1) Introduction

- **Frisian Language**
 - Regional official language of the Netherlands
 - Mostly spoken in the province of Fryslân
 - Approximately half a million speakers
 - Most speakers are bilingual due to the extensive influence of Dutch
 - Code-switching is common practice in daily conversations
 - Member of West Germanic language family
 - Closely related with English and Dutch

- **Phonology**
 - Frisian consonants are more or less similar to Dutch consonants
 - Frisian has more vowels (falling and rising diphthongs, triphthongs, rassialization)
 - Linguistically well-researched, however few speech and language technology applications are available
 - Frisian speech synthesizer, Google Translate...
 - Omrop Fryslân
 - Regional public broadcaster with a radio station and a TV channel both broadcasting in Frisian

3) Basic Frisian ASR System

- **Challenges**
 - Low resources available
 - Code-switching nature of Frisian
 - Complex vowel system

- **FAME! Database is created**
 - Frysk Academy text corpus
 - Omrop Fryslân news articles
 - Frisian Wikipedia
 - Transcriptions of training speech
 - Fluency Frisian Lexicon
 - Elex Dutch Lexicon

4) FAME! Frisian Radio Broadcast Database

- **Preparation**
 - Manually annotating the radio broadcasts from Omrop Fryslân
 - Collaboration with Frysk Academy
 - Annotations include orthographic transcription, speaker ids, spoken language, code-switching details, dialect info
 - A modified annotation protocol has been created

- **Some statistics**
 - 18.5 hours of radio broadcasts annotated in total
 - Longitudinal data: recordings from 1966 to 2015
 - More than 500 speakers, 309 with known identity
 - 21 speakers appear at least 3 times

- **3939 code-switching cases**
 - 2896 cases: Frisian speaker switches to Dutch
 - 95 cases: Dutch speaker switches to Frisian
 - 848 cases: Speakers use a mixed-word that is neither Frisian nor Dutch

5) Frisian Language Model and Lexicon

- **Language Model**
 - Frisian text corpus: ~2,375,000 sentences
 - Training speech transcription: ~13,750 sentences
 - Dutch text corpus (CGN): ~580,000 sentences
 - Monolingual and bilingual N-gram models are trained

- **Lexicon**
 - Complete Frisian lexicon: ~340k words
 - Complete Dutch lexicon: ~1.1M words
 - Frisian phonetic alphabet contains 20 consonants, 20 monophthongs, 18 falling diphthongs, 8 rising diphthongs and 6 triphthongs
 - For bilingual lexicon, Dutch phones are mapped to the phonetically closest Frisian phone.
 - Grapheme-to-Phoneme (G2P) models are learned to handle the out-of-vocabulary (OVO) words in training data

6) Initial Recognition Experiments

- **Speech data from Frisian speakers**
 - FAME! Database is divided into three parts
 - Training set: 8h 20m
 - Development set: 1h
 - Test set: 1h

- **Acoustic models (AM)**
 - KALDI speech recognition toolkit is used
 - GMAM-HMM and subspace GMM (SGMM) are trained on LDA-MLLT features
 - Speaker adapted training (SAT): FMLLR-adapted features

- **Language models (LM)**
 - 3-gram interpolated modified Kneser-Ney
 - Frisian LM and Bilingual LM are compared

- **Lexicon**
 - Frisian lexiconcontains ~95k words
 - Bilingual lexicon contains ~150k words
 - Various phonetic alphabets are compared:
 - mono: cons. + monoph. -> fall: mono + fall diph.
 - rise: mono + rise diph.
 - diph: mono + all diph.
 - triph: mono + all triph.

7) Results (I) – Phonetic Alphabet

<table>
<thead>
<tr>
<th></th>
<th>GMM</th>
<th>SGMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>mono</td>
<td>50.65</td>
<td>44.56</td>
</tr>
<tr>
<td>fall</td>
<td>50.34</td>
<td>45.01</td>
</tr>
<tr>
<td>rise</td>
<td>50.85</td>
<td>45.31</td>
</tr>
<tr>
<td>diph</td>
<td>50.09</td>
<td>45.10</td>
</tr>
<tr>
<td>triph</td>
<td>50.23</td>
<td>44.88</td>
</tr>
<tr>
<td>dtrn</td>
<td>50.82</td>
<td>45.46</td>
</tr>
</tbody>
</table>

- Word error rates (WER) in % on the development set

- The choice of the phonetic alphabet has a minor effect on the recognition accuracy
- Inferior performance of dtrn is explained by the limited amount of training data
- In the following experiments, mono is adopted

8) Results (II) – AM, LM and Lexicon

<table>
<thead>
<tr>
<th></th>
<th>Devel</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lex</td>
<td>GMAM</td>
<td>SGMM</td>
</tr>
<tr>
<td>FR</td>
<td>FR</td>
<td>FR</td>
</tr>
<tr>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>GMAM</td>
<td>GMAM</td>
<td>GMAM</td>
</tr>
<tr>
<td>SGMM</td>
<td>SGMM</td>
<td>SGMM</td>
</tr>
<tr>
<td>GM</td>
<td>GM</td>
<td>GM</td>
</tr>
<tr>
<td>SG</td>
<td>SG</td>
<td>SG</td>
</tr>
<tr>
<td>Devel</td>
<td>Devel</td>
<td>Devel</td>
</tr>
<tr>
<td>FR</td>
<td>FR</td>
<td>FR</td>
</tr>
<tr>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>GM</td>
<td>GM</td>
<td>GM</td>
</tr>
<tr>
<td>SG</td>
<td>SG</td>
<td>SG</td>
</tr>
</tbody>
</table>

- WERs using mono- and bilingual lexicon and LM

9) Conclusion

- Initial recognition results are promising for an accurate spoken document retrieval system
- Future work: Investigating deep architectures and recognition schemes with flexible lexicon for code-switching ASR