The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/158177

Please be advised that this information was generated on 2019-08-15 and may be subject to change.
HOMOTOPY TRANSFER AND RATIONAL MODELS FOR MAPPING SPACES

URTZI BUIJS AND JAVIER J. GUTIÉRREZ

Abstract. By using homotopy transfer techniques in the context of rational homotopy theory, we show that if C is a coalgebra model of a space X, then the A_∞-coalgebra structure in $H_*(X;\mathbb{Q}) \cong H_*(C)$ induced by the higher Massey coproducts provides the construction of the Quillen minimal model of X. We also describe an explicit L_∞-structure on the complex of linear maps $\text{Hom}(H_*(X;\mathbb{Q}), \pi_*(\Omega Y) \otimes \mathbb{Q})$, where X is a finite nilpotent CW-complex and Y is a nilpotent CW-complex of finite type, modeling the rational homotopy type of the mapping space $\text{map}(X,Y)$. As an application we give conditions on the source and target in order to detect rational H-space structures on the components.

1. Introduction

The version up to homotopy of differential graded Lie algebras, called L_∞-algebras, had its origins in the context of deformation theory [32] and has been highly used since then in different geometrical settings [12, 24]. Recently, the theory of L_∞-algebras has become a useful tool in order to describe rational homotopy types of spaces [10, 18]. In particular, mapping spaces seem to be well described in these terms [3, 9, 11, 27].

More concretely, if C is a coalgebra model of a finite nilpotent CW-complex X and L is an L_∞-model of a finite type rational CW-complex Y, then the complex of linear maps $\text{Hom}(C,L)$ admits an L_∞-structure whose geometrical realization is of the rational homotopy type of $\text{map}(X,Y)$, the space of continuous functions; see [3, 9] for details. Similarly, the complex $\text{Hom}(\overline{C},L)$, where \overline{C} is the kernel of the augmentation $\varepsilon: C \to \mathbb{Q}$, is an L_∞-model for $\text{map}^*(X,Y)$, the space of pointed continuous functions.

The aim of this paper is to describe an explicit L_∞-structure in the complex of linear maps $\text{Hom}(H_*(X;\mathbb{Q}), \pi_*(\Omega Y) \otimes \mathbb{Q})$ that serves as a model for the rational homotopy type of $\text{map}(X,Y)$.

If L denotes the L_∞-algebra such that $C^*(L) = (\Lambda V, d)$ is the Sullivan minimal model of Y (see Section 2 for details), then we have that $L \cong \pi_*(\Omega Y) \otimes \mathbb{Q}$ as graded vector spaces. Let C be a coalgebra model of a finite nilpotent CW-complex X. The strategy will be to use the homotopy retract between C and $H_*(C) \cong H_*(X;\mathbb{Q})$.
(denoted by H from now on), defining the higher Massey coproducts, and the above explicit L_∞-structure on $\text{Hom}(C, L)$ to induce another homotopy retract between $\text{Hom}(C, L)$ and $\text{Hom}(H, L)$. Then, we apply the homotopy transfer theorem [17, 25, 26, 28, 30] to give an L_∞-structure on $\text{Hom}(H, L)$ and an explicit formula for it by means of rooted trees (see Section 3 for further details).

We prove that, indeed, this L_∞-structure exhibits $\text{Hom}(H, L)$ as an L_∞-model for $\text{map}(X, Y)$. Note, however, that a quasi-isomorphism between two L_∞-algebras is not necessarily a quasi-isomorphism after applying the generalized cochain functor C^\ast. Therefore, we cannot deduce directly from the quasi-isomorphism provided by the homotopy retract that $\text{Hom}(H, L)$ is an L_∞-model for the mapping space. The same argument can be applied by replacing (C, Δ) and H with $(\overline{C}, \overline{\Delta})$ and \overline{H}, respectively, to model the space of pointed continuous functions $\text{map}^\ast(X, Y)$.

Moreover, the homotopy retract between C and $H_s(X; \mathbb{Q})$ used above has its own interest since we show that it provides the construction of the Quillen minimal model of X; see Theorem 3.1.

Finally, using the model for $\text{map}^\ast(X, Y)$, we give a necessary condition for the components of mapping spaces to be of the rational homotopy type of an H-space. This problem has been previously considered in [5, 7, 16]. We prove a variant of the results obtained in these papers in terms of the cone length (cl), the Whitehead length (Wl) and the bracket length (bl), that does not implicitly assume the coformality of the target space. Explicitly, we prove that if $\text{cl}(X) = 2$ and $\text{Wl}(Y) < \text{bl}(X)$, then all the components of $\text{map}^\ast(X, Y)$ are rationally H-spaces.

2. Preliminaries

We will rely on known results from rational homotopy theory for which [15] is a standard reference. We also assume the reader is aware of the concepts of homotopy operadic algebras being [25] an excellent reference. With the aim of fixing notation we give some definitions and sketch some results we will need. Every algebraic object considered throughout the paper is assumed to be a graded vector space over the rationals.

2.1. A_∞-coalgebras and L_∞-algebras. An A_∞-coalgebra C is a graded vector space together with a differential graded algebra structure on the tensor algebra $T^+(s^{-1}C)$ on the desuspension of C. This is equivalent to the existence of a family of degree $k - 2$ linear maps $\Delta_k : C \to C^\otimes k$ satisfying the equation

$$\sum_{k=1}^{i-k} \sum_{n=0}^{i-k} (-1)^{k+n+kn}(\text{id}^\otimes i-k-n \otimes \Delta_k \otimes \text{id}^n)\Delta_{i-k+1} = 0.$$

Any differential graded coalgebra (C, δ, Δ) is an A_∞-coalgebra with $\Delta_1 = \delta$, $\Delta_2 = \Delta$ and $\Delta_k = 0$ for $k > 2$. We will denote by $\Delta^{(k)} = (\Delta \otimes \text{id} \otimes \cdots \otimes \text{id}) \circ \cdots \circ (\Delta \otimes \text{id}) \circ \Delta$ with k factors, and $\Delta^{(0)} = \text{id}$.

An A_∞-coalgebra is cocommutative if $\tau \circ \Delta_k = 0$ for every $k \geq 1$, where $\tau : T(C) \to T(C) \otimes T(C)$ denotes the unshuffle coproduct, that is,

$$\tau(a_1 \otimes \cdots \otimes a_n) = \sum_{i=1}^{n} \sum_{\sigma \in S(i, n-i)} \epsilon_{\sigma}(a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(i)}) \otimes (a_{\sigma(i+1)} \otimes \cdots \otimes a_{\sigma(n)}),$$

where ϵ_{σ} is the signature of σ and $S(i, n-i)$ denotes the set of $(i, n-i)$-shuffles, i.e., permutations σ of n-elements such that $\sigma(1) < \cdots < \sigma(i)$ and $\sigma(i+1) < \cdots < \sigma(n)$.

Let \((C, \{\Delta_k\})\) and \((C', \{\Delta'_k\})\) be two \(A_\infty\)-coalgebras. A morphism of \(A_\infty\)-coalgebras from \(C\) to \(C'\) is a morphism \(f: C \to C'\) compatible with \(\Delta_k\) and \(\Delta'_k\). An \(A_\infty\)-morphism from \(C\) to \(C'\) is a morphism \(f: T^+(s^{-1}C) \to T^+(s^{-1}C')\) of differential graded algebras. This is equivalent to the existence of a family of degree \(k - 1\) maps \(f^{(k)}: C \to C^\otimes k\) satisfying the usual relations involving \(\Delta_k\) and \(\Delta'_k\). An \(A_\infty\)-morphism is a quasi-isomorphism if \(f^{(1)}\) is a quasi-isomorphism of complexes.

An \(L_\infty\)-algebra or strongly homotopy Lie algebra is a graded vector space \(L\) together with a differential graded coalgebra structure on \(\Lambda^+ sL\), the cofree graded cocommutative coalgebra generated by the suspension. The existence of this structure on \(\Lambda^+ sL\) is equivalent to the existence of degree \(k - 2\) linear maps \(\ell_k: L^\otimes k \to L\), for \(k \geq 1\), satisfying the following two conditions:

(i) For any permutation \(\sigma\) of \(k\) elements,

\[
\ell_k(x_{\sigma(1)}, \ldots, x_{\sigma(k)}) = \epsilon_\sigma \ell_k(x_1, \ldots, x_k),
\]

where \(\epsilon_\sigma\) is the signature of the permutation and \(\epsilon\) is the sign given by the Koszul convention.

(ii) The generalized Jacobi identity holds, that is

\[
\sum_{i+j=n+1} \sum_{\sigma \in S(i, n-i)} \epsilon_\sigma \epsilon(-1)^{i(j-1)} \ell_{n-i}(\ell_i(x_{\sigma(1)}, \ldots, x_{\sigma(i)}), x_{\sigma(i+1)}, \ldots, x_{\sigma(n)}) = 0,
\]

where \(S(i, n-i)\) denotes the set of \((i, n-i)\)-shuffles.

Every differential graded Lie algebra \((L, \partial)\) is an \(L_\infty\)-algebra by setting \(\ell_1 = \partial\), \(\ell_2 = [-, -]\) and \(\ell_k = 0\) for \(k > 2\). An \(L_\infty\)-algebra \((L, \{\ell_k\})\) is called minimal if \(\ell_1 = 0\).

