The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/157996

Please be advised that this information was generated on 2019-09-01 and may be subject to change.
Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in \(pp \) collisions at \(\sqrt{s} = 8 \) TeV with the ATLAS detector

ATLAS Collaboration

Abstract

This article reports on a search for dark matter pair production in association with a Higgs boson decaying to a pair of bottom quarks, using data from 20.3 fb\(^{-1}\) of \(pp \) collisions at a center-of-mass energy of 8 TeV collected by the ATLAS detector at the LHC. The decay of the Higgs boson is reconstructed as a high-momentum \(b\bar{b} \) system with either a pair of small-radius jets, or a single large-radius jet with substructure. The observed data are found to be consistent with the expected Standard Model backgrounds. Model-independent upper limits are placed on the visible cross-sections for events with a Higgs boson decaying into \(b\bar{b} \) and large missing transverse momentum with thresholds ranging from 150 GeV to 400 GeV. Results are interpreted using a simplified model with a \(Z' \) gauge boson decaying into different Higgs bosons predicted in a two-Higgs-doublet model, of which the heavy pseudoscalar Higgs decays into a pair of dark matter particles. Exclusion limits are also presented for the mass scales of various effective field theory operators that describe the interaction between dark matter particles and the Higgs boson.

© 2016 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
1 Introduction

Although dark matter (DM) contributes a large component of the mass-energy of the universe, its properties and interactions with known particles remain unknown [1]. In light of this unsolved puzzle, searches for DM pair-produced at collider experiments provide important information complementary to direct and indirect detection experiments in order to determine whether a signal observed experimentally indeed stems from DM [2].

The leading hypothesis suggests that most of the DM is in the form of stable, electrically neutral, massive particles, i.e., Weakly Interacting Massive Particles [3]. This scenario gives rise to a potential signature at a proton-proton collider where one or more Standard Model (SM) particles, “X”, is produced and detected, recoiling against missing transverse momentum (with magnitude E_T^{miss}) associated with the non-interacting DM. Recent searches at the Large Hadron Collider (LHC) consider “X” to be a hadronic jet [4, 5], heavy-flavor jet [6, 7], photon [8, 9], or W/Z boson [10, 11]. The discovery of the Higgs boson h [12, 13] provides a new opportunity to search for DM production via the $h + E_T^{\text{miss}}$ signature [14–16]. In contrast to most of the aforementioned probes, the visible Higgs boson is unlikely to have been radiated from an initial-state quark or gluon, and the signal would give insight into the structure of DM coupling to SM particles.

Two approaches are commonly used to model generic processes yielding a final state with a particle X recoiling against a system of non-interacting particles. One option is to use non-renormalizable operators in an effective field theory (EFT) framework [17], where particles that mediate the interactions between DM and SM particles are too heavy to be produced directly in the experiment and are described by contact operators. Alternatively, simplified models that are characterized by a minimal number of renormalizable interactions, and hence explicitly include the particles at higher masses, can be used [18]. The EFT approach is more model-independent, but is not valid when a typical momentum transfer of the process approaches the energy scale of the contact operators that describe the interaction. Simplified models do not suffer from these concerns, but include more assumptions by design and are therefore less generic. The two approaches are thus complementary and both are included in this analysis.

2 Signal models and analysis strategy

Using the EFT approach, a set of models described by effective operators at different dimensions is considered, as shown in Figure 1(a). Following the notation in Ref. [14], the effective operators in ascending order of their dimensions are:

1. $\lambda |\chi|^2 |H|^2$ (Scalar DM, dimension-4) (1)
2. $\frac{1}{\Lambda} \bar{\chi} i\gamma_5 \chi |H|^2$ (Fermionic DM, dimension-5) (2)
3. $\frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \chi H^\dagger D_\mu H$ (Scalar DM, dimension-6) (3)
4. $\frac{1}{\Lambda^4} \bar{\chi} \gamma^\mu \gamma^\nu \chi B_{\mu\nu} H^\dagger D^\nu H$ (Fermionic DM, dimension-8) (4)
Here χ is the DM particle, which is a gauge singlet under $SU(3)_C \times SU(2)_L \times U(1)_Y$ and may be a scalar or a fermion as specified, $D_\mu(\nu)$ is the covariant derivative for the full gauge group, and $B_{\mu\nu}$ is the $U(1)_Y$ field strength tensor. The parameters of these models are the DM particle mass m_χ, and the coupling parameter λ or the suppression scale Λ of the heavy mediator that is not directly produced but described by a contact operator in the EFT framework.

A simplified model is also considered which contains a Z' gauge boson and two Higgs fields resulting in five Higgs bosons (often called the two-Higgs-doublet model, 2HDM) [15], where the DM particle is coupled to the heavy pseudoscalar Higgs boson A, as shown in Figure 1(b). In this model (Z'-2HDM), the Z' boson is produced resonantly and decays into h and A in a Type 2 two-Higgs-doublet model [19], where h is the scalar corresponding to the observed Higgs boson, and A has a large branching ratio to DM. The Z' boson can also decay to a Higgs boson and a Z boson, which in turn decays to a pair of neutrinos, thus mimicking the expected signature. While the Ah decay mode is dominant for most of the parameter space probed in this analysis, the Zh decay mode is an important source of signal events at large $\tan\beta$ (the ratio of the vacuum expectation values for the two-Higgs-doublets). Both sources of a Higgs boson plus missing transverse momentum are included for the analysis of this model. The results presented are for the alignment limit, in which the scalar Higgs mixing angle α is related to β by $\alpha = \beta - \pi/2$. Only regions of parameter space consistent with precision electroweak constraints on the ρ_0 parameter [20] and with constraints from direct searches for dijet resonances [21–23] are considered. The Z' boson does not couple to leptons in this model, avoiding potentially stringent constraints from dilepton searches. As the A boson is produced on-shell and decays into DM, the mass of the DM particle does not affect the kinematic properties or cross-section of the signal process when it is below half of the A boson mass. Hence, the Z'-2HDM model is interpreted in the parameter spaces of Z' mass ($m_{Z'}$), A mass (m_A), and $\tan\beta$, with the Z' gauge coupling fixed to its 95% confidence level (CL) upper limit per Z' mass and $\tan\beta$ value from the aforementioned electroweak and dijet search constraints.

![Feynman diagrams](image.png)

Figure 1: Feynman diagrams for (a) the EFT and (b) the Z'-2HDM models. The χ is the DM particle. The h is the 125 GeV observed Higgs boson. In (a), the left dark circle denotes the coupling from $q\bar{q}$ or gg to an electroweak boson (h, Z, γ) that mediates the DM+h production, and the right dark circle represents the contact operator in the EFT framework between DM, the Higgs boson, and the mediator. In (b), the A is the heavy pseudoscalar in the two-Higgs-doublet model.

This article describes the search for DM pair production in association with a Higgs boson using the full 2012 ATLAS data set corresponding to 20.3 fb$^{-1}$ of pp collisions with center-of-mass energy $\sqrt{s} = 8$ TeV. The final state is a Higgs boson decaying to a pair of bottom quarks and large missing transverse momentum. Two Higgs boson reconstruction techniques are presented that are complementary in their acceptance. The first, “resolved” technique reconstructs Higgs boson candidates from pairs of nearby anti-k_t jets [24] each reconstructed with radius parameter $R = 0.4$ and each identified as having a b-
hadron within the jet using a multivariate b-tagging algorithm [25]. This resolved technique offers good efficiency over a wide kinematic range with the Higgs boson transverse momentum p_T between 150 and 450 GeV. However, for a Higgs boson with $p_T \gtrsim 450$ GeV, the high momentum (“boost”) of the Higgs boson causes the two jet cones containing the b- and \bar{b}-quarks from the Higgs boson decay to significantly overlap, leading to a decrease in the reconstruction efficiency of the two b-tagged anti-k_t jets with $R = 0.4$. This motivates the use of the same “boosted” Higgs boson reconstruction technique in Ref. [26]. The acceptance for these higher-p_T Higgs bosons is maintained through the use of the internal structure of jets, known as “jet substructure” techniques, and the subjet b-tagging algorithms. The Higgs boson candidate is reconstructed as a single anti-k_t $R = 1.0$ jet, trimmed [27] with subjet radius parameter $R_{\text{sub}} = 0.3$ and subjet transverse momentum fraction $p_{T_i}/p_T^{\text{jet}} < 0.05$, where p_{T_i} is the transverse momentum of the i-th subjet and p_T^{jet} is the p_T of the untrimmed jet [28, 29]. This $R = 1.0$ jet must be associated with two b-tagged anti-k_t $R = 0.3$ jets reconstructed only from charged particle tracks (track-jets) [30]. The use of track-jets with a smaller R parameter allows the decay products of Higgs bosons with higher p_T to be reconstructed.

The interplay between the two sets of models and analysis methods has been studied. In the Z'-2HDM simplified model, the resonant production and decay of the Z' boson leads to clear peaks in the E_T^{miss} spectra, the positions of which depend on the Z' and A mass values. In most of the parameter space probed with Z' mass between 600 and 1400 GeV, and A mass between 300 and 800 GeV (where kinematically allowed), a higher signal sensitivity is achieved in the resolved channel. On the other hand, the EFT models display very different kinematics with wide tails in high E_T^{miss} extending beyond 450 GeV, warranting a “boosted” reconstruction of the Higgs boson. Given the clear advantage of one analysis channel over the other for either set of models, and for simplicity, the results for the Z'-2HDM model are given using the resolved analysis, and the EFT models are interpreted using the boosted analysis.

