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High-temperature quantum Hall effect in finite gapped HgTe quantum wells
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We report on the observation of the quantum Hall effect at high temperatures in HgTe quantum wells with a finite
band gap and a thickness below and above the critical thickness dc that separates a conventional semiconductor
from a two-dimensional topological insulator. At high carrier concentrations, we observe a quantized Hall
conductivity up to 60 K with energy gaps between Landau levels of the order of 25 meV, in good agreement with
the Landau level spectrum obtained from k · p calculations. Using the scaling approach for the plateau-plateau
transition at ν = 2 → 1, we find the scaling coefficient κ = 0.45 ± 0.04 to be consistent with the universality of
scaling theory, and we do not find signs of increased electron-phonon interaction to alter the scaling even at these
elevated temperatures. Comparing the high-temperature limit of the quantized Hall resistance in HgTe quantum
wells with a finite band gap with room-temperature experiment in graphene, we find that the energy gaps at the
breakdown of the quantization exceed the thermal energy by the same order of magnitude.
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I. INTRODUCTION

The quantum Hall effect (QHE) [1] is a universal phe-
nomenon that occurs when two-dimensional (2D) metallic
systems are subjected to a perpendicular magnetic field. The
magnetic field splits the constant density of states into discrete
Landau levels (LLs), which are separated by energy gaps
�E. When the Fermi energy EF is in the gapped regions,
the Hall conductance is quantized to integer multiples of
e2/h, where h is Planck’s constant and e is the electron
charge. This quantization has been observed in a wide range
of semiconductor heterostructures, such as GaAs/AlGaAs,
Si-MOSFETs, and SiGe [2–4]. The origin of the QHE can
be explained on the basis of localized and extended states that
occur in the spectrum of impurity-broadened LLs [5,6]. In the
center of the LLs, extended states exist that lead to a metallic
behavior, while in the vicinity of localized states the bulk
behavior is insulating. Although bulk states in between LLs
are localized, dissipationless 1D edge channels are formed
that dominate the transport properties in this regime. The
consequence is a quantized Hall resistance accompanied by a
vanishing longitudinal resistance. To observe this quantization,
low temperatures (T � 10 K) are, in general, necessary to
prevent thermal occupation of extended states in higher LLs.
This limit has recently been overcome by a new class of
systems that exhibit a linear dispersion. One of the most
famous systems with a linear dispersion is the zero-gap
semiconductor graphene, where the QHE has been observed at
room temperature using a magnetic field of 29 T [7]. The ob-
servation of a quantized resistance at these high temperatures
is based on the peculiar nature of charge-carrier quantization
in a magnetic field, which is given by EN = ±vF

√
2e�BN ,

where vF is the Fermi velocity, B is the magnetic field, � is
the reduced Planck constant, and N is the Landau level index.
For a typical Fermi velocity in graphene of vF ≈ 106 m/s,
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the energy gap between the lowest LL (N = 0) and the first
excited one (N = 1) is �E ≈ 195 meV at 29 T, exceeding
the thermal energy at room temperature (kBT ≈ 25 meV)
by almost one order of magnitude. Unlike in conventional
systems, where the second subband is relatively close to the
first, the second subband in graphene is not occupied up to
very high temperatures, thereby supporting the condition for
the observation of the QHE.

Similar conditions are present in HgTe quantum wells
(QWs). A remarkable property of these so-called type-III QWs
is that by tuning the quantum-well thickness dQW above a crit-
ical thickness dc = 6.3 nm, a transition from a semiconductor
to a topological insulator (TI) is achieved [8]. At dQW = dc, the
conduction and valence bands touch each other, which leads to
a single-valley gapless 2D Dirac-fermion system [9,10], and
the QHE can be observed up to nitrogen temperatures [11].
In contrast to conventional semiconductors, HgTe QWs with
a finite (bulk) band gap also have a highly nonparabolic
dispersion, approaching a linear energy-momentum relation at
finite k, and they are described by the Dirac Hamiltonian [12].
The presence of a small but finite bulk band gap affects the
LL dispersion and consequently the energy gaps in the LL
spectrum compared to zero-gap systems [11].