Let \((L, \{\ell_k\})\) and \((L', \{\ell'_k\})\) be two \(L_\infty\)-algebras. A morphism of \(L_\infty\)-algebras from \(L\) to \(L'\) is a morphism \(f: L \to L'\) that is compatible with \(\ell_k\) and \(\ell'_k\). An \(L_\infty\)-morphism from \(L\) to \(L'\) is a morphism \(f: \Lambda^+ sL \to \Lambda^+ sL'\) of differential graded coalgebras.

Any \(L_\infty\)-morphism is completely determined by the projection \(\pi f: \Lambda^+ sL \to sL'\) which is the sum of a system of skew-symmetric morphisms \(f^{(k)}: L^\otimes k \to L'\) of degree \(1 - k\). The morphisms \(f^{(k)}\) satisfy an infinite sequence of equations involving the brackets \(\ell_k\) and \(\ell'_k\); see for example [24]. In particular, for \(k = 1\), we have that \(\ell'_1 f^{(1)} - f^{(1)} \ell_1 = 0\). Therefore \(f^{(1)}: (L, \ell_1) \to (L', \ell'_1)\) is a map of complexes.

Any morphism of \(L_\infty\)-algebras is an \(L_\infty\)-morphism of \(L_\infty\)-algebras. As in the case of \(A_\infty\)-coalgebras, an \(L_\infty\)-morphism is a quasi-isomorphism if \(f^{(1)}\) is a quasi-isomorphism of complexes. The following result can be found in [24, Theorem 4.6].

Theorem 2.1. Let \(L\) and \(L'\) be two \(L_\infty\)-algebras. If \(f\) is a quasi-isomorphism of \(L_\infty\)-algebras from \(L\) to \(L'\), then there exists another \(L_\infty\)-morphism from \(L'\) to \(L\) inducing the inverse isomorphism between homology of complexes \((L, \ell_1)\) and \((L', \ell'_1)\).

An \(L_\infty\)-algebra \((L, \{\ell_k\})\) is called linear contractible if \(\ell_k = 0\) for \(k \geq 2\) and \(H_*(L, \ell_1) = 0\). Since the property of being linear contractible is not invariant under \(L_\infty\)-isomorphisms, we say that \(L\) is contractible if \(L\) is isomorphic as an \(L_\infty\)-algebra to a linear contractible one. As stated in [24, Lemma 4.9], any \(L_\infty\)-algebra is \(L_\infty\)-isomorphic to the direct sum of a minimal \(L_\infty\)-algebra and a linear contractible one. Following [24], one can prove that any quasi-isomorphism between minimal \(L_\infty\)-algebras is an isomorphism. Thus, the set of equivalence classes of \(L_\infty\)-algebras
up to quasi-isomorphisms can be identified with the set of equivalence classes of minimal L_∞-algebras up to L_∞-isomorphisms.

The *Maurer–Cartan set* of an L_∞-algebra L is the set of elements $z \in L_{-1}$ such that the infinite series
\[
\sum_{k \geq 1} \frac{1}{k!} \ell_k(z, \ldots, z)
\]
is a finite sum and it is equal to zero. We will denote the set of Maurer–Cartan elements in L by $\MC(L)$. If L is an L_∞-algebra and $z \in \MC(L)$, then
\[
\ell^z_k(x_1, \ldots, x_k) = \sum_{i \geq 0} \frac{1}{i!} \ell_{i+k}(z, \ldots, z, x_1, \ldots, x_k)
\]
defines a new L_∞-structure denoted by L^z whenever the series is a finite sum (cf. [18, Proposition 4.4]). The *perturbed and truncated* L_∞-structure on L is the L_∞-algebra $L^\langle z \rangle$, whose underlying graded vector space is given by
\[
(L^\langle z \rangle)_i = \begin{cases}
L_i & \text{if } i > 0, \\
\ell^z_i(L_0) & \text{if } i = 0, \\
0 & \text{if } i < 0,
\end{cases}
\]
where $\ell^z_i(L_0)$ denotes the space of cycles for the differential ℓ^z_1, and with the same brackets as L^z.

Remark 2.2. If we want to extend the definition of the classical cochain functor \mathcal{C}^* [15, §23] from the category of differential graded Lie algebras to the category of L_∞-algebras, in order to define a realization functor for L_∞-algebras as the composition of the cochain functor and Sullivan’s realization functor [15, §17], then we should constrain the category of L_∞-algebras. For a discussion of the exact technical requirements needed with definitions and examples we refer to [8, §1]. Since all the L_∞-algebras involved in the next sections are of this type of *mild* L_∞-algebras we consider from now on that all L_∞-algebras are of this kind.

Then we have that an L_∞-algebra structure on L is the same as a commutative differential graded algebra structure on $\Lambda(sL)^\sharp$, denoted by $\mathcal{C}^*(L)$, where \sharp stands for the dual vector space. More explicitly, if V and sL are dual graded vector spaces, then $\mathcal{C}^*(L) = (AV, d)$ with $d = \sum_j d_j$ and
\[
\langle d_j v; sx_1 \wedge \cdots \wedge s_j \rangle = (-1)^j \langle v; s\ell_j(x_1, \ldots, x_j) \rangle,
\]
where $\langle \cdot; \cdot \rangle$ is defined as an extension of the pairing induced by the isomorphism between V and $(sL)^\sharp$, $d_j v \subset \Lambda^j V$ and ϵ is the sign given by the Koszul convention.

Conversely, if (AV, d) is a commutative differential graded algebra of finite type, then an L_∞-algebra structure on $s^{-1}V^\sharp$ is uniquely determined by the condition $(AV, d) = \mathcal{C}^*(L)$.

2.2. The homotopy transfer theorem

In this section we recall how to transfer A_∞- and L_∞-structures along homotopy retracts. This will be the main tool used in Section 3 to describe an explicit L_∞-structure on the complex of linear maps $\Hom(H_*(X; \Q), \pi_*(\Omega Y) \otimes \Q)$.

Let (A, d_A) and (V, d_V) be two complexes. We say that V is a *homotopy retract* of A if there exist maps
\[
\begin{array}{ccc}
A & \overset{\phi}{\longrightarrow} & V \\
\cup & \searrow p \\
\wedge & \downarrow i \\
(A, d_A) & \overset{p}{\longrightarrow} & (V, d_V)
\end{array}
\]
such that $\text{id}_A - ip = d_A h + hd_A$ and i is a quasi-isomorphism. If (A, V, i, p, h) is a homotopy retract, then it is possible to transfer A_∞- and L_∞-structures from A to V with explicit formulae. This is in fact a particular instance of the so-called homotopy transfer theorem [17, 25, 26, 28, 30], which goes back to [19, 20, 22, 23] for the case of A_∞-structures. Before stating it, we need to introduce some notation on rooted trees.

Let T_k (respectively PT_k) be the set of isomorphism classes of directed rooted trees (respectively planar rooted trees) with internal vertices of valence at least two and exactly k leaves. Let $(C, \{\Delta_k\})$ be an A_∞-coalgebra and let (C, V, i, p, h) be a homotopy retract of C. For each planar tree T in PT_k, we define a linear map $\Delta_T : V \to V^{\otimes k}$ as follows. The leaves of the tree are labeled by p, each internal edge is labelled by h and the root edge is labelled by i. Every internal vertex v is labelled by the operation Δ_r, where r is the number of input edges of v. Moving up from the root to the leaves one defines Δ_T as the composition of the different labels. For example, the tree

```
      p
     / \    / \  \\
    △2  △3 △2
   / \ /\ /\  \\
  h / h h h  \\
 /   /   /   \\
 i   i   i   \\
```

yields the map $\Delta_T = (((p \otimes p) \circ \Delta_2 \circ h) \otimes ((p \otimes p \otimes p) \circ \Delta_3 \circ h)) \circ \Delta_2 \circ i$.

Similarly, if $(L, \{\ell_k\})$ is an L_∞-algebra and (L, V, i, p, h) be a homotopy retract of L, then each tree T in T_k gives rise to a linear map $\ell_T : \Lambda^k V \to V$ in the following way. Let \tilde{T} be a planar embedding of T. If we label the leaves of the tree by i, each internal edge by h, the root edge by p and each internal vertex by ℓ_k, where k is the number of input edges, then this planar embedding defines a linear map $\ell_{\tilde{T}} : V^{\otimes k} \to V$ by moving down from the leaves to the root, according to the usual operadic rules. For example, for the same tree as before, the labeling reads

```
i
/ \    / \  \\
i  ℓ_2  ℓ_3 △
/   /\ /\  \\
i / h h  h  \\
/   /\ /\  \\
i / i i i  \\
```

and the linear map $\ell_{\tilde{T}}$ corresponds to

$$p \circ \ell_2 \circ ((h \circ \ell_2 \circ (i \otimes i)) \otimes (h \circ \ell_3 \circ (i \otimes i \otimes i))).$$

Then, we define ℓ_T as the composition of $\ell_{\tilde{T}}$ with the symmetrization map $\Lambda^k V \to V^{\otimes k}$ given by

$$v_1 \land \cdots \land v_k \mapsto \sum_{\sigma \in S_k} \epsilon_{\sigma} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)},$$

where S_k denotes the symmetric group on k letters, ϵ_{σ} denotes the signature of the permutation and ϵ stands for the sign given by the Koszul convention.
Part (i) of the following theorem follows from the tensor trick of [20] (see also [2 Section 2] for details). The second part is [28, Theorem 10.3.9].