The final signal regions are defined with four increasing thresholds for the missing transverse momentum in the resolved channel, and two thresholds in the boosted channel. To search for the possible presence of non-SM signals, the total numbers of observed events after applying all selection criteria are compared with the total number of expected SM events taking into account their respective uncertainties in both channels. Unlike previous ATLAS searches for resonant production with a similar final state [31, 32], this analysis explores different theoretical models, focuses on the fully hadronic channel with data-driven methods to estimate the main backgrounds, and most importantly, applies selections extending to large E_T^{miss} utilizing “resolved” as well as “boosted” techniques. The approach for extracting limits in this analysis is also more suited for the models considered here, and reduces the theoretical uncertainty from modeling and fitting of the signal shape.

3 ATLAS detector

ATLAS is a multi-purpose particle physics experiment [33] at the LHC. The detector1 consists of inner tracking devices surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner tracking system provides charged-particle tracking and vertex reconstruction in the pseudorapidity region of $|\eta| < 2.5$. It consists of a silicon pixel detector, a silicon

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ is the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ as $\eta = - \ln[\tan(\theta/2)]$.

microstrip tracker, and a transition radiation tracker. The system is surrounded by a solenoid that produces a 2 T axial magnetic field. The central calorimeter system consists of a liquid-argon electromagnetic sampling calorimeter with high granularity and a steel/scintillator-tile calorimeter providing hadronic energy measurements in the central pseudorapidity range (|η| < 1.7). The endcap and forward regions are instrumented with liquid-argon calorimeters for electromagnetic and hadronic energy measurements up to |η| = 4.9. The muon spectrometer is operated in a magnetic field provided by air-core superconducting toroids and includes tracking chambers for precise muon momentum measurements up to |η| = 2.7 and trigger chambers covering the range of |η| < 2.4. A three-level trigger system is used to select interesting events [34]. The Level-1 (L1) trigger reduces the event rate to below 75 kHz using hardware-based trigger algorithms acting on a subset of detector information. Two levels of software-based triggers, referred to collectively as the High-Level Trigger (HLT), further reduce the event rate to approximately 400 Hz using information from the entire detector.

4 Data and simulation samples

The data sample used in this analysis, after data quality requirements are applied, corresponds to an integrated luminosity of 20.3 fb$^{-1}$. The primary data sample is selected using an E_T^{miss} trigger. The L1 E_T^{miss} trigger threshold is 60 GeV, and the HLT E_T^{miss} trigger threshold is 80 GeV. The trigger efficiency is above 98% for events passing the full offline selection across the full E_T^{miss} range considered in this analysis. Muon triggers with transverse momentum thresholds at the HLT of 24 GeV for muons with surrounding inner detector tracking activity below a predefined level, i.e., isolated muons [35], and 36 GeV for muons with no isolation requirement, are used to select the muon data used for the estimation and validation of backgrounds in the control regions. A photon trigger with a transverse momentum threshold of 120 GeV at the HLT is used to select events with a high p_T prompt photon for data-driven $Z(\rightarrow \nu \bar{\nu}) + \text{jets}$ background estimation (Section 7.1).

Monte Carlo (MC) simulated event samples are used to model both the signal and backgrounds. Effects of multiple proton–proton interactions (pileup) as a function of the instantaneous luminosity are taken into account by overlaying simulated minimum-bias events generated with Pythia8 [36] onto the hard-scattering process, such that the distribution of the average number of interactions per bunch crossing in the MC simulated samples matches that in the data. The simulated samples are processed either with a full ATLAS detector simulation [37] based on the Geant4 program [38], or a fast simulation of the response of the electromagnetic and hadronic calorimeters [39]. The results based on fast simulations are validated against fully simulated samples and the difference is found to be negligible. The simulated samples are further processed with a simulation of the trigger system. Both the simulated events and the data are reconstructed and analyzed with the same analysis chain, using the same event selection criteria.

Table 1 summarizes the various event generators and parton distribution function (PDF) sets, as well as parton shower and hadronization software used for the analyses presented in this article.

Signal samples are generated with MadGraph [40], interfaced to Pythia8 using the AU2 parameter settings (tune) [41] for parton showering, hadronization, and underlying event simulation. The Higgs boson mass is fixed to 125 GeV. The MSTW2008LO leading-order (LO) PDF set [42] is used for the Z'-2HDM model, while the CTEQ6L1 PDF set [43] is used for the EFT models. For the Z'-2HDM model, samples are produced with Z' mass values between 600 and 1400 GeV, A mass values between 300 and 800 GeV (where kinematically allowed), and DM mass values between 10 and 200 GeV but always less than half the A mass. In addition, $Z' \rightarrow Zh$ samples are produced for Z' mass values between 600 and 1400 GeV.
Table 1: Summary of MC event generators, PDF sets, and parton shower and hadronization models utilized in the analyses for both the signal and background processes.

<table>
<thead>
<tr>
<th>Model / Process</th>
<th>Generator</th>
<th>PDF</th>
<th>Parton Shower / Hadronization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z′-2HDM</td>
<td>MadGraph v1.5.1</td>
<td>MSTW2008LO</td>
<td>PYTHIA v8.175 with AU2 tune</td>
</tr>
<tr>
<td>EFT models</td>
<td>MadGraph v1.5.1</td>
<td>CTEQ6L1</td>
<td>PYTHIA v8.175 with AU2 tune</td>
</tr>
<tr>
<td>W/Z/γ+jets</td>
<td>SHERPA v1.4.3</td>
<td>CT10</td>
<td>SHERPA v1.4.3</td>
</tr>
<tr>
<td>t̄t</td>
<td>POWHEG-BOX v1.0 r2129</td>
<td>CT10</td>
<td>PYTHIA v6.427 with P2011C tune</td>
</tr>
<tr>
<td>Single top (s-ch., Wt)</td>
<td>MC@NLO v3.31</td>
<td>CT10</td>
<td>JIMMY v4.31 with AUET2 tune</td>
</tr>
<tr>
<td>Single top (t-ch.)</td>
<td>AcesMC v3.8</td>
<td>CTEQ6L1</td>
<td>PYTHIA v6.426 with AUET2B tune</td>
</tr>
<tr>
<td>WW/WZ/ZZ (resolved)</td>
<td>Herwig v6.520</td>
<td>CTEQ6L1</td>
<td>JIMMY v4.31 with AUET2 tune</td>
</tr>
<tr>
<td>WW/WZ/ZZ (boosted)</td>
<td>POWHEG r2330.3</td>
<td>CTEQ6L1</td>
<td>PYTHIA v8.175 with AU2 tune</td>
</tr>
<tr>
<td>q̅q → Vh</td>
<td>PYTHIA v8.175</td>
<td>CTEQ6L1</td>
<td>PYTHIA v8.175 with AU2 tune</td>
</tr>
<tr>
<td>gg → Zh</td>
<td>POWHEG r2330.3</td>
<td>CT10</td>
<td>PYTHIA v8.175 with AU2 tune</td>
</tr>
<tr>
<td>multijet</td>
<td>PYTHIA v8.160</td>
<td>CT10</td>
<td>PYTHIA v8.160 with AU2 tune</td>
</tr>
</tbody>
</table>

For the EFT models, samples are produced for scalar and fermionic DM particle masses ranging from 1 to 1000 GeV for both hh and hZ coupling to DM.

A variety of samples are used in the background determination. The dominant Z(→ ν̅ν)+jets background is determined from data (Section 7.1), and samples simulated with SHERPA [44] for Z(→ ν̅ν)+jets, Z(→ ℓℓ)+jets, and γ+jets are also used in the calculation process. The W(→ ℓν)+jets processes are generated with SHERPA and are normalized using data as described in Section 7.2. All the SHERPA samples are generated using the CT10 PDF set [45]. The tt̄ background is generated with POWHEG-BOX [46] interfaced with PYTHIA and the PERUGIA 2011C tune [47]. Single top quark production in the s- and Wt-channels are produced with MC@NLO [48–50] interfaced with JIMMY [51], while the t-channel process is produced with AcesMC [52] interfaced with PYTHIA. The Diagram Removal scheme [53] is used in the single top quark production in the Wt-channel to remove potential overlap with tt̄ production due to interference of the two processes. A top quark mass of 172.5 GeV is used consistently. The cross-sections of the tt̄ and single-top-quark processes are determined at next-to-next-to-leading order (NNLO) in QCD including resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms with Top++. The normalization and uncertainties are calculated using the PDF4LHC prescription [61] with the MSTW2008 68% CL NNLO [42, 62], CT10 NNLO [45, 63], and NNPDF2.3 [64] PDF sets. Additional kinematic-dependent corrections to the tt̄ sample and normalizations determined from data are described in Section 7.3. Diboson (ZZ, WW, and WZ) production is simulated with two different generators, both Herwig [65] interfaced to JIMMY and POWHEG interfaced to PYTHIA. The differences in event yield and kinematic distributions between the two simulated samples are found to be minimal in the analyses. The diboson samples are normalized to calculations at next-to-leading order (NLO) in QCD performed using MCFM [66]. The multijet background is estimated from data (Section 7.2), with samples simulated with PYTHIA used for validation in the control regions. For SM production of Zh and Wh, PYTHIA is used with CTEQ6L1 PDFs, and the samples were normalized to total cross-sections calculated at NLO [67], and NNLO [68] in QCD, respectively, with NLO electroweak corrections [69] in both cases.
5 Object reconstruction

This analysis requires the reconstruction of muons, electrons, photons, jets, and missing transverse momentum. Object reconstruction efficiencies in simulated events are corrected to reproduce the performance measured in data, and their systematic uncertainties are detailed in Section 8.