In this paper, we investigate the high-temperature QH
regime of HgTe quantum wells with a finite band gap with
dQW below and above dc. The combination of the dispersion
relation, leading to charge carriers that obey the Dirac equation,
with a second subband that is more than 100 meV above
EF makes our system ideal to study the QHE up to high
temperatures with only one occupied subband.

II. SAMPLE CHARACTERIZATION

Our samples were grown by molecular beam epitaxy (MBE)
in the [001] direction, and they were structured into Hall bars
of dimensions L × W of (600 × 200) and (30 × 10) μm2,
respectively. The quantum-well thicknesses of the two samples
are dQW = 5.9 nm (sample 1) and dQW = 11 nm (sample 2),
respectively. The calculated energy dispersions E(k) using a
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k · p model with an 8 × 8 Kane Hamiltonian [13] are shown
in Figs. 1(a) and 1(b), where the first (E1) and second (E2)
electron- and holelike (H1 and H2) subbands are plotted. Both
systems possess a finite bulk band gap, and while sample 1 is a
trivial semiconductor with a direct band gap of 12 meV, sample
2 is a 2D TI with an indirect band gap of 3 meV and an inverted
band ordering giving rise to helical edge states at zero magnetic
field [8,14]. This difference can be seen experimentally when
tuning the Fermi energy EF with the top gate through the band
gap while measuring the low-temperature (T = 4.2 K) longi-
tudinal resistance Rxx [see Figs. 1(c) and 1(d)]. Compared to
the expected insulating behavior of sample 1 (Rxx � 1 M�),
sample 2 has a significantly reduced resistance (Rxx ≈ 27 k�)
when EF is in the bulk band gap. This value is above the
expected quantization for a 2D TI due to the formation of
charge puddles in larger samples (L � 1 μm), which can lead
to backscattering [8,15,16] as well as the thermal activation of
bulk carriers over the narrow band gap of 3 meV.

To study the QHE at high temperatures, we tune the
Fermi energy EF deep into the conduction band where the
dispersion is nearly linear. We achieve this by applying
gate voltages of Vg,1 = 1 V (sample 1) and Vg,2 = 1.4
V (sample 2), which yields almost equal charge-carrier
concentrations of ns,1 = 4.59 × 1011 cm−2 and ns,2 = 4.66 ×
1011 cm−2, respectively. In this regime, our samples have
mobilities of μ1 = 67 800 cm2/V s and μ2 = 82 400 cm2/V s,
as determined from the zero-field resistivity. For both carrier
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FIG. 1. Band-structure calculations performed with the k · p
model using an 8 × 8 Kane-Hamiltonian for (a) a 5.9-nm-thick and
(b) an 11-nm-thick HgTe QW. Here the lowest two electronlike (E1

and E2) and holelike (H1 and H2) subbands are shown. The Fermi
energy at electron densities where QH experiments were performed
(see Fig. 2) of (a) ns1 = 4.59 × 1011 cm−2 and (b) ns2 = 4.66 ×
1011 cm−2 is marked by dashed lines. These densities correspond to
constant gate voltages of Vg,1 = 1 V and Vg,2 = 1.4 V, respectively.
Gate-dependent measurements at T = 4.2 K of the longitudinal
resistance Rxx for the (c) 5.9-nm-thick and (d) 11-nm-thick samples.

concentrations, EF is more than 100 meV below the second
electronic subband E2, as can be seen in Figs. 1(a) and 1(b),
from which we exclude thermal excitation of higher subbands
contributing to transport in our experiment. The nearly linear
dispersion in combination with a single occupied subband up
to high energies are perfect conditions for the observation of
the QHE at high temperatures.

For the experiment, we used standard four-terminal lock-in
techniques and carefully chose our excitation to prevent
heating of the samples. We used a 3H-system to access
a temperature range from 0.3 to 80 K in magnetic fields
up to 30T.