Theorem 2.3 (Homotopy transfer theorem). Let \((A,d_A)\) and \((V,d_V)\) be two complexes and let \((A,V,i,p,h)\) be a homotopy retract. Then the following hold:

(i) If \(A = (C,\{\Delta_k\})\) is an \(A_\infty\)-coalgebra, then there exists an \(A_\infty\)-coalgebra structure \(\{\Delta'_k\}\) on \(V\) and an \(A_\infty\)-quasi-isomorphism \(i_\infty: (V,\{\Delta'_k\}) \to (C,\{\Delta_k\})\) such that \(\Delta'_1 = d_V\) and \(i_\infty^{(1)} = i\). Moreover, the transferred higher comultiplications can be explicitly described by the formula

\[
\Delta'_k = \sum_{T \in PT_k} \Delta_T.
\]

(ii) If \(A = (L,\{\ell_k\})\) is an \(L_\infty\)-algebra, then there exists an \(L_\infty\)-algebra structure \(\{\ell'_k\}\) on \(V\) and an \(L_\infty\)-quasi-isomorphism \(i_\infty: (V,\{\ell'_k\}) \to (L,\{\ell_k\})\) such that \(\ell'_1 = d_V\) and \(i_\infty^{(1)} = i\). Moreover, the transferred higher brackets can be explicitly described by the formula

\[
\ell'_k = \sum_{T \in T_k} \ell_T \cdot \frac{1}{|\text{Aut}(T)|},
\]

where \(\text{Aut}(T)\) is the automorphism group of the tree \(T\).

2.3. **Rational models for mapping spaces.** In [33] Sullivan associated to each nilpotent space \(Z\) a commutative differential graded algebra \(A_{PL}(Z)\). In fact, there is an adjoint pair

\[
A_{PL}: \text{sSets}^{op} \rightleftarrows \text{CDGA}: (\cdot),
\]

where CDGA is the category of commutative differential graded algebras, sSets is the category of simplicial sets, and \((\cdot)\) denotes the simplicial realization. The minimal model of \(Z\) is defined as the minimal model \((\Lambda V,d)\) of \(A_{PL}(Z)\). A model of \(Z\) is a graded commutative differential algebra quasi-isomorphic to its minimal model. For more details, we refer to [15, 33].

By a model of a not necessarily connected space \(Z\), such that all its components are nilpotent (or a map between them), we mean a \(Z\)-graded commutative differential graded algebra (or a morphism) whose simplicial realization, in the sense of [33], has the same homotopy type as the singular simplicial approximation of \(Z_\mathbb{Q}\). Similarly, by an \(L_\infty\)-model of a space \(Z\) as above, we mean an \(L_\infty\)-algebra \(L\) such that \(\mathcal{C}^*(L)\) is a commutative differential graded algebra model of \(Z\).

Proposition 2.4 ([3, 4, 8]). Let \(L\) be an \(L_\infty\)-algebra and \(z \in L_{-1}\) a Maurer–Cartan element. Then there is a homotopy equivalence

\[
\langle \mathcal{C}^*(L^{[z]}) \rangle \xrightarrow{\simeq} \langle \mathcal{C}^*(L) \rangle_z,
\]

where \(\langle \mathcal{C}^*(L) \rangle_z\) denotes the connected component containing the 0-simplex associated to \(z\). □
Note that this generalizes the notion of differential graded Lie model of a finite type nilpotent space Z, since in this case C^* coincides with the classical cochain functor and the only Maurer–Cartan element in L is the zero element.

Similarly, we say that an A_{∞}-coalgebra model of Z is a cocommutative A_{∞}-coalgebra C such that $L(C)$ is a differential graded Lie model of Z, where L denotes the generalized Quillen functor; see \cite{5} for further details. This functor assigns to a cocommutative A_{∞}-coalgebra C an induced differential graded Lie algebra structure on $\mathbb{L}(s^{-1}C)$ whose differential $\partial = \sum_{k \geq 1} \partial_k$ with $\partial_k : s^{-1}C \to \mathbb{L}^k(s^{-1}C)$ is determined by ∂_k in the same way as the classical Quillen functor assigns a differential $\partial = \partial_1 + \partial_2$ on $\mathbb{L}(s^{-1}C)$; see, e.g., \cite{5} IV.22. In fact, if C is a cocommutative differential graded coalgebra viewed as a cocommutative A_{∞}-coalgebra, then L coincides with the classical Quillen functor.

In the rest of the paper X will always denote a nilpotent finite CW-complex and Y will always denote a rational finite type CW-complex, although most of the results can be stated if we remove the finiteness assumption on X, as in \cite{5} 10.

We recall briefly the Haefliger model \cite{21} of the mapping space via the functorial description of Brown–Szczarba \cite{4}. Let B be a finite dimensional differential graded algebra model of X and let (AV,d) be a Sullivan (non-necessarily minimal) model of Y. We denote by B^d the differential coalgebra dual of B with the grading $(B^d)^{-n} = B_n^d = \text{Hom}(B^n, \mathbb{Q})$ and consider the free commutative algebra $\Lambda(A^+V \otimes B^d)$ generated by the Z-graded vector space $A^+V \otimes B^d$, endowed with the differential d induced by the ones on (AV,d) and on (B^d, δ). Let J be the differential ideal generated by $1 \otimes 1 - 1$, and the elements of the form

$$v_1 v_2 \otimes \beta - \sum_j (-1)^{|v_2||\beta_j|} (v_1 \otimes \beta_j')(v_2 \otimes \beta_j''), \quad v_1, v_2 \in V,$$

where $\Delta \beta = \sum_j \beta_j' \otimes \beta_j''$. The inclusion $V \otimes B^d \hookrightarrow \Lambda^+V \otimes B^d$ induces an isomorphism of graded algebras

$$\rho : \Lambda(V \otimes B^d) \xrightarrow{\cong} \Lambda(\Lambda^+V \otimes B^d) / J,$$

and thus $\tilde{d} = \rho^{-1}d\rho$ defines a differential in $\Lambda(V \otimes B^d)$ and the following holds:

Theorem 2.5 (\cite{4} 21). The commutative differential graded algebra $(\Lambda(V \otimes B^d), \tilde{d})$ is a model of $\text{map}(X,Y)$, and the commutative differential graded algebra $(\Lambda(V \otimes B_+^d), \tilde{d})$ is a model of $\text{map}^+(X,Y)$.

Now write $B^d = A \oplus \delta A \oplus H$, where $H \cong H(B^d)$, with basis $\{a_j\}$, $\{b_j\}$ and $\{h_s\}$. Thus $\delta a_j = b_j$ and $\delta h_s = 0$. Additionally, since (AV,d) is a Sullivan algebra, we can choose a basis $\{v_i\}$ for V for which $dv_i \in \Lambda V_{<i}$. Then we have:

Lemma 2.6 (\cite{4} 5). The commutative differential graded algebra $(\Lambda(V \otimes B^d), \tilde{d})$ splits as $(\Lambda W, \tilde{d}) \oplus \Lambda(U \oplus \tilde{d}U)$, where

(i) U is generated by $u_{ij} = v_i \otimes a_j$;
(ii) W is generated by $w_{is} = v_i \otimes h_s - x_{is}$, for suitable $x_{is} \in \Lambda(V_{<i} \otimes B^d)$;
(iii) $\tilde{d}w_{is} \in \Lambda\{w_{ms}\}_{m < i}$;
(iv) if $\tilde{d}(v_i \otimes h_s)$ is decomposable, so is $\tilde{d}w_{is}$.