Muon candidates are identified from tracks that are well reconstructed inside both the inner detector and the muon spectrometer [35]. They must fulfill $p_T > 6$ GeV and $|\eta| < 2.5$ requirements. Furthermore, they are required to satisfy the “tight” muon identification quality criteria [35]. To reject cosmic-ray muons, muon candidates are required to be consistent with production at the primary vertex, defined as the vertex with the highest $\Sigma(p_T^{\text{track}})^2$, where p_T^{track} refers to the transverse momentum of each track. In the muon control region or during the overlap removal procedure of the boosted channel, muon candidates are required to be isolated to reduce the multijet background. The scalar sum of the transverse momenta of tracks with $p_T > 1$ GeV within a cone of $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} = 0.3$ around the muon track excluding the muon (tracking isolation), as well as the transverse energy measured in the calorimeter in a cone of $\Delta R = 0.3$ (excluding the energy lost by the muon itself) around the muon track (calorimeter isolation), is required to be less than 12% of the muon p_T.

Electron candidates are identified as tracks that are matched to a cluster meeting shower-shape criteria in the electromagnetic calorimeter. Each electron candidate should have $p_T > 7$ GeV and is within $|\eta| < 2.47$. To suppress contamination from multijet background, electron candidates must satisfy the “medium++” electron shower shape and track selection criteria, based on Ref. [70] and modified to accommodate the increased pileup in 8 TeV data. Isolated electrons are used in the boosted channel during the overlap removal procedure. These isolated electrons must meet tracking and calorimeter isolation requirements. The scalar sum of the transverse momenta of tracks with $p_T > 1$ GeV within a cone of $\Delta R = 0.3$ around the electron track excluding the electron is required to be less than 16% of the electron p_T. The transverse energy measured in the calorimeter in a cone of $\Delta R = 0.3$ (excluding the energy lost by the electron itself) around the electron track is required to be less than 18% of the electron p_T.

Photon candidates must satisfy the tight quality criteria with $p_T > 10$ GeV and $|\eta| < 2.37$ [71]. Additionally, the isolated photons used in the $Z(\nu\bar{\nu})$+jets background estimation must have $p_T > 125$ GeV, and the sum of the energy deposit in the topological calorimeter clusters within a radius $R = 0.4$ with respect to the photon direction, but excluding the photon, must be less than 5 GeV.

Jets are reconstructed [72] using the anti-k_t jet clustering algorithm from topological clusters of calorimeter cells that are locally calibrated to the hadronic energy scale [73]. Small-radius (small-R; radius parameter $R = 0.4$) jets as well as large-radius (large-R; $R = 1.0$) jets are used. The effects of pileup on small-R jet energies are accounted for by a correction based on jet area [74]. The jet trimming algorithm [27] is applied to the reconstruction of large-R jets to minimize the impact of energy depositions due to pileup and the underlying event. This algorithm reconstructs subjets within the large-R jet using the k_t algorithm [75] with radius parameter $R_{\text{sub}} = 0.3$, then removes any subjet with p_T less than 5% of the large-R jet p_T. The energies of all jets and the masses of the large-R jets are then calibrated to their values at particle level using p_T- and η-dependent factors determined from simulation; small-R jets are further calibrated using in situ measurements [76]. Small-R jets with $p_T < 50$ GeV and $|\eta| < 2.4$ are required to have at least 50% of the p_T sum of tracks matched to the jet belonging to tracks originating from the primary vertex (jet vertex fraction) to suppress the effects of pileup interactions [77]. Small-R jets are required to have at least 5 tracks with $p_T > 0.4$ GeV are associated with a given vertex.

2 Proton–proton collision vertices are reconstructed requiring that at least five tracks with $p_T > 0.4$ GeV are associated with a given vertex.
jets are required to satisfy either $p_T > 25 \text{ GeV}$ and $|\eta| < 2.4$ or $p_T > 30 \text{ GeV}$ and $2.4 < |\eta| < 4.5$, while large-R jets are required to satisfy $p_T > 300 \text{ GeV}$ and $|\eta| < 2.0$.

Track-jets are built from tracks using the anti-k_T algorithm with $R = 0.3$. Tracks are required to satisfy $p_T > 0.5 \text{ GeV}$ and $|\eta| < 2.5$, the transverse and longitudinal impact parameters with respect to the primary vertex below 1.5 mm, and a set of hit criteria to ensure that those tracks are consistent with originating from the primary vertex, thereby reducing the effects of pileup. Track-jets are matched to large-R jets using a process called “ghost association” \[74, 78\]. Track-jets with $p_T > 20 \text{ GeV}$ and $|\eta| < 2.5$ are kept for further analysis.

Small-R jets and track-jets containing b-hadrons are identified (“b-tagged”) using the properties of the tracks associated with them, the most important being the impact parameter of each track (defined as the track’s distance of closest approach to the primary vertex in the transverse plane), as well as the presence and properties of displaced vertices. The “MV1” b-tagging algorithm \[25\] used in this analysis combines the above information using a neural network and is configured to achieve an average efficiency of 60% for tagging small-R jets with b-quarks \[3\], and has misidentification probabilities of ~15% for charm-quark jets and less than 1% for light-flavor jets, as determined in an MC sample of $t\bar{t}$ events. For track-jets, the corresponding numbers are 74% for b-quark jets, 15% for charm-quark jets, and < 1.5% for light-flavor jets. The b-tagging algorithm is trained on MC simulations and its efficiency is scaled to match data based on studies of candidate $t\bar{t}$ and multijet events \[25, 26\]. For charm- and light-flavor track-jets, the efficiency calibrations for the small-R jets are used, with additional uncertainties to account for possible differences in b-tagging performance between small-R jets and track-jets. The flavor-tagging efficiency is only calibrated up to p_T of 300 GeV for b- and c-tagged small-R jets, 750 GeV for light-flavor-tagged small-R jets, and 250 GeV for b-tagged track-jets. Beyond the maximum p_T, additional uncertainties on the b-tagging efficiency are extracted from the last calibrated p_T bin with additional uncertainties based on studies of MC-simulated events with high-p_T jets.

Since each type of object reconstruction proceeds independently, the same calorimeter cells or tracks might be used for multiple physics objects. This can lead to double counting of energy and the dual-usage must be resolved. In addition, two separate but close-by objects can also potentially introduce bias in the reconstruction process. To address the problem of duplication while preserving heavy-flavour jets with semi-leptonic decays or the problem where close-by objects bias each other’s position or energy reconstruction, the following sequential overlap removal procedures are implemented separately for the resolved and the boosted channel. In the resolved channel, an object is considered to be an electron (photon) and a small-R jet is discarded if the electron (photon) candidate and the small-R jet that is not b-tagged overlap within $\Delta R < 0.2$. If an electron (photon) candidate and any small-R jet have angular separation in the range of $0.2 < \Delta R < 0.4$, or if an electron (photon) candidate and a b-tagged small-R jet overlap within $\Delta R < 0.2$ of each other, then the electron (photon) is discarded and the object is considered a small-R jet. If a muon candidate and a small-R jet overlap within $\Delta R < 0.4$, then the muon is discarded and the small-R jet is retained. In the boosted channel, an object is considered to be an electron candidate and a small-R jet is removed if the electron that is isolated and the small-R jet overlap within $\Delta R < 0.2$. Electron or muon candidates will be removed if they and any small-R jet overlap within $\Delta R < 0.4$. Furthermore, large-R jets are eliminated if an isolated photon is found within $\Delta R < 1.0$ of the

\[3\] In simulation, a jet is labeled as a b-quark jet if a b-quark (after final-state radiation) with transverse momentum above 5 GeV is identified within a cone of $\Delta R = 0.3$ around the jet axis. If no b-quark is identified, the jet is labeled as a charm-quark jet if a charm-quark is identified with the same criteria. If no charm quark is identified, the jet is labeled as a τ-jet if a τ-lepton is identified with the same criteria. Otherwise the jet is labeled as a light-flavor jet.
large-\(R\) jet. Track-jets are discarded if an isolated electron or an isolated muon is found within \(\Delta R < 0.1\) of the track-jet.

The missing transverse momentum \(E_T^{\text{miss}}\) is defined as the negative vector sum of the transverse momenta of jets, electrons, photons, and topological calorimeter clusters not assigned to any reconstructed objects [79]. The transverse momenta of reconstructed muons are included, with the energy deposited by these muons in the calorimeters properly removed to avoid double-counting. In addition, a track-based missing transverse momentum vector \(\vec{p}_T^{\text{miss}}\) is calculated as the negative vector sum of the transverse momenta of tracks with \(|\eta| < 2.4\) and the transverse and longitudinal impact parameters with respect to the primary vertex below 1.5 mm.

6 Event selection

A set of common preselection criteria based on objects described in Section 5 is used for events to be considered for the resolved and boosted channels. An initial \(E_T^{\text{miss}} + \text{jets}\) sample is obtained by requiring an event to have passed the 80 GeV HLT \(E_T^{\text{miss}}\) trigger, to have an offline \(E_T^{\text{miss}} > 100\) GeV for the resolved channel (\(E_T^{\text{miss}} > 200\) GeV for the boosted channel) and to have at least one small-\(R\) jet. No electron, muon and photon candidates should be present in the event. Events must have at least one identified \(p p\) collision vertex and be produced in stable beam conditions with all relevant subdetectors functioning properly. To suppress contamination from multijet events, the smallest azimuthal angle between \(E_T^{\text{miss}}\) and small-\(R\) jets is required to be greater than 1.0.

