1) Introduction

- Frisian Language
 - Regional official language of the Netherlands
 - Mostly spoken in the province of Fryslân
 - Approximately half a million speakers
 - Most speakers are bilingual due to the extensive influence of Dutch
 - Code-switching is common practice in daily conversations
 - Member of West Germanic language family
 - Closely related with English and Dutch

- Linguistically well-researched, however few speech and language technology applications are available
 - Frisian speech synthesizer, Google Translate...
 - Omrop Fryslân
 - Regional public broadcaster with a radio station and a TV channel both broadcasting in Frisian

2) FAME! Project

- Disclose the Omrop Fryslân archives containing recordings from 1950s
 - Develop a user-friendly search interface for spoken documents from Omrop Fryslân archives with more than 2600 hours of radio broadcasts
- Relevant applications towards building this spoken document retrieval system:
 1. Automatic speech recognition
 2. Speaker identification
 3. Flexible search interface
 4. Project Partners:

3) Basic Frisian ASR system

- Challenges
 - Low resources available
 - Code-switching nature of Frisian
- FAME! Database is created
- Frysk Academie text corpus
- Omrop Fryslân news articles
- Frisian Wikipedia
- Transcriptions of training speech
- Fluency Frisian Lexicon
- Elex Dutch Lexicon

4) FAME! Frisian Radio Broadcast Database

- Preparation
 - Manually annotating the radio broadcasts from Omrop Fryslân
 - Collaboration with Frysk Academie
 - Annotations include orthographic transcription, speaker ids, spoken language, code-switching details, dialect info
 - Modified annotation protocol has been created

- Some statistics
 - 18.5 hours of radio broadcasts annotated in total
 - Longitudinal data: recordings from 1966 to 2015
 - More than 500 speakers, 309 with known identity
 - 21 speakers appear at least 3 times
- 3939 code-switching cases:
 - 2896 cases: Frisian speaker switches to Dutch
 - 95 cases: Dutch speaker switches to Frisian
 - 848 cases: Speakers use a mixed-word that is neither Frisian nor Dutch

5) Frisian Language Model and Lexicon

- Language Model
 - Frisian text corpus: ~2,375,000 sentences
 - Training speech transcription: ~13,750 sentences
 - Dutch text corpus (CGN): ~580,000 sentences
 - Monolingual and bilingual N-gram models are trained
- Lexicon
 - Complete Frisian lexicon: ~340k words
 - Complete Dutch lexicon: ~1.1M words
 - Frisian phonetic alphabet contains 20 consonants, 20 monophones, 16 falling diphthongs, 8 rising diphthongs and 6 triphones
 - For bilingual lexicon, Dutch phones are mapped to the phonetically closest Frisian phone.
 - Grapheme-to-Phoneme (G2P) models are learned to handle the out-of-vocabulary (OOV) words in training data

6) Initial Recognition Experiments

- Speech data from Frisian speakers
 - FAME! Database is divided into three parts
 - Training set: 8h 20m
 - Development set: 1h
 - Test set: 1h
- Acoustic models (AM)
 - KALDI speech recognition toolkit is used
 - GMM-HMM and subspace GMM (SGMM) are trained on LDA-MLLT features
 - Speaker adapted training (SAT); FMLLR-adapted features
- Language models (LM)
 - 3-gram interpolated modified Kneser-Ney
 - Frisian LM and bilingual LM are compared
- Lexicon
 - Frisian lexicon contains ~95k words
 - Bilingual lexicon contains ~150k words
 - Various phonetic alphabets are compared:
 - mono: cons. + monoph. -> fall: mono + fall diph.
 - rise: mono + rise diph.
 - dipth: mono + all diph.
 - triph: mono + all triph.
- The choice of the phonetic alphabet has a minor effect on the recognition accuracy
- Inferior performance of dipth is explained by the limited amount of training data
- In the following experiments, mono is adopted

7) Results (I) – Phonetic Alphabet

- Word error rates (WER) in % on the development set:
 - mono: 50.65 GMM, 44.56 SGMM
 - fall: 50.34 GMM, 45.01 SGMM
 - rise: 50.59 GMM, 45.31 SGMM
 - dipth: 50.23 GMM, 44.88 SGMM
 - triph: 50.82 GMM, 45.46 SGMM

8) Results (II) – AM, LM and Lexicon

- Development
 - Lex | LM | GMM | SGMM | GMM | SGMM
 - FR | FR | 50.65 | 44.56 | 49.46 | 43.28
 - FR-NL | FR | 50.71 | 44.78 | 49.26 | 43.08
 - FR-NL-FR-NL | FR | 50.51 | 44.29 | 49.23 | 42.96

- Test
 - Lex | LM | GMM | SGMM | GMM | SGMM
 - FR | FR | 50.44 | 44.97 | 49.26 | 43.08
 - FR-NL | FR | 50.51 | 44.29 | 49.23 | 42.96
 - FR-NL-FR-NL | FR | 50.51 | 44.29 | 49.23 | 42.96

- WERs using mono- and bilingual lexicon and LM:
 - FR | FR | 44.72 | 40.87 | 40.13 | 39.39 | 37.84
 - FR-NL | FR | 45.90 | 41.56 | 40.57 | 44.41 | 40.40 | 38.57
 - FR-NL-FR-NL | FR | 45.64 | 41.42 | 40.30 | 44.17 | 39.99 | 38.38

9) Conclusion

- Initial recognition results are promising for an accurate spoken document retrieval system
- Future work: Investigating deep architectures and recognition schemes with flexible lexicon for code-switching ASR