Proof. We proceed by induction on i. Suppose that w_{ms} has been defined for $m < i$ satisfying the lemma for $(\Lambda(V_{<i} \otimes B^d), \tilde{d})$. Now, since $\tilde{d}(v_i \otimes h_s) = \rho^{-1}[dv_i \otimes h_s]$
belongs to $\Lambda(V_{\leq i} \otimes B^2)$, and
\[
\Lambda(V_{\leq i} \otimes B^2) = \Lambda\{w_{ms}\}_{m \leq i} \otimes \Lambda\{u_{mj}, \tilde{d}u_{mj}\}_{m < i},
\]
we can write $\tilde{d}(v_i \otimes h_s) = \Gamma_1 + \Gamma_2$, where
\[
\Gamma_1 \in \Lambda\{w_{ms}\}_{m \leq i} \text{ and } \Gamma_2 \in \Lambda\{w_{ms}\}_{m < i} \otimes \Lambda^+\{u_{mj}, \tilde{d}u_{mj}\}_{m < i}.
\]
The ideal $\Lambda\{w_{ms}\}_{m \leq i} \otimes \Lambda^+\{u_{mj}, \tilde{d}u_{mj}\}_{m \leq i}$ is acyclic, since by inductive hypothesis $\Lambda\{w_{ms}\}_{m \leq i}$ is \tilde{d}-stable. Therefore, Γ_2 is a boundary, i.e., $\Gamma_2 = \tilde{d}x_{is}$ for some $x_{is} \in \Lambda\{w_{ms}\}_{m \leq i} \otimes \Lambda^+\{u_{mj}, \tilde{d}u_{mj}\}_{m \leq i}$. We define $w_{is} = v_i \otimes h_s - x_{is}$, which clearly satisfies (ii), (iii) and (iv). To finish, observe that $\tilde{d}u_{ij} = \tilde{d}(v_i \otimes a_j) = \pm v_i \otimes b_j + \rho^{-1}[(dv_i) \otimes a_j]$, where $\rho^{-1}[(dv_i) \otimes a_j] \in \Lambda(V_{<i} \otimes B^3)$. Hence,
\[
\Lambda(V_{\leq i} \otimes B^2) = \Lambda\{w_{ms}\}_{m \leq i} \otimes \Lambda\{u_{mj}, \tilde{d}u_{mj}\}_{m \leq i},
\]
and this completes the proof. \hfill \square

We can endow the free algebra $\Lambda(V \otimes H)$ with a differential \tilde{d} so that the map
\[
\sigma: (\Lambda(V \otimes H), \tilde{d}) \xrightarrow{\cong} (\Lambda W, \tilde{d})
\]
is an isomorphism of differential graded algebras, and therefore $(\Lambda(V \otimes H), \tilde{d})$ is a model of map(X, Y) called the reduced Brown–Szczarba model. The differential \tilde{d} of this model can be easily described. The case $(\Lambda V, d = d_1 + d_2)$ is proved in [5] Lemma 2.8 and the same proof also works in the general case.

Consider the composition $\theta = \sigma^{-1}p: \Lambda(V \otimes B^2) = \Lambda W \otimes \Lambda(U \otimes dU) \rightarrow \Lambda(V \otimes H)$, where $p: \Lambda W \otimes \Lambda(U \otimes dU) \xrightarrow{\cong} \Lambda W$ is the projection.

Lemma 2.7 ([5]). The morphism θ operates on the generators as follows:
\[
\theta(v \otimes b) = \begin{cases}
 v \otimes b & \text{if } b \in H, \\
 0 & \text{if } b \in A, \\
 (-1)^{|v|+1} \sum_k \sum_{i,j} \varepsilon \theta(v_i^{(1)} \otimes z_j^{(1)}) \cdots \theta(v_i^{(k)} \otimes z_j^{(k)}) & \text{if } b \in \delta A,
\end{cases}
\]
where in the last case $b = \delta a$, $\Delta^{(k-1)}a = \sum_j z_j^{(1)} \otimes \cdots \otimes z_j^{(k)}$, $d_k v = \sum_i v_i^{(1)} \cdots v_i^{(k)}$, and ε is the sign given by Koszul convention. \hfill \square

Lemma 2.8 ([5]). The differential in the free commutative differential graded algebra $(\Lambda(V \otimes H), \tilde{d})$ is given by the formula:
\[
\tilde{d}(v \otimes h) = d_1 v \otimes h + \sum_k \sum_{i,j} \varepsilon \theta(v_i^{(1)} \otimes z_j^{(1)}) \cdots \theta(v_i^{(k)} \otimes z_j^{(k)}),
\]
where $\Delta^{(k-1)}h = \sum_j z_j^{(1)} \otimes \cdots \otimes z_j^{(k)}$ and $d_k v = \sum_i v_i^{(1)} \cdots v_i^{(k)}$, $k \geq 2$. \hfill \square

We can describe a formula for \tilde{d}_j in terms of directed rooted trees. Let $T \in T_j$ be a directed rooted tree with j leaves. We can associate to T two different linear maps $T_V: V \rightarrow V \otimes j$ and $T_H: H \rightarrow H \otimes j$ moving up from the root to the leaves. In the first case we label each internal vertex with r input edges with $S \circ d_r$, where $S: \Lambda^r V \rightarrow V \otimes r$ is the symmetrization map. In the second case we label the root with i, each internal vertex with r input edges with $\Delta^{(r-1)}$, each internal edge with k and each leaf with p, where i, p and k are described in the homotopy retract ([5]),
taking $C = B^X$. Here is an example of the previous labeling defining T_V and T_H respectively, for a concrete tree:

Now we define a linear map

$$\Theta_j : V^\otimes j \times H^\otimes j \to \Lambda^j (V \otimes H),$$

by $\Theta_j(v_1 \otimes \cdots \otimes v_j, h_1 \otimes \cdots \otimes h_j) = \varepsilon(v_1 \otimes h_1) \cdots (v_j \otimes h_j)$, where ε is the sign given by the Koszul convention.

Using the formula described in Lemma 2.8, we can check the following:

Lemma 2.9. The jth part of the differential in the free commutative differential graded algebra $(\Lambda(V \otimes H), \hat{d})$ is given by the formula:

$$\hat{d}_j(v \otimes h) = \sum_{T \in T_j} \frac{1}{|\text{Aut}(T)|} \Theta_j(T_V(v), T_H(h)).$$

If C is a coalgebra model of X and L is an L_∞-model of Y, then we can endow the complex $\text{Hom}(C, L)$ with an L_∞-algebra structure modeling the space of continuous functions from X to Y. More concretely,

Theorem 2.10 ([3, 9]). The complex of linear maps $\text{Hom}(C, L)$ with brackets

$$\ell_1(f) = \ell_1 \circ f + (-1)^{|f|+1} f \circ \delta,$$

$$\ell_k(f_1, \ldots, f_k) = [-, (k), -]_L \circ (f_1 \otimes \cdots \otimes f_k) \circ \Delta^{(k-1)}, \quad k \geq 2,$$

is an L_∞-algebra modeling $\text{map}^\ast(X, Y)$. \qed

Similarly, the complex $\text{Hom}(\overline{C}, L)$, where $\overline{C} = \ker \varepsilon$ is the kernel of the augmentation $\varepsilon : C \to \mathbb{Q}$, with the same brackets replacing Δ with $\overline{\Delta}$, is an L_∞-model for $\text{map}^\ast(X, Y)$, the space of based functions.

3. An Explicit L_∞-Structure on $\text{Hom}(H_\ast(X, \mathbb{Q}), \pi_\ast(\Omega Y) \otimes \mathbb{Q})$

In this section, we describe an explicit L_∞-structure on the complex of linear maps $\text{Hom}(H, L)$, where L is an L_∞-algebra and H is the homology of a coalgebra C with the transferred A_∞-structure.

If C is a cocommutative differential graded coalgebra and $H \cong H(C)$ denotes the homology of C, then the transferred A_∞-coalgebra structure on H, whose higher comultiplications are called higher Massey coproducts (cf. [28, 10.3.12]) is described as follows. We can decompose (C, δ, Δ) as $A \oplus \delta A \oplus H$ with basis $\{a_j\}$, $\{\delta a_j\}$ and $\{h_s\}$. Thus, $\delta = 0$ in H and $\delta : A \to \delta A$ is an isomorphism. This decomposition induces a homotopy retract

$$k \bigcirc (C, \delta) \xrightarrow{p} (H, 0)$$
given by \(p(a_j) = p(\delta a_j) = 0, p(h_x) = h_x; \) \(i(h_x) = h_x; \) \(k(a_j) = k(h_x) = 0 \) and \(k(\delta a_j) = a_j. \) Then by Theorem 2.3(i), we can transfer the cocommutative differential graded coalgebra structure on \(C \) to an \(A_{\infty} \)-coalgebra structure on \(H. \) For example, since \(C \) has no higher order coproducts, the operation \(\Delta'_j \) on \(H \) given by the formula of Theorem 2.3(i) is provided by the trees
\[
\begin{array}{c}
\Delta_2 \\
\downarrow i \\
\Delta_2
\end{array}
\]
Explicitly,
\[
\Delta'_j(h) = (p \otimes p \otimes id) \circ (\Delta_2 \otimes id) \circ (k \otimes p) \circ \Delta_2 \circ i(h) \\
\pm (id \otimes p \otimes p) \circ (id \otimes \Delta_2) \circ (p \otimes k) \circ \Delta_2 \circ i(h) \\
= \sum_j (p \otimes p \otimes id) \circ (\Delta_2 \otimes id) \circ (k \otimes p)(z'_j \otimes z''_j) \\
\pm \sum_j (id \otimes p \otimes p) \circ (id \otimes \Delta_2) \circ (p \otimes k)(z'_j \otimes z''_j),
\]
where \(\Delta_2(h) = \sum_j z'_j \otimes z''_j. \) For a term of the form \(z'_j \otimes z''_j = \delta a \otimes h' \), the \(j \)th term in the above summation is
\[
(p \otimes p \otimes id) \circ (\Delta_2 \otimes id) \circ (k(\delta a) \otimes p(h')) \\
\pm (id \otimes p \otimes p)(id \otimes \Delta_2)(p(\delta a) \otimes k(h')) \\
= p(\delta a \otimes h'),
\]
where \(\Delta_2(a) = \sum_i x'_i \otimes x''_i. \)