Table 2: The event selection criteria for signal regions in the resolved and boosted channels. The symbol \(j\) represents an anti-\(k\) jet (\(R = 0.4\), \(p_T^k\) a track-jet (\(R = 0.3\)), \(J\) a trimmed anti-\(k\) jet (\(R = 1.0\), \(b\) a \(b\)-tagged anti-\(k\) jet (\(R = 0.4\), and \(b^k\) a \(b\)-tagged anti-\(k\) track-jet (\(R = 0.3\)). Each \(b\)-tagged track-jet is matched by ghost association to the leading-\(p_T\) large-\(R\) jet. The subscript index \(i\) of each jet collection means the \(i\)-th jet in descending order of the transverse momentum, of which \(j_i\) are inclusive and may or may not be \(b\)-tagged. The variable \(\Delta\phi_{\text{min}}(E_T^{\text{miss}}, j_i)\) refers to the smallest \(\phi\) angular separation between the \(E_T^{\text{miss}}\) and any anti-\(k\) jet (\(R = 0.4\)) in the event.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Resolved</th>
<th>Boosted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta\phi_{\text{min}}(E_T^{\text{miss}}, j))</td>
<td>> 1.0</td>
<td>> 1.0</td>
</tr>
<tr>
<td>Jet multiplicity</td>
<td>(2 \leq n_j \leq 3)</td>
<td>(n_j \geq 1)</td>
</tr>
<tr>
<td>(n_{\text{miss}} \geq 2)</td>
<td>(n_{\text{miss}} \geq 2)</td>
<td></td>
</tr>
<tr>
<td>(b)-jet (60% eff.) (p_T)</td>
<td>(p_T^{b_j} > 100) GeV</td>
<td>-</td>
</tr>
<tr>
<td>(b)-jet multiplicity</td>
<td>(n_{b_j} \geq 2) (60% eff.)</td>
<td>(n_{\text{miss}} = 2) (70% eff.)</td>
</tr>
<tr>
<td>Jet (p_T)</td>
<td>(p_T^{b_j} > 60) GeV when (n_j = 3)</td>
<td>(p_T^{b_j} > 350) GeV when (n_j = 3)</td>
</tr>
<tr>
<td>(\Delta\phi(E_T^{\text{miss}}, p_T^{\text{miss}}))</td>
<td>-</td>
<td>(< \pi/2)</td>
</tr>
<tr>
<td>Dijet separation</td>
<td>(\Delta R(j_1, j_2) < 1.5)</td>
<td>-</td>
</tr>
<tr>
<td>Invariant mass</td>
<td>(90) GeV (\leq m_{b_jb_j} \leq 150) GeV</td>
<td>(90) GeV (\leq m_{j_j} \leq 150) GeV</td>
</tr>
<tr>
<td>(E_T^{\text{miss}})</td>
<td>(> 150, 200, 300,) or 400 GeV</td>
<td>(> 300) or 400 GeV</td>
</tr>
</tbody>
</table>

For the resolved channel, a further set of selection criteria is chosen by optimizing the sensitivity to a simulated \(Z'\)-2HDM signal in the presence of the expected background. The selection criteria are summarized in Table 2. If no explicit jet \(p_T\) threshold is specified that means only the initial selection
criteria described previously are required. The requirements on the \(p_T \) of the subleading \(b \)-tagged jet, \(p_T^b \), and that of the subleading jet, \(p_T^c \), for events containing three jets were found to be effective in removing top quark background. The minimum \(E_T^{\text{miss}} \) value required increases with \(m_{Z'} \) to take advantage of the harder \(E_T^{\text{miss}} \) spectrum for higher \(Z' \) mass values. The best signal sensitivity at \(\tan \beta = 1 \) for the signal samples used in this analysis is achieved by requiring a minimum \(E_T^{\text{miss}} \) of 200 GeV for \(m_{Z'} = 600 \) GeV, 300 GeV for \(m_{Z'} = 800 \) GeV, and 400 GeV for \(m_{Z'} = 1000\text{–}1400 \) GeV. The product of the detector acceptance and reconstruction efficiency (selection efficiency) of the \(Z' \to h(b\bar{b}) + E_T^{\text{miss}} \) signal after the full set of selection requirements varies from 5\% to 10\% depending on \(m_{Z'} \) and \(m_A \). The number of expected signal events after full selection in the \(Z' \)-2HDM model for a few selected values of \(m_{Z'} \), \(m_A \) and \(\tan \beta \) are shown in Table 3 for the \(Z' \to A(h\bar{b}) \) and \(Z' \to Z(\nu\bar{\nu})h(b\bar{b}) \) processes respectively.

Table 3: The number of expected \(Z' \)-2HDM signal events after full selection for selected points in parameter space. Left to right: values of \(m_{Z'} \), \(m_A \), and \(\tan \beta \), the \(E_T^{\text{miss}} \) requirement for the given parameter values, the signal yield from the \(Z' \to A(h\bar{b}) \) and \(Z' \to Z(\nu\bar{\nu})h(b\bar{b}) \) processes respectively.

<table>
<thead>
<tr>
<th>(m_{Z'}) (GeV)</th>
<th>(m_A) (GeV)</th>
<th>(\tan \beta)</th>
<th>(E_T^{\text{miss}}) (GeV)</th>
<th>(Z' \to A(h\bar{b}))</th>
<th>(Z' \to Z(\nu\bar{\nu})h(b\bar{b}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 GeV</td>
<td>300 GeV</td>
<td>0.3</td>
<td>> 150 GeV</td>
<td>10</td>
<td>1.1</td>
</tr>
<tr>
<td>600 GeV</td>
<td>300 GeV</td>
<td>1</td>
<td>> 200 GeV</td>
<td>3.5</td>
<td>11.9</td>
</tr>
<tr>
<td>800 GeV</td>
<td>300 GeV</td>
<td>0.3</td>
<td>> 300 GeV</td>
<td>10.4</td>
<td>6.8</td>
</tr>
<tr>
<td>1000 GeV</td>
<td>300 GeV</td>
<td>1</td>
<td>> 400 GeV</td>
<td>12.2</td>
<td>0.4</td>
</tr>
<tr>
<td>1000 GeV</td>
<td>300 GeV</td>
<td>0.3</td>
<td>> 400 GeV</td>
<td>6.4</td>
<td>2.7</td>
</tr>
<tr>
<td>1000 GeV</td>
<td>300 GeV</td>
<td>5</td>
<td>> 400 GeV</td>
<td>0.4</td>
<td>3.9</td>
</tr>
<tr>
<td>1200 GeV</td>
<td>400 GeV</td>
<td>1</td>
<td>> 400 GeV</td>
<td>3.3</td>
<td>2.0</td>
</tr>
<tr>
<td>1400 GeV</td>
<td>300 GeV</td>
<td>1</td>
<td>> 400 GeV</td>
<td>2.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

The boosted channel differs from the resolved channel primarily by the requirement of at least one large-\(R \) jet designed to contain the decay products of a single \(h \to b\bar{b} \) decay. Table 2 also lists the selection criteria for the boosted channel, designed to achieve high efficiency for the EFT models and good background rejection. The leading large-\(R \) jet is required to have \(p_T > 350 \) GeV. At these high \(p_T \) values, the decay products from top quarks are often contained inside a large-\(R \) jet, so the requirement on the mass of the leading large-\(R \) jet to between 90 GeV and 150 GeV provides good rejection against top quark background. The multijet background is further suppressed by requiring the azimuthal angle between \(E_T^{\text{miss}} \) and \(p_T^{\text{miss}} \), \(\Delta \phi(E_T^{\text{miss}}, p_T^{\text{miss}}) \), to be less than \(\pi/2 \). Similar to the resolved channel, the final \(E_T^{\text{miss}} \) requirement in the boosted channel varies as the \(E_T^{\text{miss}} \) distribution shifts for different EFT models and DM mass. For the models \(|\chi|^2 [H|^2, \bar{\chi} i\gamma_5 \chi [H|^2 \), and \(\chi^* \tilde{\partial} H D_H H \), the minimum \(E_T^{\text{miss}} \) is 300 GeV for \(m_\chi = 1, 65 \), and 100 GeV, and 400 GeV for \(m_\chi = 500 \) and 1000 GeV; the selection efficiency for these three EFT models varies from 1\% to 8\%, with a higher efficiency at larger \(m_\chi \). For the \(\bar{\chi} \gamma^\mu \chi B_{\mu\nu} H^\dagger D'^\dagger H \) model, \(E_T^{\text{miss}} > 400 \) GeV is required for all \(m_\chi \) values, and the selection efficiency ranges from 10\% to 13\%, increasing slightly with \(m_\chi \).

7 Background estimation

The main source of irreducible background for this search is \(Z \)-jets when the \(Z \) boson decays into a pair of neutrinos. To reduce the impact of theoretical and experimental uncertainties associated with this process, which are particularly evident in regions with large \(E_T^{\text{miss}} \), \(Z(\to \nu\bar{\nu}) \)-jets background is determined
from data with input from simulation, as described in Section 7.1. Multijet production in which there is large E_T^{miss} is not simulated reliably, so it is also estimated using data, as described in Section 7.2. The $W(\rightarrow \nu\ell^+) + \text{jets}$ and top quark production processes are estimated using the shape from MC simulation and are normalized to data in 1-lepton control regions, as described in Section 7.3. The other backgrounds are estimated from Monte Carlo simulation, namely $Z(\rightarrow \ell\ell) + \text{jets}$, diboson production, and vector boson associated production with the Standard Model Higgs boson. Section 7.4 shows validations of the background modeling in the zero-lepton validation regions using selections close to those of the signal regions.