III. RESULTS AND DISCUSSION

The main results of our measurements are summarized
in Fig. 2, where we present data that represent the overall
behavior of our samples. Figures 2(a) and 2(b) show measure-
ments of Rxx of the two samples at constant charge-carrier
concentrations and different temperatures. From additional
measurements of Rxy and the known geometry of the Hall
bars, we determine the corresponding resistivities ρxx and
ρxy from which we calculate the Hall conductivities σxy =
ρxy/(ρ2

xy + ρ2
xx) plotted in Figs. 2(c) and 2(d). The insets

show a magnification of the region around filling factor ν = 1,
where ν is defined as ν = ns/nL = nsh/eB, where ns is the
charge-carrier concentration and nL is the degeneracy of the
Landau levels.

We observe pronounced Shubnikov–de Haas oscillations
in the displayed temperature range accompanied by plateaus
in σxy at ν = 1 up to 60 and 46.5 K for samples 1 and 2,
respectively. From the temperature dependence of the minima
in Rxx , we extract the activation gaps �E between adjacent
LLs with a Fermi-Dirac fit, and we compare the results with
theoretical calculations of the Landau level dispersions shown
in Figs. 3(a) and 3(b). In contrast to the LL fan chart of the 5.9
nm quantum well where all LLs show a positive dispersion,
the inverted sample exhibits a LL crossing of one electronlike
and one holelike level at around 8 T, which is the hallmark of
a 2D inverted system [9].

The experimentally and theoretically obtained energy gaps
are in reasonably good agreement, as shown in Figs. 3(c)
and 3(d), and the overall behavior of the sample is well de-
scribed by our k · p model. While the calculations yield energy
gaps of �E1,ν=1 � 46 meV at B � 20 T and �E2,ν=1 �
39 meV at B � 21 T for samples 1 and 2, respectively,
the extracted activation energies are slightly smaller and
determined to be �E1,ν=1 � (42 ± 1.5) meV and �E2,ν=1 �
(34 ± 2.9) meV. This small difference can mainly be attributed
to the simplicity of our calculations, where we assume an
infinitely small LL width. In reality, scattering from impurities
or dopants leads to a broadening of the LLs, resulting in smaller
energy gaps than our theoretical estimates, as observed.
Despite the broadened LLs, the energy gap for the lowest filling
factor still exceeds the thermal energy at room temperature of
kBT ≈ 25 meV. We note furthermore that the energy gaps
are larger than in conventional 2D systems, but they are still
almost an order of magnitude smaller than in graphene due to
a smaller Fermi velocity (�5 × 105 m/s) [17–19] compared to
graphene but with a large Zeeman splitting �EZ = g∗μBB of
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FIG. 2. Measurements of the longitudinal resistances Rxx of the (a) 5.9-nm-thick and (b) 11-nm-thick QWs at constant electron densities
ns,1 = 4.59 × 1011 cm−2 and ns,2 = 4.66 × 1011 cm−2 at different temperatures. The black arrows mark the position in magnetic field of filling
factors ν = 1 and 2. In (c) and (d), the corresponding Hall conductivities σxy are shown. The insets show a magnification of σxy at filling
factor 1.
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FIG. 3. Calculated LL dispersion for (a) a 5.9-nm-thick and
(b) an 11-nm-thick HgTe quantum well. The position of the Fermi
energy EF is marked by the orange line. In (c) and (d), the
corresponding experimentally extracted and theoretical calculated
energy gaps are plotted for the lowest four filling factors.

the LLs in HgTe, where g∗ is the effective Landé factor and μB

is the Bohr magneton. Therefore, the energy gap for the filling
factor ν = 1 is �Eν=1 = vF

√
2�eB − �EZ, and for ν = 2

it is �Eν=2 = �EZ. At the Fermi energy, the Landau-level
dispersions are very similar, and g∗ � 20 for both samples. A
further increase in charge-carrier densities and magnetic-field
range would, due to the nature of the LL dispersion, only
slightly increase the energy gaps, and the maximum �E

remains in the order of 50 meV. Thus, the temperature range
where we still observe the QHE is largely reduced compared
to graphene. Interestingly, the ratio of the energy gap �E to
the thermal energy where σxy is still quantized is comparable
to the ratio of �E/kBT ≈ 8 measured in graphene.