Replacing \(C \) by the kernel of the augmentation \(\overline{C} \) and using the decomposition \(\overline{C} = A \oplus \delta A \oplus \overline{H} \), we can proceed similarly as above to obtain a transferred \(A_{\infty} \)-coalgebra structure on \(\overline{H}. \) The following result relates the Quillen minimal model of a differential graded Lie algebra with the above higher Massey coproducts:

Theorem 3.1. The transferred \(A_{\infty} \)-coalgebra structure on \(\overline{H} \) is cocommutative and \(\mathcal{L}(\overline{H}) \) is the Quillen minimal model of \(\mathcal{L}(\overline{C}). \)

Proof. Since the kernel of the augmentation \(\overline{C} \) is cocommutative, the transferred \(A_{\infty} \)-coalgebra structure on \(\overline{H} \) is also cocommutative (cf. [13] Theorem 12). Then we can apply the Quillen functor to diagram 6.1 and we get a quasi-isomorphism \((\mathbb{L}(s^{-1}H), \partial) \to (\mathcal{L}(\overline{C}), \partial). \) The \(k \)th part \(\bar{\partial}_k \) of the differential in \((\mathbb{L}(s^{-1}H), \partial) \) is determined by the higher Massey coproduct \(\overline{\Delta}_k \) in \(\overline{H}. \)
Moreover, by the computations of $\overline{\mathcal{C}}_k$ made above, if we start by decomposing $(\overline{\mathcal{C}}, \delta, \Delta)$ as $A \oplus \delta A \oplus \overline{H}$, where $\overline{H} \cong H(\overline{\mathcal{C}})$ with basis $\{a_j\}$, $\{\delta a_j\}$ and $\{h_s\}$, then we can easily check that the differential on $L(s^{-1}\overline{H})$ is described by

\begin{equation}
\partial s^{-1}h = \frac{1}{2} \sum_j (-1)^{|s_j'|} [\lambda(s_j'), \lambda(s_j'')],
\end{equation}

where $\Delta h = \sum_j s_j' \otimes s_j''$ and

$$
\lambda(h) = s^{-1}h, \quad \lambda(a) = 0, \quad \lambda(\delta a) = \frac{1}{2} \sum_i (-1)^{|s_i'|} [\lambda(x_i'), \lambda(x_i'')],
$$

where $\Delta a = \sum_i x_i' \otimes x_i''$.

Finally, by [3, Theorem 2.1] or [15, Theorem 22.13], $(L(s^{-1}\overline{H}), \partial)$ agrees with the Quillen minimal model of $(L(C), \partial)$.

The following is the main result of this article:

Theorem 3.2. Let C be a finite dimensional cocommutative differential graded coalgebra model of a finite nilpotent CW-complex X, and let L be an L_∞-model of a rational CW-complex of finite type Y.

(i) There is an explicit L_∞-structure in $\text{Hom}(H, L)$, where H denotes the homology of C.

(ii) With the above structure $\mathcal{C}^*(\text{Hom}(H, L)) \cong (\Lambda(V \otimes H), \hat{\partial})$, the reduced Brown–Szczarba model of map(X, Y), where $V = (sL)^\Delta$. Hence $\text{Hom}(H, L)$ is an L_∞-model for the mapping space.

If we replace H by the homology \overline{H} of the kernel of the augmentation of C, then we get the same results for the pointed mapping space map$^*(X, Y)$.

Proof. The homotopy retract \([3.1]\) induces a new homotopy retract

$$
k^* \left((\text{Hom}(C, L), \delta) \xrightarrow{i^*} (\text{Hom}(H, L), \delta) \right),
$$

where both complexes of linear maps have the usual differentials. Since i and p are quasi-isomorphism so are i^* and p^*. Observe that $\text{Hom}(C, L)$ can be endowed with a natural L_∞-algebra structure modeling mapping spaces under suitable conditions \([3, 9]\). Hence we can apply Theorem \([2.3]\) ii) to obtain an L_∞-structure \{$\ell_k^*\}$ on Hom(H, L). This proves part (i).

In order to prove (ii), it is enough to see that equation \([2.1]\) holds, which in this case amounts to check that

$$
(\hat{\partial}_j (v \otimes h); s f_1 \wedge \cdots \wedge s f_j) = (-1)^{t} (v \otimes h; s \ell_j^*(f_1, \ldots, f_j)).
$$

In what follows we work modulo signs and summations where necessary in order to simplify the computations. In view of the isomorphism $V \otimes H \cong (s \text{Hom}(H, L))^\Delta$, and Theorem \([2.3]\) ii), the right hand part of the above equation can be written as:

$$
\langle v \otimes h; s \ell_1^*(f_1, \ldots, f_j) \rangle (h) = \pm \langle v; s \ell_1^*(f_1, \ldots, f_j) (h) \rangle
$$

$$
= \pm \sum_{T \in T_k} \frac{1}{|\text{Aut}(T)|} \langle v; s \ell_T^*(f_1, \ldots, f_j) (h) \rangle
$$

$$
= \sum_{T \in T_j} \langle \frac{1}{|\text{Aut}(T)|} \Theta_j(T_V(v), T_H(h)); s f_1 \wedge \cdots \wedge s f_j \rangle,
$$

where
where we have used in the last equality equation (2.1). The result is now a consequence of Lemma 2.9. The same proof works for the pointed case.

Example 3.3. In this example, we describe explicitly ℓ'_3 in the case $j = 3$. In what follows we have omitted the suspensions in order to simplify the notation. The explicit formula for ℓ'_3 is provided by the trees

\begin{center}
\begin{tikzpicture}

\node (T1) at (0,0) {T_1};
\node (T2) at (3,0) {T_2};
\node (p+) at (-1,1) {p^*};
\node (p+) at (4,1) {p^*};
\node (k) at (1,1) {k^*};
\node (i) at (2,1) {i^*};
\node (i') at (0,1) {i'};
\node (i'') at (2.5,1) {i''};

\draw (p+) -- (T1);\draw (p+) -- (T2);
\draw (k) -- (T1);
\draw (i) -- (T1);
\draw (i') -- (T2);
\draw (i'') -- (T2);
\end{tikzpicture}
\end{center}

Therefore, if f_1, f_2 and f_3 are elements of $\text{Hom}(H, L)$ and h is an element of H, then $\ell'_3(f_1, f_2, f_3)(h)$ is expressed in terms of the maps

$$\ell'_{T_2}(f_1, f_2, f_3)(h) = i^* \ell_3(p^* f_1, p^* f_2, p^* f_3)(h) = \sum_j (-1)^{|i_j|+|f_2|+|f_3|} \ell_2(p^* f_1, f_2, f_3)(h),$$

where $\Delta(h) = \sum_j z'_j \otimes z''_j$, for a term of the form $z'_j \otimes z''_j = \delta a \otimes h'$ the jth term in the above summation equals

$$\sum_i (-1)^{|i|+1} f_3 + |z'_i| \ell_3(f_1 p(x_i), f_2 p(x_i')) [f_1 p(x_i), f_2 p(x_i')] [f_3 h'],$$

where $\Delta(a) = \sum_i x'_i \otimes x''_i$.

We also make explicit the computations to check that

$$(v \otimes h; \ell'_3(f_1, f_2, f_3)) = \pm (d_3(v \otimes h); f_1 \wedge f_2 \wedge f_3).$$

In order to simplify these computations, in what follows we set $\Delta(h) = \delta a \otimes h' \pm h' \otimes \delta a$ and $\Delta(a) = x' \otimes x'' \pm x'' \otimes x'$.

\begin{center}
\begin{tikzpicture}

\end{center}
First we compute $\widehat{d}_3(v \otimes h)$:

$$(T_1)_V(v) = (\mathcal{S} \circ d_2) \otimes \text{id} \circ (\mathcal{S} \circ d_2)(v) = (\mathcal{S} \circ d_2) \otimes \text{id}(u \otimes w \pm w \otimes u)
= (u' \otimes u'' \otimes w) \pm (u'' \otimes u' \otimes w) \pm (w' \otimes w'' \otimes u) \pm (w'' \otimes w' \otimes u).$$

$$(T_2)_V(v) = (\mathcal{S} \circ d_3)(v)
= (p \otimes q \otimes r) \pm (q \otimes p \otimes r) \pm (q \otimes r \otimes p)
\pm (r \otimes p \otimes q) \pm (r \otimes q \otimes p).$$

$$(T_1)_H(h) = (p \otimes p \otimes \text{id}) \circ (\Delta^{(1)} \circ k) \otimes p)(\delta a \otimes h' \pm h' \otimes \delta a)
= (p \otimes p \otimes \text{id})(\Delta^{(1)}(a) \otimes h') = p(x') \otimes p(x'') \otimes h' \pm p(x'') \otimes p(x') \otimes h'.

$$(T_2)_H(h) = (p \otimes p \otimes p) \circ \Delta^{(2)} \circ i(h) = \sum_j p(z_j') \otimes p(z_j'') \otimes p(z_j''').$$