7.1 $Z(\rightarrow \nu\nu) + \text{jets}$ background

The estimation of the $Z(\rightarrow \nu\nu) + \text{jets}$ background is derived from two data samples. For $E_T^{\text{miss}} < 200$ GeV, the $Z(\rightarrow \mu^+\mu^-) + \text{jets}$ sample is used. The p_T spectrum of produced Z bosons and the kinematic distributions of jets are the same whether the Z boson decays into charged leptons or neutrinos. Thus the $Z(\rightarrow \mu^+\mu^-) + \text{jets}$ data sample provides very good modeling of the $Z(\rightarrow \nu\nu) + \text{jets}$ background. The $Z(\rightarrow \mu^+\mu^-) + \text{jets}$ events are selected by requesting two isolated muons that pass the 24 GeV muon trigger in the HLT and satisfy the tight selection criteria, with opposite charge and p_T above 25 GeV, and the invariant mass of the muon pair be between 70 GeV and 110 GeV. The same selection is applied to both simulated samples and to the data. A transfer function is derived to account for the differences in branching ratio, trigger efficiency, and reconstruction efficiencies between $Z(\rightarrow \nu\nu) + \text{jets}$ and $Z(\rightarrow \mu^+\mu^-) + \text{jets}$. For higher purity and larger sample size, as well as reduction of systematic uncertainties, SHERPA samples of $Z(\rightarrow \nu\nu) + \text{jets}$ and $Z(\rightarrow \mu^+\mu^-) + \text{jets}$, which have the same production kinematics, are used to derive the transfer function. The samples are fully reconstructed and the trigger and event selection criteria are applied. The E_T^{miss} in each $Z(\rightarrow \mu^+\mu^-) + \text{jets}$ event is recalculated by adding the two muon transverse momentum vectors to the original E_T^{miss} to create a new variable called $E_T^{\text{miss}+\ell\ell}$. This mimics the E_T^{miss} in $Z(\rightarrow \nu\nu) + \text{jets}$ events. A transfer function is derived by fitting the ratio of the $Z(\rightarrow \nu\nu) + \text{jets}$ E_T^{miss} distribution divided by the $Z(\rightarrow \mu^+\mu^-) + \text{jets}$ $E_T^{\text{miss}+\ell\ell}$ distribution. Simulated events from other background processes that passed the aforementioned $Z(\rightarrow \mu^+\mu^-)$ selection are subtracted from the data to obtain a $Z(\rightarrow \mu^+\mu^-) + \text{jets}$ data sample with high purity. The MC-based transfer function is applied to the $Z(\rightarrow \mu^+\mu^-) + \text{jets}$ $E_T^{\text{miss}+\ell\ell}$ distribution in this data sample to estimate the $Z(\rightarrow \nu\nu) + \text{jets}$ background. As the Z'-2HDM model contains the decay mode $Z' \rightarrow Zh$, the presence of such a signal would have a contribution to the $Z(\rightarrow \mu^+\mu^-) + \text{jets}$ process as well; however, in the $E_T^{\text{miss}} < 200$ GeV region, the expected yield from the $Z' \rightarrow Zh$ process is several orders of magnitude smaller than the Standard Model $Z(\rightarrow \mu^+\mu^-) + \text{jets}$ production, and thus has a negligible impact on the background estimation.

For $E_T^{\text{miss}} > 200$ GeV, the limited size of the $Z(\rightarrow \mu^+\mu^-) + \text{jets}$ data sample reduces its usefulness. In this region the $\gamma + \text{jets}$ data sample is used. For γ (or in this case the modified E_T^{miss} as described below) transverse momenta much greater than the mass of the Z boson, the kinematic properties of $\gamma + \text{jets}$ and $Z + \text{jets}$ events are very similar [80]. A high-purity (above 99% in both the resolved and boosted channels after b-tagging requirements) $\gamma + \text{jets}$ data sample is selected by requiring one high-p_T $(\geq 125$ GeV), prompt photon that passed the 120 GeV HLT photon trigger. The transfer function is calculated from reconstructed SHERPA samples of $\gamma + \text{jets}$ events that passed the same photon selection, and $Z(\rightarrow \nu\nu) + \text{jets}$ events. The E_T^{miss} in a $\gamma + \text{jets}$ event is recalculated by using all clustered objects described in Section 5 except the leading photon, and denoted as $E_T^{\text{miss}+\gamma}$. The $Z(\rightarrow \nu\nu) + \text{jets}$ background for $E_T^{\text{miss}} > 200$ GeV is obtained by multiplying the $\gamma + \text{jets}$ $E_T^{\text{miss}+\gamma}$ distribution in the data by the MC-produced transfer function. Since the photon couples to a quark through its electric charge, while the Z boson coupling depends on
the weak neutral vector and axial-vector couplings, the transfer function varies slightly by $\sim 3\%$ to 10% depending on the number of b-tagged jets in the final state. A MC-based correction factor for each value of b-tagged jet multiplicity is derived and applied to account for the small difference.

To test this procedure over the entire E_T^{miss} distribution above 100 GeV, two control regions are defined in the resolved channel using event selection very similar to that of the signal region except requiring either zero or one b-tagged small-R jet. A similar test is performed in the boosted channel but with E_T^{miss} above 200 GeV where control regions are defined with zero, one or two b-tagged track-jets that are matched by ghost association to the leading large-R jet. Despite the two b-tagged track-jets requirement in the last case, the expected discovery significance of the signal models considered is well below 2σ considering the background estimate. By keeping the yields of the other background processes constant and normalizing the total expected background to the data, a scale factor of 0.9 for the $Z(\to \nu\bar{\nu})+\text{jets}$ estimation is derived from the control regions with no b-tagged jets for both the resolved and boosted channels. The 10$\%$ difference from unity is assigned as an additional source of systematic uncertainty on the $Z(\to \nu\bar{\nu})+\text{jets}$ normalization in both channels. After the corrections described above are applied, the data and the estimated background agree well in all five control regions to within 3% to 10% in the resolved channel, and within 1% to 20% in the boosted channel; the differences are larger in regions with higher b-tagged jet multiplicity and hence smaller event sample size. Figure 2 shows the E_T^{miss} distributions in the zero-lepton, zero-b-tagged jet control regions of the resolved and boosted channels. Good agreement is demonstrated between the data and the estimated background.

![Figure 2: The distribution of the missing transverse momentum with magnitude E_T^{miss} of (a) the resolved channel and (b) the boosted channel in the zero-lepton, zero-b-tagged jet control region (CR) for the estimated backgrounds (solid histograms) and the observed data (points). The hatched areas represent the combined statistical and systematic uncertainties in the total background estimation. The minimum E_T^{miss} requirement in the resolved (boosted) channel is 100 GeV (200 GeV). In the resolved channel, the small contributions from Wh and Zh are included in the W or $Z(\to \nu\bar{\nu})$ plus jets distributions.](image)

7.2 Multijet background

The multijet background in the resolved channel is estimated from data using a “jet smearing” method [81]. A pure multijet sample, used as the “seed” events, is obtained by selecting from the data events contain-
ing multiple jets, no isolated leptons, and \(E_{\text{miss}} \) below 120 GeV, using a set of jet triggers with different requirements on jet \(p_T \) threshold and \(|\eta|\) coverage. A “smeared” event is generated by multiplying each jet four-momentum in a seed event by a random number drawn from a jet response function. The response function quantifies the probability of fluctuations in the detector response to jets measured in the data. It is determined using data and simulation, and has both Gaussian and non-Gaussian components to account for both the core of the distribution and the tails. After “smearing”, the obtained multijet event is reweighted two-dimensionally with respect to its jet multiplicity and \(E_{\text{miss}} \) to account for both the core of the distribution and the tails. The “smeared” multijet sample is reweighted two-dimensionally with respect to its jet multiplicity and \(E_{\text{miss}} \) distributions between \(b \)-quark jets and light jets. Hence the “smeared” multijet sample is reweighted two-dimensionally with respect to its jet multiplicity and \(E_{\text{miss}} \) distributions between \(b \)-quark jets and light jets. The agreement is good with slight mis-modelling likely due to the difference in \(E_{\text{miss}} \) distributions between \(b \)-quark jets and light jets. Hence the “smeared” multijet sample is reweighted two-dimensionally with respect to its jet multiplicity and \(b \)-tagged jet multiplicity to match the numbers in the data in the multijet control region. The aforementioned small discrepancies in the data and background comparison are removed after reweighting. The multijet background is small in the other control regions in the resolved channel and negligible in the signal region.

The multijet background is estimated in the boosted channel using an “ABCD method” [82], in which the data are divided into four regions based on the \(\Delta \phi_{\text{min}}(\vec{E}_{\text{miss}}^i, j_i) \) and \(\Delta \phi(\vec{E}_{\text{miss}}^i, \vec{p}_T^\text{miss}) \) variables, such that three of the regions are dominated by the background. These two variables are found to be weakly correlated in a data sample after the lepton veto, and requiring at least one large-\(\mathcal{R} \) jet with \(p_T > 350 \text{ GeV} \), at least two track-jets matched to the large-\(\mathcal{R} \) jet, and \(E_{\text{miss}}^T \) between 100 and 200 GeV. This observation is confirmed in a multijet event sample simulated with Pythia8. The signal region (A) is selected with \(\Delta \phi_{\text{min}}(\vec{E}_{\text{miss}}^i, j_i) > 1.0 \) and \(\Delta \phi(\vec{E}_{\text{miss}}^i, \vec{p}_T^\text{miss}) < \pi/2 \). In region C, the requirement on \(\Delta \phi(\vec{E}_{\text{miss}}^i, \vec{p}_T^\text{miss}) \) is reversed. In regions B and D, \(\Delta \phi_{\text{min}}(\vec{E}_{\text{miss}}^i, j_i) < 0.4 \) is required, with the same requirement on \(\Delta \phi(\vec{E}_{\text{miss}}^i, \vec{p}_T^\text{miss}) \) as in regions A and C, respectively. The multijet yield in each of the regions B, C, and D is obtained by subtracting from the data the contribution of other backgrounds taken from simulation. The number of multijet events in region A is estimated as a product of the yields in regions D and C divided by the yield in region B. Due to the small number of events, the track-jet \(b \)-tagging and the large-\(\mathcal{R} \) jet mass requirements for the signal region are not applied in regions B, C, and D, and an additional scale factor to estimate the selection efficiencies of these two requirements is applied to the resulting yields. The number of events from multijet background in the signal region is estimated to be consistent with zero within uncertainties, and a 68% CL upper limit of 0.1 events is used as the predicted yield.

