Initial steps towards building a large vocabulary automatic speech recognition system for the Frisian language

Emre Yilmaz1, Maitke Andringa1, Sigrid Kingma1, Prits Van der Kuip1, Hans Van de Velde2, Frederik Kampstra1, Jouke Algra1, Henk Van den Heuvel1 and David Van Leeuwen1

1) Introduction

• Frisian Language
 - regional official language of the Netherlands
 - mostly spoken in the province of Fryslân
 - approximately half a million speakers
 - most speakers are bilingual due to the extensive influence of Dutch
 - code-switching is common practice in daily conversations
 - Member of West Germanic language family
 - closely related with English and Dutch

2) FAME! Project

• Disclose the Omrop Fryslân archives containing recordings from 1950s
 - Develop a user-friendly search interface for spoken documents from Omrop Fryslân archives with more than 2600 hours of radio broadcasts
 - Relevant applications towards building this spoken document retrieval system:
 1. Automatic speech recognition
 2. Speaker identification
 3. Flexible search interface
 4. Project Partners:

5) Frisian Language Model and Lexicon

• Language Model
 - Frisian text corpus: ~2,375,000 sentences
 - Training speech transcription: ~13,750 sentences
 - Dutch text corpus (CGM): ~580,000 sentences
 - Monolingual and bilingual N-gram models are trained

• Lexicon
 - Complete Frisian lexicon: ~340k words
 - Bilingual lexicon contains ~150k words
 - Complete Frisian lexicon: ~340k words
 - A word error rates (WER) using mono and bilingual lexicon and LM -

8) Results (II) – AM, LM and Lexicon

<table>
<thead>
<tr>
<th></th>
<th>Devel</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fr-NL</td>
<td>49.26</td>
<td>43.67</td>
</tr>
<tr>
<td>NL-Devel</td>
<td>49.39</td>
<td>44.29</td>
</tr>
<tr>
<td>NL-Devel-NL</td>
<td>49.16</td>
<td>43.49</td>
</tr>
</tbody>
</table>
| - WERs using mono- and bilingual lexicon and LM -
| Devel | Test | |
| Lex | | |
| Fr-NL | 49.26 | 43.67 |
| NL-Devel | 49.39 | 44.29 |
| NL-Devel-NL | 49.16 | 43.49 |
| - WERs with G2P for OOV words (Best results for SI system) -
| Devel | Test | |
| Lex | | |
| Fr-NL | 49.26 | 43.67 |
| NL-Devel | 49.39 | 44.29 |
| NL-Devel-NL | 49.16 | 43.49 |
| - WERs with G2P and SAT (Best results for SA system) -

9) Conclusion

• Initial recognition results are promising for an accurate spoken document retrieval system
• Future work: Investigating deep architectures and recognition schemes with flexible lexicon for code-switching ASR

3) Basic Frisian ASR system

• Challenges
 - Low resources available
 - Code-switching nature of Frisian
 - Complex vowel system

4) FAME! Frisian Radio Broadcast Database

• Preparation
 - Manually annotating the radio broadcasts from Omrop Fryslân
 - Collaboration with Frysk Akademy
 - Annotations include orthographic transcription, speaker ids, spoken language, code-switching details, dialect info
 - A modified annotation protocol has been created

Some statistics:
- 18.5 hours of radio broadcasts annotated in total
- Longitudinal data: recordings from 1966 to 2015
- More than 500 speakers, 309 with known identity
- 21 speakers appear at least 3 times
- 3939 code-switching cases:
 - 2896 cases: Frisian speaker switches to Dutch
 - 95 cases: Dutch speaker switches to Frisian
 - 848 cases: Speakers use a mixed-word that is neither Frisian nor Dutch

6) Initial Recognition Experiments

• Speech data from Frisian speakers
 - FAME! Database is divided into three parts
 - Training set: 8h 20m
 - Development set: 1h
 - Test set: 1h

• Acoustic models (AM)
 - KALDI speech recognition toolkit is used
 - GMM-HMM and subspace GMM (SGMM) are trained on LDA-MLLT features
 - Speaker adapted training (SAT): FMLLR-adapted features

• Language models (LM)
 - 3-gram interpolated modified Kneser-Ney
 - Frisian LM and Bilingual LM are compared

• Lexicon
 - Frisian lexicon contains ~95k words
 - Bilingual lexicon contains ~150k words
 - Various phonetic alphabets are compared:
 - mono: cons. + monoph. -> fall: mono + fall dipth.
 - rise: mono + rise dipth.
 - diph: mono + all dipth.
 - triph: mono + all triph. -

7) Results (I) – Phonetic Alphabet

<table>
<thead>
<tr>
<th></th>
<th>GMM</th>
<th>SGMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>mono</td>
<td>50.65</td>
<td>44.56</td>
</tr>
<tr>
<td>fall</td>
<td>50.34</td>
<td>45.01</td>
</tr>
<tr>
<td>rise</td>
<td>50.85</td>
<td>45.31</td>
</tr>
<tr>
<td>diph</td>
<td>50.09</td>
<td>45.10</td>
</tr>
<tr>
<td>triph</td>
<td>50.23</td>
<td>44.88</td>
</tr>
<tr>
<td>dtrn</td>
<td>50.82</td>
<td>45.46</td>
</tr>
</tbody>
</table>

- Word error rates (WER) in % on the development set -
 - The choice of the phonetic alphabet has a minor effect on the recognition accuracy
 - Inferior performance of dtrn is explained by the limited amount of training data
 - In the following experiments, mono is adopted