We can now apply Lemma 2.9 or Lemma 2.8 to obtain

$$\widehat{d}_3(v \otimes h) = \frac{1}{|\text{Aut}(T_1)|} \Theta \left((T_1)_V(v), (T_1)_H(h) \right) + \frac{1}{|\text{Aut}(T_2)|} \Theta \left((T_2)_V(v), (T_2)_H(h) \right)
= (u' \otimes p(x'))(v'' \otimes p(x''))(w \otimes h') \pm (u' \otimes p(x''))(u'' \otimes p(x'))(w \otimes h')
\pm (u \otimes h')(w' \otimes p(x'))(w'' \otimes p(x'')) \pm (u \otimes h')(w' \otimes p(x''))(w'' \otimes p(x'))
\pm \sum_j (p \otimes p(z_j'))(q \otimes p(z_j''))(r \otimes p(z_j'''')).$$

Then, on the one hand we have

$$\langle \widehat{d}_3(v \otimes h) ; f_1 \wedge f_2 \wedge f_3 \rangle = \sum_{\sigma \in S_3} \{ \langle u' ; f_{\sigma(1)}(px') \rangle \langle u'' ; f_{\sigma(2)}(px'') \rangle \langle w ; f_{\sigma(3)}(h') \rangle
\pm \langle u' ; f_{\sigma(1)}(px'') \rangle \langle u'' ; f_{\sigma(2)}(px') \rangle \langle w ; f_{\sigma(3)}(h') \rangle
\pm \langle u ; f_{\sigma(1)}(h') \rangle \langle u' ; f_{\sigma(2)}(px') \rangle \langle w'' ; f_{\sigma(3)}(px'') \rangle
\pm \langle u ; f_{\sigma(1)}(h') \rangle \langle u'' ; f_{\sigma(2)}(px'') \rangle \langle w' ; f_{\sigma(3)}(px') \rangle
\pm \sum_j \sum_{\sigma \in S_3} \langle p ; f_{\sigma(1)}(z_j') \rangle \langle q ; f_{\sigma(1)}(p(z_j'')) \rangle \langle r ; f_{\sigma(3)}(p(z_j'''')) \rangle
= (\ddagger) + (\ddagger).$$

And on the other hand

$$\langle v \otimes h ; \ell'_3(f_1, f_2, f_3) \rangle = \pm \frac{1}{|\text{Aut}(T_1)|} \langle v ; \ell_{T_1}(f_1, f_2, f_3)(h) \rangle \pm \frac{1}{|\text{Aut}(T_2)|} \langle v ; \ell_{T_2}(f_1, f_2, f_3)(h) \rangle.$$

As we have seen before,

$$\ell_{T_2}(f_1, f_2, f_3)(h) = \pm \sum_j [f_1 p(z_j'), f_2 p(z_j''), f_3 p(z_j''')],$$
$$\ell_{T_1}(f_1, f_2, f_3)(h) = \pm ([f_1 p(x'), f_2 p(x'')], f_3(h')) \pm ([f_1 p(x''), f_2 p(x')], f_3(h')) \pm ([f_1 p(x'''), f_2 p(x'), f_3(h')].$$
Then, applying (2.11) to the L_∞-algebra L, we have
\[
\frac{1}{|\text{Aut}(T_2)|} \langle v; \ell T_2(f_1, f_2, f_3)(h) \rangle = \pm \frac{1}{3!} \sum_{\sigma \in S_3} \sum_{j} \langle v; [f_{\sigma(1)} p(z_j'), f_{\sigma(2)} p(z_j''), f_{\sigma(3)} p(z_j''')] | L \rangle \\
= \pm \frac{1}{6} \sum_{\sigma \in S_3} \sum_{j} \langle pqr; f_{\sigma(1)} p(z_j') \wedge f_{\sigma(2)} p(z_j'') \wedge f_{\sigma(3)} p(z_j''') \rangle \\
= \langle \dagger \rangle ;
\]
\[
\frac{1}{|\text{Aut}(T_1)|} \langle v; \ell T_1(f_1, f_2, f_3)(h) \rangle \\
= \pm \frac{1}{2} \sum_{\sigma \in S_3} \{ \langle w; [f_{\sigma(1)} px', f_{\sigma(2)} px'', f_{\sigma(3)} h'] \rangle \pm \langle v; [[f_{\sigma(1)} px'', f_{\sigma(2)} px'], f_{\sigma(3)} h']] \rangle \} \\
= \pm \frac{1}{2} \sum_{\sigma \in S_3} \{ \langle uw; [f_{\sigma(1)} px', f_{\sigma(2)} px''] \wedge f_{\sigma(3)} h' \rangle \pm \langle uw; [f_{\sigma(1)} px'', f_{\sigma(2)} px'] \wedge f_{\sigma(3)} h'] \rangle \} \\
= \pm \frac{1}{2} \sum_{\sigma \in S_3} \{ \langle w; [f_{\sigma(1)} px'', f_{\sigma(2)} px'''] \rangle \langle w; f_{\sigma(3)} ph' \rangle \pm \langle w; [f_{\sigma(1)} px'', f_{\sigma(2)} px'''] \rangle \langle w; f_{\sigma(3)} ph'] \rangle \} \\
= \pm \frac{1}{2} \sum_{\sigma \in S_3} \{ \langle u' u''; f_{\sigma(1)} px' \wedge f_{\sigma(2)} px''' \rangle \langle w; f_{\sigma(3)} ph' \rangle \\
\pm \langle u' u''; f_{\sigma(1)} px' \wedge f_{\sigma(2)} px''' \rangle \langle w; f_{\sigma(3)} ph' \rangle \} = \langle \dagger \rangle .
\]

4. Examples and applications

We will work with models of the components of the mapping space, and for a based map $f: X \to Y$, we will denote by $\text{map}_f^\ast(X, Y)$ the component containing f. These L_∞-models can be obtained via the process of perturbation and truncation described in Section 2.4. More explicitly, let $\varphi: \mathcal{L}(\overline{C}) \to L$ be an L_∞-model of $f: X \to Y$. Then, the composite
\[
\psi: \mathcal{L}(\overline{H}) \longrightarrow \mathcal{L}(\overline{C}) \longrightarrow L
\]
is also a model for f. Hence, as explained in [9], the induced degree -1 linear map $\overline{C} \to L$, which we will keep denoting by φ, is a Maurer–Cartan element of the L_∞-algebra $\text{Hom}(\overline{C}, L)$, and the induced map $\overline{H} \to \overline{C} \to L$ is a Maurer–Cartan element in $\text{Hom}(\overline{H}, L)$. Therefore, the perturbed and truncated L_∞-algebras $\text{Hom}(\overline{C}, L)(\varphi)$ and $\text{Hom}(\overline{H}, L)(\varphi)$ are L_∞-models for $\text{map}_f^\ast(X, Y)$.

4.1. Formality, coformality and mapping spaces. We recall that X is formal if $H^\ast(X; \mathbb{Q})$ equipped with the cup product is a differential graded algebra model for the space X or, equivalently, if X has a Quillen minimal model $(\mathcal{L}(V), \partial)$ whose differential is quadratic $\partial = \partial_2$. In the same way Y is coformal if $\pi_\ast(\Omega Y) \otimes \mathbb{Q}$ equipped with the Samelson product is a differential graded Lie algebra model for Y or, equivalently, if Y has a Sullivan minimal model (AV, d) whose differential is quadratic $d = d_2$.
The graded vector space which carries the L_∞-structure modeling the mapping space is of the form
\[
\text{Hom}(H_+(X; \mathbb{Q}), \pi_*(\Omega^* Y) \otimes \mathbb{Q}),
\]
although the source and target spaces X and Y are not necessarily formal and coformal. We will now show examples in which the source and/or the target are not formal and coformal.

Example 4.1. Consider the rational space X with Sullivan model $A = (\Lambda(a, b, c), d)$, where $|a| = |b| = 3$, $|c| = 5$, $da = db = 0$ and $dc = ab$. Note that this space is coformal but not formal as we will see below. Let Y be the rational space with Sullivan model $(\Lambda(x, y, z, t), d)$ where $|x| = 4$, $|y| = 7$, $|z| = 10$, $|t| = 16$ and $dx = dy = 0$, $dz = xy$, $dt = yz$.

We will describe the rational homotopy type of map $\ast(X, Y)$ by studying the L_∞-structure on $\text{Hom}(H_+(X; \mathbb{Q}), \pi_*(\Omega^* Y) \otimes \mathbb{Q})$. Note that this mapping space has only one component, the one which contains the constant maps since the only morphism of differential graded algebras $\varphi : (\Lambda(x, y, z, t), d) \to (\Lambda(a, b, c), d)$ is the zero morphism $\varphi = 0$ by degree reasons.

We have that, as graded Lie algebras,
\[
\pi_*(\Omega^\ast(X, Y)) \otimes \mathbb{Q} \cong \text{Hom}(H_+(X; \mathbb{Q}), \pi_*(\Omega^* Y) \otimes \mathbb{Q}),
\]
since the fact that $\varphi = 0$ implies that the bracket ℓ_1 in the L_∞-structure given by Theorem 3.2 is zero, or equivalently, the differential in the reduced Brown-Szczarba model has no linear term. However, as we will show the mapping space is not coformal since the differential in its Sullivan model is not purely quadratic.

In particular, we will see that $\text{map}^\ast(X, Y)$ splits rationally as
\[
Z \times (S^7 \times S^7 \times S^{13} \times S^{13}),
\]
where Z is the rational space with minimal model
\[
(\Lambda(a_1, b_1, a_2, b_2, a_4, b_4, z_5, x_8, y_8), d),
\]
where $da_1 = \cdots = db_4 = 0$, $dz_5 = a_4 b_2 - b_4 a_2$, $dx_8 = -a_4 a_1 b_4 + a_2^2 b_1$, and $dy_8 = -b_4^2 a_1 + b_4 b_1 a_4$.

This calculation can be made directly from the Haefliger [21] or the Brown-Szczarba model [4] but, in order to illustrate the homotopy transfer techniques described in this paper, we will make use of Theorem 3.2 instead.

First we describe the A_∞-coalgebra structure induced by the higher Massey coproducts on $H_+(X; \mathbb{Q})$. As a graded vector space, \overline{A} is given by
\[
\overline{A} = A^3 \oplus A^5 \oplus A^6 \oplus A^8 \oplus A^{11} = \langle a, b \rangle \oplus \langle c \rangle \oplus \langle ab \rangle \oplus \langle ac, bc \rangle \oplus \langle abc \rangle.
\]
The dual coalgebra $\overline{C} = (\overline{A})^\ast$ is
\[
\overline{C} = C_3 \oplus C_5 \oplus C_6 \oplus C_8 \oplus C_{11} = \langle g, h \rangle \oplus \langle r \rangle \oplus \langle s \rangle \oplus \langle u, v \rangle \oplus \langle w \rangle,
\]
with \(\delta s = r \) and reduced comultiplications

\[
\overline{\Delta} g = \overline{\Delta} h = \overline{\Delta} r = 0,
\]

\[
\overline{\Delta} s = g \otimes h - h \otimes g,
\]

\[
\overline{\Delta} u = g \otimes r - r \otimes g,
\]

\[
\overline{\Delta} v = h \otimes r - r \otimes h,
\]

\[
\overline{\Delta} w = g \otimes v - v \otimes g - h \otimes u + u \otimes h + s \otimes r + r \otimes s.
\]

The decomposition \(\mathcal{C} = S \oplus \delta S \oplus \overline{\mathcal{P}} \), where \(S = \langle s \rangle \), \(\delta S = \langle r \rangle \) and \(\overline{\mathcal{P}} = \langle g, h \rangle \oplus \langle u, v \rangle \oplus \langle w \rangle \) induces the homotopy retract

\[
\kappa \left(\mathcal{C}, \delta \right) \xrightarrow{p} (\overline{\mathcal{P}}, 0),
\]

where \(k(r) = s \). Note that \(X \) is not formal since the transferred structure in \(\overline{\mathcal{P}} \) (which gives rise to the differential on the Quillen minimal model as shown in Theorem 3.1) has non-zero higher order coproducts. Indeed,

\[
\overline{\Delta}_3(u) = (p \otimes p \otimes \text{id}) \circ (\overline{\Delta} \otimes \text{id}) \circ (k \otimes p) \circ \overline{\Delta} \circ i(u)
\]

\[
+ (\text{id} \otimes p \otimes p) \circ (p \otimes \overline{\Delta}) \circ (p \otimes k) \circ \overline{\Delta} \circ i(u)
\]

\[
= -(p \otimes p \otimes \text{id})(\overline{\Delta}(s) \otimes g) + (\text{id} \otimes p \otimes p)(g \otimes \overline{\Delta}(s))
\]

\[
= (g \otimes g \otimes h) - 2(g \otimes h \otimes g) + (h \otimes g \otimes g).
\]

On the other hand, the model for \(Y \) is of the form \(C^* (L) = (\Lambda(x, y, z, t), d) \) for some \(L_\infty \)-algebra \(L \) with \(\langle x, y, z, t \rangle \cong (sL)^4 \), and brackets induced by the differential \(d \) by formula (2.1). We write \(L = \langle x', y', z', t' \rangle \) with \(|x'| = 3 \), \(|y'| = 6 \), \(|z'| = 9 \), \(|t'| = 15 \).

With the above data we can define a homotopy retract

\[
\kappa \cdot \xymatrix{ \text{Hom}(\mathcal{C}, \langle x', y', z', t' \rangle) \ar[r]^{\iota'} & \text{Hom}(\overline{\mathcal{P}}, \langle x', y', z', t' \rangle) }
\]

where \(\text{Hom}(\overline{\mathcal{P}}, \langle x', y', z', t' \rangle) \cong \text{Hom}(H_+(X; \mathbb{Q}), \pi_*(\Omega Y) \otimes \mathbb{Q}) \) as graded vector spaces. Then we have that \(\text{Hom}(H_+(X; \mathbb{Q}), \pi_*(\Omega Y) \otimes \mathbb{Q}) = K_\ast \), with

\[
K_\ast = K_{-8} \oplus K_{-5} \oplus K_{-2} \oplus K_0 \oplus K_1 \oplus K_3 \oplus K_4 \oplus K_6 \oplus K_7 \oplus K_{12},
\]

where \(K_{-8} = \langle f^x_w \rangle \) with \(f^x_w (w) = x' \) and \(f^x_w (\Phi) = 0 \) if \(\Phi \) is any other basis element, and

\[
K_{-5} = \langle f^x_u, f^x_v, f^x_z \rangle, \quad K_{-2} = \langle f^y_u, f^y_v, f^y_z \rangle, \quad K_0 = \langle f^z_u, f^z_v \rangle, \quad K_1 = \langle f^z_u, f^z_v \rangle, \quad K_3 = \langle f^y_g, f^y_h \rangle, \quad K_4 = \langle f^y_w \rangle, \quad K_6 = \langle f^z_g, f^z_h \rangle, \quad K_7 = \langle f^t_u, f^t_v \rangle, \quad K_{12} = \langle f^t_g, f^t_h \rangle.
\]

The higher brackets can be computed using the explicit formula given in Theorem 2.3(ii), but the only Maurer–Cartan element will be the zero element since there is only one component. So, in order to compute the model of the mapping space we must only discard the elements of negative degree. We give some explicit
computations. In order to compute ℓ'_2 we have to consider the tree

$$\ell'_2 \rightarrow p^* \rightarrow \ell_2$$

For the element w we have that

$$\ell'_2(f_g^y, f_v^z)(w) = (\ell_2)_{L_0} \circ ((f_g^y \circ p) \otimes (f_v^z \circ p)) \circ \Delta(w)$$

$$= (\ell_2)_{L_0} \circ ((f_g^y \circ p) \otimes (f_v^z \circ p))(g \otimes v - v \otimes g - h \otimes u + u \otimes h + s \otimes r + r \otimes s)$$

$$= (\ell_2)_{L_0}(y', z') = t',$$

and it is easy to check that $\ell'_2(f_g^y, f_v^z)$ vanishes in the rest of basis elements. Hence $\ell'_2(f_g^y, f_v^z) = f_u^w$. For computing ℓ'_3 we have to use the tree

$$\ell'_2 \rightarrow p^* \rightarrow \ell_2$$

For the element u, we have that

$$\ell'_3(f_g^y, f_h^x, f_h^y)(u) = i'^* \ell_2(k^*(\ell_2(p^*(p^* f_g^y, p^* f_h^x)), p^* f_h^y))(u)$$

$$= (\ell_2)_{L_0} \circ (k^*(\ell_2(p^*(p^* f_g^y, p^* f_h^x)), p^* f_h^y)) \circ \Delta(u)$$

$$= (\ell_2)_{L_0} \circ (k^*(\ell_2(p^*(p^* f_g^y, p^* f_h^x)), p^* f_h^y))(g \otimes r - r \otimes g)$$

$$= (\ell_2)_{L_0}(\ell_2(p^*(p^* f_g^y, p^* f_h^x), k(r), f_g^y(g))$$

$$= -(\ell_2)_{L_0}(\ell_2(p^*(p^* f_g^y, p^* f_h^x), f_h^x(h), y')$$

$$= -(\ell_2)_{L_0}(\ell_2(y', x'), y') = (\ell_2)_{L_0}(z', y') = -t'.$$

Again, it is easy to check that $\ell'_3(f_g^y, f_h^x, f_h^y)$ vanishes in the rest of basis elements.

Hence $\ell'_3(f_g^y, f_h^x, f_h^y) = -f_u^w$.

We can compute the cochain functor of this L_∞-algebra

$$C^*(\text{Hom}(H, L)) = (\Lambda((sL)^g \otimes H), d),$$

and the rational homotopy type of $\text{map}^*(X, Y)$ is modeled by

$$(\Lambda((sL)^g \otimes H)^{>0}, \tilde{d})$$

as described in Section 2.3 which coincides with the reduced Brown–Szczarba model. Explicitly, $((sL)^g \otimes H)^{>0}$ is concentrated in degrees 1, 2, 4, 5, 7, 8, and 13,

$$((sL)^g \otimes H)^1 = \langle x \otimes g, x \otimes h \rangle, \ ((sL)^g \otimes H)^2 = \langle z \otimes u, z \otimes v \rangle,$$
does not implicitly assume the coformality of Y rationally.