7.3 \(W + \text{jets} \) and top quark backgrounds

In the resolved channel, the \(W + \text{jets} \) control region is very similar to the signal region, except that the lepton veto is replaced by the requirement of one isolated muon with \(p_T > 25 \text{ GeV} \), and the number of small-\(\mathcal{R} \) jets must be two. The purity of the \(W + \text{jets} \) background in this control region is approximately 90% before \(b \)-tagging requirements. By keeping the yields of the other background processes constant and normalizing the total expected background to data, a scale factor of 0.92 is derived for the \(W + \text{jets} \) background. The 8% difference from unity is small compared to the systematic uncertainty on the \(W + \text{jets} \) normalization as discussed in Section 8. This scale factor is applied to the \(W + \text{jets} \) background when deriving the normalization for \(Z(\rightarrow \nu\bar{\nu}) + \text{jets} \) background in Section 7.1. The top quark control region has the same requirements except that three small-\(\mathcal{R} \) jets are required. The purity of the top quark background, which includes mostly \(t\bar{t} \) but also single-top-quark events, is approximately 78% in the top quark control region after requiring at least one \(b \)-tagged small-\(\mathcal{R} \) jet. Good agreement is observed between the data
and simulation and no additional scale factor is applied to the top quark background. In both control regions, as well as the combined one-lepton validation region where the jet multiplicity requirement is removed, there is good agreement between the data and estimated background in both number of events and modeling of the kinematic variables.

As Monte Carlo simulation predicts a larger fraction of high \(p_T \) top quarks in \(t\bar{t} \) events than is seen in the data, a correction is applied in the boosted channel at the level of generated top quarks in the \(t\bar{t} \) MC sample [83, 84]. For the resolved channel, the correction is not applied since the impact is small, but the effect of it is accounted for as a source of systematic uncertainty, as discussed in Section 8.

The \(W+\)jets and top quark (\(t\bar{t} + \) single top quark) backgrounds are further studied in the boosted channel in a one-lepton control region selected by requiring one isolated muon with \(p_T > 25 \) GeV, preselection criteria as described in Section 2 except the lepton veto, and the first two selections in Table 2. Events passing the one-lepton control region selections are categorized as being in the \(W+\)jets control region unless at least one \(b \)-tagged track-jet is found within \(\Delta R = 1.5 \) of the muon direction, in which case they are used for a top quark control region. The purity of \(W+\)jets background in the \(W+\)jets control region is approximately 72\%, whereas the purity of the top quark background in the top quark control region is \(\sim 90\% \). A pair of linear equations to calculate the normalization factor from background to the data is constructed using the predicted and observed yields of the \(W+\)jets and top quark backgrounds. The solution of the equations, 0.82 ± 0.05 and 0.89 ± 0.06, are applied as scale factors to the \(W+\)jets background and top quark background, respectively.

7.4 Zero-lepton validation region

The individual background processes are studied and normalized to the data in the dedicated control regions, as described in the previous sections. To examine the overall modeling of all non-Higgs background processes combined, zero-lepton validation regions are defined for both channels, with selections similar to the signal region, but reversing the requirement on the invariant mass of the \(b\bar{b} \) system. In the resolved channel, events are selected with at least one \(b \)-tagged small-\(R \) jet, and for events with two or more \(b \)-tagged jets, the invariant mass of the two leading \(b \)-tagged jets is required to be either below 60 GeV or above 150 GeV. In the boosted channel, events are selected with exactly one \(b \)-tagged track-jet associated with the leading large-\(R \) jet, and the invariant mass of the large-\(R \) jet is required to be either below 90 GeV or above 150 GeV. Figure 3(a) and Figure 3(b) show the \(E_T^{\text{miss}} \) distributions in both channels, and Figure 3(c) and Figure 3(d) show the distribution of the invariant mass of the two leading small-\(R \) jets (the invariant mass of the leading large-\(R \) jet) in the resolved (boosted) channel. The aforementioned scale factors for the corresponding background processes have been applied. Good agreement between the data and the estimated background is achieved for different kinematic variables, including jet \(p_T \), angular distributions, multiplicity, and number of \(b \)-tagged jets, at each selection stage in both channels.

Figure 4 shows the distributions of the invariant mass of the \(b\bar{b} \) system in both the resolved and boosted channels with fully hadronic selection very similar to the signal region, but removing the requirement on the invariant mass. The regions with the invariant mass of the \(b\bar{b} \) system between 90 GeV and 150 GeV are the signal regions for both channels. The signal regions were blinded in this analysis until all the studies in the aforementioned control regions and validation regions were complete.
Figure 3: Distributions of the missing transverse momentum with magnitude E_T^{miss} for (a) the resolved channel and (b) the boosted channel and the invariant mass distributions for (c) the two leading small-R jets in the resolved channel and (d) the leading large-R jet in the boosted channel. Events are selected in the zero-lepton validation region (VR) for the estimated backgrounds (solid histograms) and the observed data (points). The hatched areas represent the combined statistical and systematic uncertainties in the total background estimation. At least one (exactly one) b-tagged jet is required in the resolved (boosted) channel. In the resolved channel, the invariant mass of the b-tag jet with exactly one b-tagged track-jet is required to be either less than 60 GeV or greater than 150 GeV. In the boosted channel, the invariant mass of the large-R jet with exactly one b-tagged track-jet is required to be either less than 90 GeV or greater than 150 GeV. The minimum E_T^{miss} requirement in the resolved (boosted) channel is 100 GeV (200 GeV). In the resolved channel, the small contributions from $W\ell$ and Zh are included in the data. Other backgrounds, such as $W+1\ell$, $Z+1\ell$, and $W+2\ell$, are included in the data.

8 Systematic uncertainties

The systematic uncertainty on background estimation and signal processes using Monte Carlo samples comes from several sources, and is evaluated for each of the signal and background processes in both channels. The uncertainty associated with the b-tagging efficiency, which is determined from comparisons between simulation and heavy-flavor-enriched data samples [25], ranges from \sim 10% to 15%. The
uncertainty on the overall background estimate due to light-flavor and charm-quark jets being misidentified as b-quark jets is calculated to be $\sim 1\%$ for small-R jets, and $\sim 2\%$ to 3% for track-jets. The jet energy scale and resolution [73], which directly impact the E_T^{miss}, depend on the kinematic properties of the jet, the distance to its nearest jet neighbor, and the flavor of the initiating parton. The systematic uncertainty associated with the jet energy scale and resolution ranges from $\sim 5\%$ to 15%.

In the boosted channel, the invariant mass of the $b\bar{b}$ system from the Higgs boson decay is selected by requiring the mass of the large-R jet to be between 90 GeV and 150 GeV, leading to additional systematic uncertainties from the jet mass scale and resolution [28]. The uncertainties associated with jet mass are $\sim 1\%$ for the EFT signals and $\sim 3\%$ to 8% for most simulated background processes. While the large-R jet calibration and uncertainty are derived primarily using an inclusive multijet sample, the large-R jet selection in this analysis focuses specifically on identifying jets containing two b-hadrons. As such, there are possible additional sources of uncertainty on the modeling of the jet mass and energy due to the difference in heavy-flavor content between the calibration and analysis selections. However, studies of multijet samples enriched with jets containing two b-hadrons suggest that this uncertainty is small in comparison to the existing uncertainty on jet mass and energy, and thus no additional uncertainty is applied.

The uncertainty on E_T^{miss} originating from the energy scale and resolution of energy clusters not included in jets [79] is small at $\sim 1\%$ or less, as are the uncertainties due to possible mismeasuring of the effect of multiple pp collisions (pileup) and the method of removing jets coming from pileup. The uncertainty on the integrated luminosity for the data sample is 2.8%. It is derived using the same methodology as that detailed in Ref. [85].

Figure 4: The distributions of the invariant mass of the $b\bar{b}$ system for the estimated backgrounds (solid histograms) and the observed data (points) in (a) the resolved and (b) the boosted channels in the signal region (SR) without the requirement on the invariant mass. The regions with the invariant mass of the $b\bar{b}$ system between 90 GeV and 150 GeV are the signal regions for both channels. The hatched areas represent the combined statistical and systematic uncertainties in the total background estimation. The minimum E_T^{miss} is required to be 100 GeV (200 GeV) in the resolved (boosted) channel. At least (exactly) two b-tagged small-R jets (track-jets) are required in the resolved (boosted) channel. In the resolved channel, the small contributions from Wh and Zh are included in the W or $Z(\rightarrow \nu\bar{\nu})$ plus jets distributions.
The cross-section uncertainties for the background processes are as follows. For $t\bar{t}$ production, an uncertainty of 7% is cited from theoretical calculations [86], which is consistent with the ATLAS measurement of top quark pair production [87]. The same uncertainty is used for the small single-top-quark background [88]. For W+jets, a cross-section uncertainty of 20% is taken from the recent ATLAS measurement of W+jets production with b-jets [89]. The uncertainty on the simulated diboson background cross-section increases with the E_T^{miss} threshold from 20% for $E_T^{miss} > 150$ GeV to 30% for $E_T^{miss} > 400$ GeV [4]. For vector boson plus Higgs boson production, an uncertainty of 3.1% on the cross-section is also taken into account from the normalization factor of 0.94% [80], which is small in comparison and hence not applied. The total systematic uncertainty on the diboson background cross-section is 20% in the resolved channel as the original E_T^{miss} region where $Z\rightarrow \gamma\gamma$+jets background is used and 12% in the higher E_T^{miss} region where γ+jets is used. In the boosted channel, only γ+jets is used to estimate $Z(\rightarrow \gamma\gamma)$+jets background and the total systematic uncertainty is approximately 16%.