Although our system has large energy gaps between
adjacent LLs, a necessary but not sufficient condition for the
observation of QHE at high temperatures, we need to consider
the localization effects of charge carriers. In disordered sys-
tems, charge carriers in the tails of the LLs are localized, while
extended states exist only at the center of each LL. Because
of these localized states, the Fermi energy moves smoothly
through the energy gap, and a plateaulike Hall resistance is
observed in the measurements. A widely used approach to
study localization is to investigate the scaling behavior of
the unique insulator-metal transition, which occurs when the
energy crosses from localized to delocalized states [20,21].
Within the finite-size scaling theory [20], it is possible to
observe scaling behavior in the temperature dependence of
the slope of the plateau transition; specifically, the maximum
of the derivative of the Hall resistance scales with the
temperature as

(dRxy/dB)max ∝ T −κ , (1)

with κ = p/2γ , with γ the critical localization length ex-
ponent and p the scattering exponent. The same power-law
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for the 5.9-nm-thick sample.
From the slope of the linear fits, κ = p/2γ can be determined with
(dRxy/dB)max ∝ κ and �BRxx

∝ −κ .

dependence holds for the temperature dependence of the full
width at half-maximum (FWHM) of the Rxx peaks, which we
denote as �BRxx

. While the universal scaling theory predicts
κ and p to be universal, it is still a controversial topic within
the literature [22–25]. Since we are able to access a wide
temperature range in which we still observe a quantized Hall
conductivity, it is interesting to compare this scaling behavior
with previous studies.

As shown in Fig. 4, the analysis of sample 1 of
(dRxy/dB)max yields κ = 0.45 ± 0.04 for the transition from
ν = 2 → 1, in good agreement with the value κ = 0.45 ±
0.02 extracted from �BRxx

. For the ν = 3 → 2 transition,
(dRxy/dB)max yields κ = 0.40 ± 0.02 (unfortunately there are
not enough data points available for the analysis of �BRxx

for this transition as the minima quickly rise above zero).
Assuming γ to be universal, we obtain p = 2.1 ± 0.2. All our
values fit within the theory of universal scaling, suggesting
that our system is described by short-range scattering [26].
Furthermore, there is no sign of increased electron-phonon
interaction, which we expect to be present above 10 K and
which would lead to a different scaling behavior [27,28]. Our
scaling analysis at elevated temperatures is consistent with
measurements on graphene [29] and shows no difference from

that obtained on conventional 2D systems. Similar scaling
analysis for sample 2 was not conclusive due to the large
error bars in the obtained values of κ and p. The scaling for
a 20.3-nm-wide quantum well has recently been published,
and the principal feasibility of scaling analysis in HgTe was
addressed [30].

IV. SUMMARY

In summary, we have studied the QHE in HgTe QWs with
a finite band gap above and below the critical thickness dc

up to temperatures of the order of 50 K. From temperature-
dependent magnetotransport measurements, we extract energy
gaps between LLs of the order of 25 meV. The thermal energy
at which the Hall conductance is still quantized is almost a
factor of 8 higher than the energy gap itself, showing striking
similarities to graphene. We did not find any evidence of
increased electron-phonon interaction that would alter the
scaling behavior of the QHE between ν = 1 and 2. From
the observed scaling, we determined κ = 0.45 ± 0.04 for
the noninverted sample with dQW = 5.9 nm, in excellent
agreement with the universal scaling theory. An interesting
subject for further theoretical and experimental studies is
whether the high-temperature limit of the QHE is influenced
by a difference in localization strength and can be related to
sample disorder or mobility μ.
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[14] C. Brüne, A. Roth, H. Buhmann, E. M. Hankiewicz, L. W.
Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Nat. Phys.
8, 486 (2012).
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