In [7, Theorem 4] it was proved that if $\text{cl}(X)$ is the length of the longest non-zero iterated Whitehead bracket in $\pi_\ast X$, and since $\text{cl}(X)$ is the least integer n such that there is a non-trivial Whitehead product of order n on $\pi_\ast X \otimes \mathbb{Q}$.

Thus, we obtain the rational equivalence

$$\text{map}^\ast (X,Y) \simeq_\mathbb{Q} Z \times (S^7 \times S^7 \times S^{13} \times S^{13}).$$

4.2. H-space structures. Another interesting question is to determine whether a mapping space is of the rational homotopy type of an H-space, that is, it has a Sullivan minimal model with zero differential, in terms of the source and target spaces.

Recall that for a space X, the differential length $\text{dl}(X)$ is the least integer n such that there is a non-trivial Whitehead product of order n on $\pi_\ast X \otimes \mathbb{Q}$. This number coincides with the least n for which the n-th part of the differential of the Sullivan minimal model of X is non-trivial; see [1]. If there is not such an n, then $\text{dl}(X) = \infty$. Dually, the bracket length $\text{bl}(X)$ is the length of the shortest non-zero iterated bracket in the differential of the Quillen minimal model of X. If the differential is zero, then $\text{bl}(X) = \infty$.

The rational cone length $\text{cl}(X)$ is the least integer n such that X has the rational homotopy type of an n-cone; see [15, p. 359]. The rational Whitehead length $\text{Wi}(X)$ is the length of the longest non-zero iterated Whitehead bracket in $\pi_{\geq 2}(X) \otimes \mathbb{Q}$. In particular, if $\text{Wi}(X) = 1$, then all Whitehead products vanish.

In [16] Theorem 2, a necessary condition, in terms of the Toomer invariant, is given in order to ensure that the component of the constant map is an H-space. In [7] Theorem 4] it was proved that if $\text{cl}(X) < \text{dl}(Y)$ then all the components $\text{map}^\ast_\gamma (X,Y)$ are rationally H-spaces. A dual result (in the sense of Eckmann-Hilton) was given in [3] Theorem 1.4(2)], by assuming that Y is a coformal space. In this case, if $\text{Wi}(Y) < \text{bl}(X)$ then all the components $\text{map}^\ast_\gamma (X,Y)$ are again rationally H-spaces. In this paper we formulate a variant of this last result that does not implicitly assume the coformality of Y.

Theorem 4.2. If $\text{cl}(X) = 2$ and $\text{Wi}(Y) < \text{bl}(X)$, then all the components of the mapping space $\text{map}^\ast(X,Y)$ are rationally H-spaces.

Proof. Let L be the minimal L_∞-model of Y. Following [14] or [15] Theorem 29.1], and since $\text{cl}(X) = 2$, we may choose C a coalgebra model of X with conilpotence 2, that is, such that the iterated coproducts of length greater or equal than 2 are zero. Consider the L_∞-model $\text{Hom}(H,L)^{(\phi)}$ of the component corresponding to ϕ given in Theorem 3.2. In order to prove that $\text{map}^\ast_\gamma (X,Y)$ is an H-space we will show that all brackets ℓ_k^ϕ for $k \geq 2$ vanish, and thus $C^\ast (\text{Hom}(H,L)^{(\phi)})$ is of the form $(\Delta S, d_1)$,
for which \((\Delta H(S, d_1), 0) \) is a Sullivan minimal model. It is enough to check that \(\ell'_k = 0 \) for all \(k \) since this implies that \(\ell''_k = 0 \) for all \(k \).

Now, all the brackets are represented by summations on trees. But due to the conilpotence condition on \(C \) only the binary ones contribute to the brackets. Then as we have pointed in Remark 3.1, the operations given by these trees are defined in terms of the differential in the minimal model of \(X \). Since the bracket length is the length of the shortest non-zero iterated bracket appearing in the differential of the Quillen minimal model, the corresponding binary tree is expressed by an iterated bracket of this length in \(L \), and hence it must vanish. \(\square \)

We illustrate the last part of the proof by showing that \(\ell'_4 = 0 \). This operation is defined as a sum of maps whose terms are indexed by the following five trees:

Note that the first three trees do not contribute to \(\ell'_4 \) since they are not binary. For example, for the second tree we have that

\[
i^* \ell_3(k^* \ell_2(p^* f_1, p^* f_2), p^* f_3, p^* f_4)(h)
= [-, -, -]_L \circ (k^* \ell_2(p^* f_1, p^* f_2) \otimes p^* f_3 \otimes p^* f_4) \circ \Delta^{(2)}(h)
\]

is zero. Indeed, \(\Delta^{(2)} = (\Delta \otimes \text{id}) \circ \Delta : C \to C \otimes C \otimes C \) is zero since \(\text{cl}(X) = 2 \).

The last two trees do not contribute to \(\ell'_4 \) either, since \(\text{Wi}(Y) < \text{bl}(X) \). Thus, for example, for any \(h \in H \), the fourth tree yields

\[
i^* \ell_2(k^* \ell_2(p^* f_1, p^* f_2), p^* f_3, p^* f_4)(h).
\]

A generic term in this expression is given by

\[
\sum_i [[f_1 p x'_i, f_2 p x''_i], f_3 p y'_i], f_4 p z''_i],
\]

where \(\overline{\Delta}(h) = \sum_i z'_i \otimes z''_i, z'_i = \delta a \) and hence \(k z'_i = a, \overline{\Delta}(a) = \sum_j y'_j \otimes y''_j, y'_j = \delta a' \) and hence \(k y'_j = a' \), and \(\overline{\Delta}(a') = \sum_i x'_i \otimes x''_i \). If \(p x'_i, p x''_i, p y'_j, p z''_i \neq 0 \), then by the recursive formula (3.2) of Proposition 3.1, the term

\[
[[s^{-1} p x'_i, s^{-1} p x''_i], s^{-1} p y'_j, s^{-1} p z''_i]
\]

appears in the expression of \(\partial s^{-1} h \), where \(\partial \) is the differential of the Quillen minimal model of \(X \). Therefore, \(\Delta \) must be zero, since \(\text{Wi}(Y) < \text{bl}(X) \).

Remark 4.3. We can give an alternative proof of Theorem 4.2 by relying on [4, Theorem 1.4(2)], where the same result is obtained, but under the assumptions \(\text{Wi}(Y) < \text{bl}(X) \) and coformality of the target space \(Y \). Indeed, let \(L \) be a minimal \(L_\infty \)-model of \(Y \) and denote by \(L^{\text{cof}} \) the differential graded Lie algebra obtained from \(L \) by discarding all higher brackets except the binary one. The graded Lie algebra \(L^{\text{cof}} \) represents a coformal rational space \(Y^{\text{cof}} \) such that \(\text{Wi}(Y) = \text{Wi}(Y^{\text{cof}}) \).
Let C be a coalgebra model of X such that \overline{C} has conilpotence $\text{cl}(X) = 2$. Then the convolution L_{∞}-algebra $\text{Hom}(\overline{C}, L)$ is isomorphic to the convolution differential graded Lie algebra $\text{Hom}(\overline{C}, L^{\text{cof}})$. Therefore $\text{map}^*(X, Y) \simeq \text{map}^*(X, Y^{\text{cof}})$.

Example 4.4. Let $X = S^2_\alpha \vee S^2_\beta \cup_{\gamma} e^{20}$, let $\alpha, \beta \in \pi_7(X)$ be the elements represented by S^2_α and S^2_β, respectively, and let $\gamma = [\alpha, [\alpha, \beta]] \in \pi_{19}(X)$. Then, the Quillen minimal model for X is $(L(W), \partial)$, where $W = \langle a, b, c \rangle$, $|a| = |b| = 6$ and the only non-zero differential is $\partial c = [a, [a, b]]$. Hence, it is clear that $\text{bl}(X) = 3$. Moreover, $\text{cl}(X) = 2$ since $W = W_0 \oplus W_1$ with $\partial W_0 = 0$ and $\partial W_1 \subseteq L(W_0)$; see, for example, [15, Theorem 29.1].

Let Y be the space with Sullivan minimal model of the form $(\Lambda(u, v, w, d), |u| = 2, |v| = 4, |w| = 7, du = dv = 0, dw = u^4 + v^2)$.

Therefore, Y is a non-coformal space with $\text{dl}(Y) = \text{Wl}(Y) = 2$. Moreover, there are non-null-homotopic maps from X to Y. For example, $\phi : AV \to C^*(L(a, b, c)) = \Lambda_s L(a, b, c)^2$, defined by $\phi(u) = \phi(v) = 0$ and $\phi(w) = sa^2$.

Then, by Theorem [14, Theorem 2] every component of the mapping space $\text{map}^*(X, Y)$ is rationally an H-space. This example provides a situation where we cannot apply neither [14, Theorem 1], since $\text{cl}(X) = \text{dl}(Y)$, nor [5, Theorem 1.4(2)], since Y is not coformal. Also [10, Theorem 2] does not provide any information for the component of a non-constant map.

References

Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, AP. 59, 29080 Málaga, Spain
E-mail address: ubuijs@uma.es

Radboud Universiteit Nijmegen, Institute for Mathematics, Astrophysics, and Particle Physics, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
E-mail address: j.gutierrez@math.ru.nl