As explained in Section 7.3, the top quark p_T distribution is reweighted at the Monte Carlo generator level to bring it into agreement with measurements of the data. The size of the correction is found to be 5.5% in shape and normalization combined in the resolved channel, where it is considered as an additional source of systematic uncertainty. The correction has a greater effect in the boosted channel as the original mismodeling in simulation is primarily in high-p_T regions. The systematic uncertainty associated with the top quark p_T reweighting is evaluated to be ~15% and applied to the top quark process in the boosted channel.

Overall, the systematic uncertainty on the estimated background is calculated to be between 10% and 16% in the resolved channel, and between 12% and 14% in the boosted channel, depending on the final E_T^{miss} requirement in the signal region. Table 4 lists the main sources of systematic uncertainty for both the...
resolved and boosted channels, and their values for both signals and backgrounds. The values given for the backgrounds are the uncertainties on the total background with the relative weights and correlations of individual background processes taken into account.

Table 4: Summary of systematic uncertainty in percent for all backgrounds combined and signal samples in the resolved and boosted channels. The first column lists the main sources of systematic uncertainty, where the acronym JES refers to the jet energy scale, JER the jet energy resolution, JMS the jet mass scale, JMR the jet mass resolution, and JVF the jet vertex fraction. The uncertainty figures listed for \(b\)-tagging combine the uncertainty from both \(b\)-tagging efficiency and mistag rates. The uncertainty ranges in “Total Background” reflect the shift in value with increasing \(E_T^{\text{miss}}\) threshold in the final signal region. The uncertainties for “\(Z(\nu\bar{\nu})\) transfer function” take into account the fractional weight of the \(Z(\nu\bar{\nu})\) process in total background, which differs per analysis channel and \(E_T^{\text{miss}}\) threshold. Most of the systematic uncertainties on the signal models vary little across the parameter space in this analysis, with the exception of signal PDF and \(\alpha_s\), JMS, and pileup uncertainty; hence the ranges of values are shown.

<table>
<thead>
<tr>
<th>Source</th>
<th>Resolved (%)</th>
<th>Boosted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)-tagging</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>JES (small+large-(R))</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>JER (small+large-(R))</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>JMS (large-(R))</td>
<td>-</td>
<td>1.0–2.5</td>
</tr>
<tr>
<td>JMR (large-(R))</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>JVF (small-(R))</td>
<td>0.7</td>
<td>1.1</td>
</tr>
<tr>
<td>(E_T^{\text{miss}}) resolution/scale</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Pileup</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Cross-section</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>PDF and (\alpha_s)</td>
<td>3.8–7.0</td>
<td>2.0–21</td>
</tr>
<tr>
<td>(Z(\nu\bar{\nu})) transfer function</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total syst.</td>
<td>18–19</td>
<td>13–25</td>
</tr>
</tbody>
</table>

9 Results

Table 5 shows the predicted number of background events in the signal region for each value of the ascending \(E_T^{\text{miss}}\) thresholds, along with the number of events observed in the data. The numbers of predicted background events and observed events are consistent within 1\(\sigma\) in five out of the six signal regions. For the boosted channel and \(E_T^{\text{miss}} > 300\) GeV, 20 events are observed in the data compared to a background expectation of 11.2 ± 2.3 events. The probability that the number of events in the background fluctuates to the value in the data or above corresponds to 2.2\(\sigma\). Figure 5 shows the \(E_T^{\text{miss}}\) distributions for the data and the estimated background in the signal regions of the resolved and boosted channels. Also shown in the resolved channel are the \(E_T^{\text{miss}}\) distributions for two examples of the \(Z'\)-2HDM model at different \(m_{Z'}\), \(m_A = 300\) GeV and \(\tan\beta = 1\). Similarly the \(E_T^{\text{miss}}\) distributions for two examples of the EFT models with different \(m_\chi\) are shown in the boosted channel. The 2.2\(\sigma\) upward fluctuation mentioned above is primarily due to events with \(E_T^{\text{miss}}\) values between 300 GeV and 400 GeV, and mass of the leading large-\(R\) jet below the Higgs boson mass, while signal events are most likely to have higher \(E_T^{\text{miss}}\) values and leading large-\(R\) jet mass close to Higgs boson mass.
The ATLAS collaboration has conducted a search for new physics signals in the process $\ell^+\ell^-\nu\bar{\nu}$ + jets at the Large Hadron Collider (LHC) with an integrated luminosity of 20.3 fb$^{-1}$ at a center-of-mass energy of 8 TeV. The direct searches have focused on the process $Z(\rightarrow \ell^{+}\ell^{-})$ + jets in the mass range from 65 to 150 GeV, and on the process $W(\rightarrow \ell\nu)$ + jets in the mass range from 80 to 130 GeV. The results are presented in terms of the E_T^{miss} distribution, which includes all jets except the one in the direction of E_T^{miss}.

The observed data (points) are compared with the expected SM background (solid histograms) and the EFT signals (dashed lines) in Figure 5 for the signal regions with ascending E_T^{miss} thresholds. The hatched areas represent the combined statistical and systematic uncertainties in the total background estimation. The uncertainties on the total background take into account the correlation of systematic uncertainties among different background processes.

Table 5 presents the numbers of predicted background events for each background process, the sum of all background processes, and observed data in the signal region (SR) of the resolved and boosted channels for each of the sliding E_T^{miss} requirements. For the resolved channel, the small contributions from W_h and Z_h are included in the W or $Z(\rightarrow \nu\bar{\nu})$ plus jets distributions.

A Frequentist approach is used for the statistical interpretation of the results [92]. For this single bin counting experiment, the Poisson probability of the background-only hypothesis, the $p(s=0)$-value, is calculated for each of the four signal regions with ascending E_T^{miss} threshold in the resolved channel and the two signal regions in the boosted channel. The 95% CL upper limits on the number of non-Standard Model events in each of the signal regions are also obtained using a profile-likelihood-ratio test following the CL_s prescription [93], which can be translated into model-independent 95% CL upper limits on the...
visible cross-section, defined as the product of production cross-section, acceptance, and reconstruction efficiency of any signal model. The limits are calculated taking into account the uncertainty on the background estimate, the integrated luminosity of the data sample, and its uncertainty. Table 6 gives the model-independent 95% CL upper limits on the visible cross-section, the observed and expected limits on the number of non-Standard Model events in the signal region, and the p(s = 0)-values.

As a p(s = 0)-value of 0.03 is calculated for $E_T^{\text{miss}} > 300$ GeV in the boosted channel, a calculation of the look-elsewhere effect [94] is performed. Using pseudo-experiments and taking into account correlations between all signal regions in both channels, the probability that there is a deviation in the data from the background expectation at least as significant as the one observed due to a statistical fluctuation in the background is calculated to be approximately 10%.

Table 6: Model-independent upper limits for the resolved and boosted channels. Left to right: signal region (SR) E_T^{miss} requirement, number of observed events, number of expected background events, 95% CL upper limits on the visible cross-section ($\langle \sigma_{\text{vis}} \rangle^95_{\text{obs}}$) and the number of non-SM events ($N_{\text{BSM}^{95}}$). The sixth column ($N_{\text{BSM}^{95}}$) shows the expected 95% CL upper limit on the number of non-SM events, given the estimated number and the 1σ uncertainty of background events. The last column shows the p-value for the background-only hypothesis (p(s = 0)).

<table>
<thead>
<tr>
<th>E_T^{miss}</th>
<th>N_{obs}</th>
<th>N_{bkgd}</th>
<th>$\langle \sigma_{\text{vis}} \rangle^95_{\text{obs}}$ [fb]</th>
<th>$N_{\text{BSM}^{95}}^{\text{obs}}$</th>
<th>$N_{\text{BSM}^{95}}^{\text{exp}}$</th>
<th>p(s = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 150 GeV</td>
<td>164</td>
<td>148</td>
<td>3.6</td>
<td>74</td>
<td>63±14</td>
<td>0.31</td>
</tr>
<tr>
<td>> 200 GeV</td>
<td>68</td>
<td>62</td>
<td>1.3</td>
<td>27</td>
<td>21±8.4</td>
<td>0.28</td>
</tr>
<tr>
<td>> 300 GeV</td>
<td>11</td>
<td>9.4</td>
<td>0.49</td>
<td>9.9</td>
<td>8.2±3.4</td>
<td>0.31</td>
</tr>
<tr>
<td>> 400 GeV</td>
<td>2</td>
<td>1.7</td>
<td>0.24</td>
<td>4.8</td>
<td>4.7±1.6</td>
<td>0.39</td>
</tr>
<tr>
<td>Boosted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 300 GeV</td>
<td>20</td>
<td>11.2</td>
<td>0.90</td>
<td>18</td>
<td>9.9±2.9</td>
<td>0.03</td>
</tr>
<tr>
<td>> 400 GeV</td>
<td>9</td>
<td>7.7</td>
<td>0.43</td>
<td>8.8</td>
<td>7.7±3.3</td>
<td>0.37</td>
</tr>
</tbody>
</table>

The numbers of observed events and expected background events, along with each of the signal and background statistical and systematic uncertainties, are used to determine limits for the Z'-2HDM model and EFT models, which are interpreted separately. Limits on the signal yield are set using a similar profile-likelihood-ratio test with the C_L_e method as the aforementioned model-independent upper limit calculation. Each of the systematic uncertainties is treated as a nuisance parameter, with the correlations among the sources of systematic uncertainty taken into account.

