact of the volume fixing potential (7) which causes a shift of all
inverse covariance matrix elements by a constant 2ε. The volume fixing shift is also subtracted from
the measured (inverse) covariance matrix data.
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20 40 60 80

-0.00002

-0.00001

0.00001

0.00002

0.00003

0.00004

C-1

C
-1

Figure 4: Left: The inverse covariance matrix C−1 measured for (κ0 = 2.2 , ∆ = 0.6),
V̄4 = 160000 and ttot = 80. The structure is consistent with the assumed form of
the effective action (16). Right: The inverse covariance matrix diagonal (positive),
sub/super-diagonal (negative) and other matrix elements (close to zero). The C−1

matrix elements are plotted as blue solid lines and the blue dashed lines are the averages
(obtained by the method called "first invert then average" described in the text). The
red lines are matrix elements obtained by using the method "first average then invert"
as described in the text. The results of the two methods are very similar and cannot
be optically distinguished.

The covariance matrices measured for the point (κ0 = 2.2,∆ = 0.6) are indeed
consistent with this structure - see Fig. 4, where we show the data measured for
V̄4 = 160000 and ttot = 80 giving v̄ = 2000. In order to verify if numerical errors are
under control, we used two independent procedures for determining the coefficients k
and u. In the first method we simply invert the measured covariance matrix, and take
the average of diagonal or sub/super diagonal elements:

k = −〈C−1
t,t+1〉t , u = 〈C−1

t,t 〉t − 2k . (18)

Accordingly the method can be called "first invert then average". In the second proce-
dure we assume that due to a uniform spatial volume distribution (nt independent of
t) the real dependence of the covariance matrix is on ∆t = t − t′ and not on t. As a
result ∀t the matrix elements Ct,t+∆t are identical up to numerical noise. Based on this
assumption we calculate the "averaged" covariance matrix C̄t,t+∆t ≡ 〈Ct,t+∆t〉t (see Fig.
5) and then invert it. By construction we get constant (independent on t) diagonal and
sub/super diagonal elements, resulting in

k = −C̄−1
t,t+1 = const. , u = C̄−1

t,t − 2k = const. (19)

The method can be therefore called "first average then invert". We checked that the
results of both methods are very consistent - see Fig. 4, where the blue dashed line and
the red line corresponding to the two methods cannot be optically distinguished, and
also Figs. 6 and 7, where blue and red dots are obtained by using the two methods
respectively.
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-40 -20 20 40
Δt

-20000

20000

40000

60000

80000

100000

C , C

sample C(t;t+Δt) for t=40

C(t;t+Δt) = <C(t;t+Δt)>t

Figure 5: Illustration of the procedure "first average then invert" described in the text.
The upper chart presents a sample row (t = 40) of the measured covariance matrix Ct,t′
plotted as a function of ∆t = t − t′ (blue line) and the "averaged" covariance matrix
C̄t,t+∆t ≡ 〈Ct,t+∆t〉t (red line). The lower chart presents the covariance matrix before
(left) and after (right) applying the averaging procedure.

In order to check the dependence on v̄ and thus to verify whether the denominator
of the kinetic term in Eq. (16) is linear and find what is the shape of the potential part,
one is forced to use a collection of lattice volumes V̄4 and time periods ttot. The results
of such an analysis are shown in Figs. 6 and 7, where we present the measurements for
all combinations of V̄4 = 80000, 160000, 240000 and ttot = 10, 40, 160, 200 resulting in
12 different values of v̄. For a consistency check, this also includes v̄ = 2000 which is
identical as for the previously discussed case (V̄4 = 160000; ttot = 80). We checked that
the k and u coefficients measured for such v̄ do not depend on the particular choice of
(V̄4 ; ttot) (green points in Figs. 6 and 7).

The results obtained for various v̄ show that the (inverse) kinetic coefficients k−1 are
indeed consistent with the expected linear behaviour Γ(v̄−n0), and that the best fit of
the potential coefficients of form u[v̄] = µ(γ2 +γ)v̄−γ−2 gives µ > 0 and γ = 1.16±0.02,
resulting in the following form of the effective action consistent with Ansatz (16):6

Seff =
∑
t


(
nt − nt+1

)2

Γ(nt + nt+1 − 2n0)
+ µn−γt + λnt

 . (20)

6Note that in the potential part we have included a linear term +λnt. The term is not recorded
in the measured covariance matrix data which depend on second derivatives of the effective action
only. We have chosen the ’+’ sign (with λ > 0) based on different measurement methods which will
be described in a forthcoming article.
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Figure 6: The (inverse) kinetic coefficients k = −C−1
t,t+1 as a function of v̄ = V̄4/ttot

obtained for a collection of 12 measurements with V̄4 = 80000, 160000, 240000 and
ttot = 10, 40, 160, 200. The linear relation is consistent with Eq. (17) and thus the
Ansatz (16). Blue points were obtained by applying the procedure "first invert then
average", and red points by the procedure "first average then invert", described in the
text. The results of the two methods are (almost) identical. Green dots are the results
obtained for V̄4 = 160000, ttot = 80 and thus v̄ = 2000. The dots are indistinguishable
from the results for V̄4 = 80000, ttot = 40 resulting in the same v̄ = 2000.
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γ=1.16

C-1

C
-1

Figure 7: The potential coefficients u = −C−1
t,t − 2k as a function of v̄ = V̄4/ttot

obtained for a collection of 12 measurements with V̄4 = 80000, 160000, 240000 and
ttot = 10, 40, 160, 200 (data for v̄ > 5000 were skipped as they were indistinguishable
from numeric noise). The plot is in the log-log scale and the dashed line is consistent
with a potential V [v̄] = µ v̄−γ - see Eq. (17) - and the best fit is for γ = 1.16 ± 0.02.
Blue points were obtained by applying the procedure "first invert then average", and
red points by the procedure "first average then invert". The results of the two methods
are (almost) identical. Green dots are the results obtained for V̄4 = 160000, ttot = 80
and thus v̄ = 2000. The dots are indistinguishable from the results for V̄4 = 80000,
ttot = 40 resulting in the same v̄ = 2000.

Major difference in the effective action between spherical and toroidal case is visible
in the potential term. In the former case, the potential term is proportional to v1/3

and is exactly the same as in the minisuperspace model. Such term is a consequence of

13



a constant, positive intrinsic curvature of spherical geometry and can be verified by a
direct calculation of the action.

The minisuperspace model reduces degrees of freedom to the scale factor a(t) ∝
v(t)1/3 and the minisuperspace action is obtained by inserting a maximally symmetric
metric

ds2 = dt2 + a2(t)dΩ2,

into the (Euclidean) Einstein-Hilbert action. For a unit three-sphere, the line element
in spherical coordinates is given by

dΩ2 = dx2
2 + sin2 x2dx2

3 + sin2 x2 sin2 x3dx2
4.

Calculation of the Christoffel symbols and subsequently the Riemann tensor gives the
scalar curvature R = 6

a2
(−ȧ2−aä+1). Integration by parts leads to the minisuperspace

action
S =

1

16πG

∫
dt

∫
dΩ
√
g(R− 2Λ) ∝ 1

G

∫
dt(aȧ2 − Λ

3
a3 + a),

or equivalently in terms of the spatial volume observable to

S =

∫
dt

(
1

Γ

v̇2

v
− λv + µv1/3

)
.

On the other hand, for a toroidal geometry the metric is Euclidean dΩ2 = dx2
2 +

dx2
3 + dx2

4 and the intrinsic curvature vanishes. The scalar curvature R = 6
a2

(−ȧ2− aä)
produces the toroidal minisuperspace action

S ∝ 1

G

∫
dt(aȧ2 − Λ

3
a3) thus S =

∫
dt

(
1

Γ

v̇2

v
− λv

)
.

Lack of the classical potential term might simplify observations of quantum corrections.

4 Discussion
We used the computer generated numerical data to measure the spatial volume profile
and the covariance of spatial volume fluctuations in 3+1 dimensional CDT with toroidal
spatial topology boundary conditions and to determine the effective action. The form
of the action observed for the 3+1 dimensional toroidal case (20)

S
(T 3)
eff =

∑
t


(
nt − nt+1

)2

Γ(nt + nt+1 − 2n0)
+ λnt + µn−γt

 (21)

with γ ≈ 1.16 can be compared with the minisuperspace action of the 3+1 dimensional
spherical case [37, 38]

S
(S3)
eff =

∑
t


(
nt − nt+1

)2

Γ(nt + nt+1 − 2n0)
− λnt + µn

1/3
t

 . (22)
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The kinetic term present in both actions is a classical term in the sense that precisely
such a term is present in the minisuperspace reduction of the Einstein-Hilbert action
both for the spatial topology S3 and T 3. Interestingly, the numerical value of the
effective parameter Γ ≈ 26.3 measured in the point (κ0 = 2.2,∆ = 0.6) is, up to
statistical precision, identical in both cases. The potential term µ n

1/3
t in (22) is also a

classical term as it is present in the minisuperspace model when the spatial topology is
S3 and it is responsible for the semiclassical S4-like background solution observed in the
computer simulations. However, such a term is not present in suitable minisuperspace
reduction when the spatial topology is T 3 and we do not observe it in the computer
simulations. The term we do observe, n−γt , is numerically quite small and has the
interpretation of a genuine quantum correction. The potential term is purely due to
quantum corrections. It would be very interesting to calculate analytically the exponent
γ.
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Appendix 1. Minimal configuration of a three-torus
In the presented setup, spatial slices are three-dimensional simplicial manifolds of a
toroidal topology build of tetrahedra. In this appendix we investigate the smallest
triangulation of a three-torus, i.e. possessing minimal number of vertices (N0) and
tetrahedra (N3). It is also a very interesting problem from a mathematical point of
view.

By construction, CDT triangulations do not allow for distinct edges with the same
endpoints. Thus, the shortest loop consists of three vertices and three links (it is
a triangle). Naively, the minimal triangulation would be a Cartesian product of three
such loops (one in each direction) consisting of 33 = 27 points. Surprisingly, the smallest
observed spatial slice has only 15 points. This is possible, because the loops in different
directions interlace. The found configuration consists of N0 = 15 points, N1 =

(
15
2

)
=

105 links, N2 = 180 triangles and N3 = 90 tetrahedra. It is a good candidate for the
smallest triangulation of T 3 because it has a well defined structure and for N0 = 15
only one combination of N1 and N3 was observed.
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Figure 8: Neighborhood of vertex 1. The six outgoing links of order 4 are marked with
a thick red line, they determine the x, y and z directions. Vertices 2, 3, 4 and 5 lie in the
same layer L0 (x-z plane) as vertex 1. The eight outgoing links of order 6 are marked
with a thick green line. The structure for each point is identical. Note that each vertex
is connected to each other.

Layered structure

The structure of the discovered minimal configuration is codified by links. The number
of links N1 saturates the upper bound for 15 points which means that each vertex
is connected to each other. There are only two types of links, (i) with coordination
number (order) equal to 4 and (ii) with coordination number equal to 6. Each point
has identical vicinity shown in Fig. 8, it has 8 outgoing links of order 6 and 6 outgoing
links of order 4. The latter links are marked with a thick red line and define the x,
y and z axis (in both directions). They also introduce a notion of layers, which can
be identified with the x-z planes. Each of the three layers contains 5 vertices and is
enumerated by a discrete coordinate y = 0, 1, 2.

The layers are visualized in Fig. 9, the vertices have been relabelled so that the layers
are L0 = {1, 2, 3, 4, 5}, L1 = {6, 7, 8, 9, 10} and L2 = {11, 12, 13, 14, 15}. Horizontal and
vertical lines have coordination number 4 and are drawn with a red line. Taking a step
to the right increases the x coordinate by 1 and the vertex label also by 1 (modulo
5), going upward by one step increases the z coordinate by 1 but the vertex label by
2 (modulo 5) so that there are no two links with the same endpoints. Each layer is
periodic in x and z direction with period 5. The layers also form a structure with
period 3 (L0 → L1 → L2 → L0). One layer forms the smallest square grid with two
non-equivalent and non-contractible loops. There are also lines orthogonal to the plot
which connect different layers (different y). The layers visualized in Fig 2. should be
viewed as placed on top of each other, so that e.g. vertex 1 is connected to vertex 6 by
a link of order 4.
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Figure 9: Vertices of the minimal triangulation of T 3 can be divided into three disjoint
layers of equal size. The layers can be viewed as x-z planes indexed by coordinate y.
Red lines denote links of order 4 which connect points belonging to the same layer,
while green lines denote links of order 6. Links of order 4 which connect adjacent layers
are not visible. Vertices lying in given layer are marked with color dots. Gray dots
denote vertices connected by links of order 6 which belong to a layer shifted by half
step in y direction. Each layer is periodic in x and z direction with period 5.

However, the whole picture is more complicated. There are also links of order 6,
marked with a green line in Fig. 8 and Fig. 9, which always connect different layers.
They change the y coordinate by ±1

2
. The layers are interlaced in such a way, that a

layer y = +1 (connected by links of order 4) is at the same time at y = −1/2 (connected
by links of order 6). For example, layer L2 is simultaneously lying two steps above L0,
one step below or half step above.

Proof of toroidal topology

To prove that the minimal triangulation indeed has a topology of a three-torus, we have
to show that there are three non-contractible and non-equivalent loops. To demonstrate
that all single winded loops can be split into three equivalence classes, we assign a weight
ω to each link. Loops within one class can be continuously transformed into each other,
but not between different classes. Link’s weight basically corresponds to change in y
direction. Because every loop can be continuously transformed into a path consisting
only of edges present in the triangulation, we restrict our considerations to such loops.

The weights are assigned according to following rules, which are summarized in
Table. 1. Weight of a link depends only on its coordination number, orientation and
layers it connects. Edges that connect vertices lying in the same layer have weight
ω = 0 (horizontal and vertical red links in Fig. 9). Links of order 4 connecting layers
in an increasing order (i.e L0 → L1 → L2 → L0) have weight ω = +1, while links of
order 6 connecting layers in a decreasing order (e.g. L0 → L2) have weight ω = +1/2
(diagonal green links in Fig. 9). Edges with opposite orientation have opposite weights.
Weight of a path is a sum of weights of links that build that path.

The clue of the proof is that any continuous transformation of a loop does not
change its weight. It can be inferred from Fig. 8 that each tetrahedron has two links of
order 4, which don’t meet, and four links of order 6. An example of such tetrahedron
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Order Connection Weight
4 Ly → Ly+1 ω = +1
4 Ly → Ly−1 ω = −1
4 Ly → Ly ω = 0
6 Ly → Ly−1 ω = +1/2
6 Ly → Ly+1 ω = −1/2

Table 1: Weights ω of links with given order and endpoint layers. The orientation is
important.

Figure 10: The figure shows a tetrahedron and a triangle (right) present in the minimal
configuration. Red line denotes a link of order 4, green line denotes a link of order 6.
All tetrahedra and triangles have this form.

is visualized in Fig. 10 on the left. This means that every triangle consists of two links
of order 6 with weight ω = ±1/2 and one link of order 4 with weight ω = −1, 0,+1.
Thus every fundamental continuous transformation of a loop consists of changing one
edge of a triangle into the two other or vice versa. It is easy to show that in all cases
the total weight is preserved.

Case I. Let the red link connect layers Ly → Ly+1. It has a weight ω = +1. Because
the third point is connected by links of order 6 it cannot lie in layer Ly nor Ly+1

and has to belong to layer Ly+2. Thus, the green lines connect layers Ly → Ly+2

and Ly+2 → Ly+1 and both have weight ω = +1/2 which gives in total ω = +1.

Case II. Similarly, when the red link connects points in the same layer Ly → Ly it
has a weight ω = 0. The third point has to be placed either in layer Ly−1 or
Ly+1. The green links are then Ly → Ly+1 and Ly+1 → Ly with total weight
ω = −1/2 + 1/2 = 0 or Ly → Ly−1 and Ly−1 → Ly with total weight ω =
+1/2− 1/2 = 0.

Taking the orientation properly into account we can prove all remaining cases (e.g.
transformation of a red and a green link into a green link).

The next step is to identify the equivalence classes of loops. Let us consider follow-
ing representatives:
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First loop.
1(L0)

4−−→
ω=0

2(L0)
4−−→

ω=0
5(L0)

4−−→
ω=0

1(L0)

Numbers in bold are labels of vertices belonging to the path, in parentheses are
vertex layers. Arrows denote links with endpoints on sides, the numbers above are
link orders. The weight can be derived from rules in Table 1. This loop is com-
pletely embedded in layer L0 and its total weight is ω = 0. All contractible loops
of length three form a triangle present in the triangulation. Because there are no
triangles composed exclusively of links of order 4, this loop is non-contractible.

Second loop.
1(L0)

6−−−→
ω=1/2

13(L2)
6−−−→

ω=1/2
10(L1)

6−−−→
ω=1/2

1(L0)

This loop passes through all layers in a descending order along links with coordi-
nation number 6 (weight +1/2). The total weight equals ω = 3/2. Because the
weight is non-zero it cannot be a contractible loop.

Third loop.
1(L0)

4−−→
ω=1

6(L1)
4−−→

ω=1
11(L2)

4−−→
ω=1

1(L0)

This loop passes through consecutive layers along links of order 4 (weight +1).
The total weight equals ω = 3 and because it is non-zero the loop is non-contractible.
It is also too short to be a loop of second type winded twice.

Moreover, the foregoing loops are non-contractible because they have length three but
do not form a triangle present in the simplicial manifold. Because they have different
weights, they necessarily belong to separate equivalence classes. This ends the proof
of toroidal topology of the considered triangulation. It is also noteworthy, that the
minimal toroidal triangulation consists of 90 tetrahedra, which is much more than for
a spherical topology (5 tetrahedra).
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