For the resolved channel, the 95% CL upper limit on the cross-section is derived and used to exclude portions of parameter space of the Z'-2HDM model in both the $m_{Z'}-m_A$ and $m_{Z'}-\tan \beta$ planes. In both cases, the Z' gauge coupling is set to its 95% CL upper limit from precision electroweak constraints and searches for dijet resonances for the corresponding Z' mass and $\tan \beta$ value. Taking the alignment limit of $\alpha = \beta - \pi/2$ evades the constraints in $\tan \beta$ for a Type 2 two-Higgs-doublet model using fits to the observed Higgs boson couplings from the LHC [95]. The exclusion region in the $m_{Z'}-m_A$ plane is shown in Figure 6(a), where $m_A \geq 300$ GeV in accordance with $b \rightarrow s\gamma$ constraints [19]. For $\tan \beta = 1$, $m_{Z'} = 700-1300$ GeV is excluded for m_A up to 350 GeV, with further exclusion of larger m_A for $m_{Z'}$ around 1200 GeV. Limits in the $m_{Z'}-\tan \beta$ plane are shown in Figure 6(b), where $\tan \beta \geq 0.3$ based on the perturbativity requirement of the Higgs–top Yukawa coupling [96], and is below 10 based on direct searches for the A [97]. For $m_A = 300$ GeV, where A decays almost exclusively to a DM pair, $m_{Z'} = 700-1300$ GeV is excluded for $\tan \beta < 2$, with further exclusion of larger $\tan \beta$ for $m_{Z'}$ between 800 GeV and 1000 GeV due to the inclusion of the $Z' \rightarrow Zh$ contribution in the final state. The limits are stronger in regions with larger $m_{Z'}$ and smaller m_A (or a larger contribution from $Z' \rightarrow Zh$ where the Z boson is
much lighter than \(A \), as the harder \(E_T^{\text{miss}} \) spectrum in these cases allows a higher \(E_T^{\text{miss}} \) requirement with better sensitivity, as demonstrated in Table 6. The sensitivity eventually drops at very large \(m_{Z'} \) due to the decrease in signal production cross-section.

Figure 6: The \(Z' \)-2HDM exclusion contour in the (a) \(m_{Z'}-m_A \) plane for \(\tan \beta = 1 \) and (b) \(m_{Z'}-\tan \beta \) plane for \(m_A = 300 \text{ GeV} \). The expected limit is given by the dashed blue line, and the yellow bands indicate its \(\pm 1 \sigma \) uncertainty. The observed limit is given by the solid red line, and the red dotted lines show the variations of the observed limit due to a \(\pm 1 \sigma \) change in the signal theoretical cross-section. The parameter spaces below the limit contours are excluded at 95% CL.

For the boosted channel, limits on DM production are derived from the cross-section limits at a given DM mass \(m_A \), and expressed as 95% CL limits on the suppression scale \(\Lambda \) or coupling parameter \(\lambda \) for the effective field theory operators described by Equations 1 to 4. As mentioned earlier, the effective field theory model becomes a poor approximation of an ultraviolet-complete model containing a heavy mediator \(V \) when the momentum transferred in the interaction, \(Q_{\text{tr}} \), is comparable to the mass of the intermediate state \(m_V = \Lambda \sqrt{g_qg_\gamma} \) \([98, 99]\), where \(g_q \) and \(g_\gamma \) represent the coupling of \(V \) to SM and DM particles, respectively. To give an indication of the impact of the unknown ultraviolet details of the theory, a truncation method is adopted \([100]\), and limits are computed in which only simulated events with \(Q_{\text{tr}} = m_{\chi\chi} < m_V \) are retained. These limits are calculated for both values of \(g = \sqrt{g_qg_\gamma} = 1 \) and \(4\pi \), the latter being the maximum possible value for the interaction to remain perturbative. The limits are derived assuming that the kinematic properties of the events in the signal processes are independent of \(\Lambda(\lambda) \). The assumption is not valid in certain regions of parameter space already excluded by invisible Higgs boson \([95, 101]\) or \(Z \) boson \([102]\) decays or near the perturbativity boundary. The limits for operators \(|\chi^i|H|^2 \) and \(\tilde{\chi}i\gamma_5\chi[H]^2 \) are calculated to be in such regions where the aforementioned kinematic assumption is not valid, hence only limits for the \(\chi^i\partial^\nu\chi H^iD_\nu H \) and \(\tilde{\chi}\gamma^\nu\chi B_\mu H^\nu D^\mu H \) operators are shown in Figure 7 for regions of parameter space where the kinematic assumption holds.

For both operators shown in Figure 7 corresponding to either fermionic or scalar DM candidates, the limits achieved by this analysis are a few times stronger than the prior ATLAS search for DM production in association with a Higgs boson where the Higgs boson decays to a pair of photons \([16]\). For the \(\chi^i\partial^\nu\chi H^iD_\nu H \) operator, the \(Z \) coupling between DM and nucleon leads to a sizable cross-section for direct detection, and results from the LUX Collaboration \([103]\) exclude larger regions of parameter space than this search. However, the LUX limits are not applicable if the DM is inelastic leading to insufficient
energy transition for direct detection. The upper limit on the branching ratio of the Z boson decaying invisibly places stronger constraints for this model for DM with mass values below half of the Z boson mass. For the lowest m_h region not excluded by results from searches for invisible Higgs boson decays or invisible Z boson decays near $m_h = m_H/2$, with the kinematic assumption, values of Λ up to 24, 91, and 270 GeV are excluded for the $\bar{\chi} t \gamma \chi |H|^2, \bar{\chi} t \bar{\nu} \chi H^+ D_\mu H$, and $\bar{\chi} t \bar{\nu} \chi B_{\mu\nu} H^+ D' H$ operators respectively; values of λ above 6.7 are excluded for the $|\chi|^4 |H|^{2}$ operator.

Figure 7: Limits at 95% CL on the suppression scale Λ as a function of the DM mass (m_χ) for EFT operators (a) $\bar{\chi} t \bar{\nu} \chi B_{\mu\nu} H^+ D' H$ and (b) $\chi^t \bar{\nu} \chi H^+ D_\mu H$. Solid black lines are due to $h(\rightarrow b\bar{b}) + E_T^{\text{miss}}$ (this article); regions below the lines are excluded. Results where EFT truncation is applied are also shown, assuming coupling values $g = \sqrt{\sum g_i^2} = 1$ (line with circles), 4π (line with squares). The $g = 4\pi$ case overlaps with the no-truncation result. The solid green line with hash marks indicates regions excluded by collider searches for $h(\rightarrow \gamma\gamma) + E_T^{\text{miss}}$ [16]. In the right figure, the region below the dashed blue line fails the perturbativity requirement, the red line indicates regions excluded by upper limits on the invisible branching ratio (BR) of the Z boson [102], and the magenta line indicates regions excluded by the LUX Collaboration [103].

10 Conclusion

A search has been carried out for dark matter pair production in association with a Higgs boson that decays into two b-quarks, using 20.3 fb^{-1} of pp collisions collected at $\sqrt{s} = 8$ TeV by the ATLAS detector at the LHC. Two techniques have been employed, one in which the two b-quark jets from the Higgs boson decay are reconstructed separately (resolved), and the other in which they are found inside a single large-radius jet using boosted jet techniques (boosted). A set of increasing E_T^{miss} thresholds defines the final signal regions for each channel, optimized for individual signals in the parameter space probed.

The numbers of observed events have been found to be consistent with Standard Model predictions. Results from the resolved channel are used to set constraints in regions of parameter space for a Z'-two-
Higgs-doublet simplified model. For $m_A = 300$ GeV, $m_{Z'} = 700–1300$ GeV is excluded for $\tan\beta < 2$, with further exclusion of larger m_A when $\tan\beta = 1$. The boosted channel results have been interpreted in the framework of different effective field theory operators that describe the interaction between dark matter particles and the Higgs boson. In addition, model-independent upper limits have been placed in both channels on the visible cross-section of events with large missing transverse momentum and a Higgs boson decaying to two b-quarks for each of the ascending E_T^{miss} thresholds up to $E_T^{\text{miss}} > 400$ GeV.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLR, DFNRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW and NCN, Poland; FCT, Portugal; MNE of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSL, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[3] G. Steigman and M. S. Turner,

The ATLAS Collaboration

Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de
13 Barcelona, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 (a) School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (b) Department of Physics, Bogazici University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Dogus University, Istanbul, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) Transilvania University of Brasov, Brasov, Romania; (b) National Institute of Physics and Nuclear Engineering, Bucharest; (c) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (d) University Politehnica Bucharest, Bucharest; (e) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 Il Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 Il Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Department of Physics, Kyushu University, Fukuoka, Japan
71 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
72 Physics Department, Lancaster University, Lancaster, United Kingdom
73 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
74 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
75 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
76 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
77 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
78 Department of Physics and Astronomy, University College London, London, United Kingdom
79 Louisiana Tech University, Ruston LA, United States of America
80 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
81 Fysiska institutionen, Lunds universitet, Lund, Sweden
82 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
83 Institut für Physik, Universität Mainz, Mainz, Germany
84 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
85 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
86 Department of Physics, University of Massachusetts, Amherst MA, United States of America
87 Department of Physics, McGill University, Montreal QC, Canada
88 School of Physics, University of Melbourne, Victoria, Australia
89 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
90 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
91 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
92 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
94 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
95 Group of Particle Physics, University of Montreal, Montreal QC, Canada
96 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
97 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
98 National Research Nuclear University MEPhI, Moscow, Russia
99 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
100 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
101 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
102 Nagasaki Institute of Applied Science, Nagasaki, Japan
103 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
104 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
105 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
106 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
108 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

43
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby BC, Canada
SLAC National Accelerator Laboratory, Stanford CA, United States of America
(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto ON, Canada
(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana IL, United States of America
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased