Associated Links Among Smoking, Chronic Obstructive Pulmonary Disease, and Small Cell Lung Cancer: A Pooled Analysis in the International Lung Cancer Consortium

Ruyi Huang a,b,1, Yongyue Wei a,ah,al,1, Rayjean J. Hung c, Geoffrey Liu d, Li Su a, Ruyang Zhang a,ah,al, Xuchen Zong e, Zuo-Feng Zhang e, Hal Morgenstern fg, Irene Brüske h, Joachim Heinrich h, Yun-Chul Hong i, Jin Hee Kim j, Michele Cote k, Angela Wenzlaff k, Ann G. Schwartz k, Isabelle Stucker l, John Mclaughlin m, Michael W. Marcus n, Michael P.A. Davies n, Triantafillos Liloglou n, John K. Field n, Keitaro Matsu o, Matt Barnett p, Mark Thornquist p, Gary Goodman p, Yi Wang q, Size Chen q, a, Ping Yang q, Eric J. Duell t, Angeline S. Andrew u, Philip Lazarus v, Joshua Muscat v, Penella Woll w, Janet Horsman w, M. Dawn Teare w, Anath Flugelman x, Gad Rennert x, Yan Zhang y, Hermann Brenner y, z, Christa Stegmaier aa, Erik H.F.M. van der Heijden ab, Katja Aben ab,ac, Lambertus Kiemeny ab, Juan Barros-Dios ad, Monica Pérez-Ríos ad, Alberto Ruano-Ravina ad, Neil E. Caporaso ae, Pier Alberto Bertazzi alf,ag, Maria Teresa Landi al, ag, Juncheng Dai ah, Hongbing Shen ah, Guillermo Fernandez-Tardon ai, Marta Rodriguez-Suarez aj, Adonina Tardon ak,al, al, David C. Christiania, ak,al,1

1 The authors contributed equality to this study.

Abbreviations: COPD, chronic obstructive pulmonary disease; CPG, cigarettes per day; ILCCO, International Lung Cancer Consortium; MeSH, medical subject headings; NSCLC, non-small cell lung cancer; OR, odds ratio; SCLC, small cell lung cancer.

⁎ E-mail address: dhchris@hsph.harvard.edu (D.C. Christiani).

The authors contributed equally to this study.
1. Introduction

Small cell lung cancer (SCLC) comprises approximately 15–18% of all lung cancers worldwide (Fruh et al., 2013). SCLC is the most aggressive subtype of lung cancer and is characterized by rapid doubling time, high growth fraction, and early widespread metastasis (Kalemkerian et al., 2013). Despite high response rates to initial treatment, SCLC usually relapses and becomes refractory to treatment within one year. The median survival is 14–20 months for limited SCLC and 9–11 months for extensive SCLC (Kalemkerian et al., 2013). These statistics highlight the need for new tools to aid in diagnosis and prevention.

Smoking is the major risk factor for SCLC (Pesch et al., 2012; Engeland et al., 1996; Freedman et al., 2008). However, previous studies were limited in sample size and statistical power to estimate more precise effect size of smoking on SCLC risk as well as the non-linear exposure–response relationships, which have been thoroughly explored in the previous non-small-cell lung cancer (NSCLC) studies (Zhai et al., 2014a, b). Furthermore, smoking is also an independent risk factor for chronic obstructive pulmonary disease (COPD), which shares similar genetic and biological characteristics to lung cancer (Houghton, 2013; Roca et al., 2012; Schwartz and Ruckdeschel, 2006; Young and Hopkins, 2011), while concurrent COPD has not been fully examined with regard to SCLC risk (Purdue et al., 2007; Fan et al., 2011). Precise understanding of the association between smoking, COPD, and SCLC using a large sample size will shed light on its pathogenesis.

To address these knowledge gaps, we conducted a pooling analysis of 24 case–control studies in the International Lung Cancer Consortium (ILCCO) that in total included 43,946 SCLC cases and 37,942 cancer-free controls. We examined: 1) exposure–response relationships between SCLC risk and cigarette smoking indicators, including cumulative smoking, age of initiation, and time since quitting smoking; 2) the association between physician diagnosis of COPD and SCLC risk; and 3) the interaction and mediation effects of COPD and cigarette smoking on SCLC risk.

2. Methods

2.1. Ethics

Individual studies were approved by their respective ethics committees.

2.2. Study Population

This pooled analysis comprised data from the ILCCO collaboration (http://ilcco.iarc.fr), which was established in 2004 to share data among ongoing lung cancer studies (Huang et al., 2008). We included 24 ILCCO studies that met the following criteria: 1) had histologically confirmed SCLC cases; 2) used a structured questionnaire to evaluate lifestyle; and 3) provided an intact study protocol. Among the 24 studies, two (Schottker et al., 2013; Goodman et al., 1998) were cohort studies. The remaining 22 had a case–control design, ten (Miller et al., 2002; Muscat et al., 1995; Loriot et al., 2001; Lopez-Cima et al., 2012; Kim and Hong, 2013; Ito et al., 2012; Lee et al., 2009; Ruano-Ravina et al., 2014; Zhang et al., 2010; Park et al., 2005) were hospital-based, ten studies (Kreienbrock et al., 2001; Landi et al., 2008; Luce and Stucker, 2011; Schwartz et al., 2009; Field et al., 2005; Heck et al., 2009; Sevilya et al., 2014; Cote et al., 2012; Hashibe et al., 2006; Wang et al., 2014) were population-based, and the other two (Yang et al., 2005; Brenner et al., 2010) were mixed case–control studies. The included studies were performed in North America (Goodman et al., 1998; Miller et al., 2002; Muscat et al., 1995; Park et al., 2005; Schwartz et al., 2009; Heck et al., 2009; Hashibe et al., 2006; Wang et al., 2014; Yang et al., 2005; Brenner et al., 2010), Europe (Schottker et al., 2013; Loriot et al., 2001; Lopez-Cima et al., 2012; Lee et al., 2009; Kreienbrock et al., 2001; Landi et al., 2008; Luce and Stucker, 2011; Field et al., 2005; Cote et al., 2012; Ruano-Ravina et al., 2004), and Asia and Oceania (Lopez-Cima et al., 2012; Kim and Hong, 2013; Ruano-Ravina et al., 2014; Heck et al., 2009). Each included study was approved by the institutional review boards of the respective institutions, and each participant provided informed consent.

2.3. Case Ascertainment

Incident lung cancer cases were diagnosed pathologically and verified through review of medical records (Schottker et al., 2013; Goodman et al., 1998; Miller et al., 2002; Muscat et al., 1995; Loriot et al., 2001; Kim and Hong, 2013; Ito et al., 2012; Lee et al., 2009; Ruano-Ravina et al., 2014; Park et al., 2005; Kreienbrock et al., 2001; Landi et al., 2008; Schwartz et al., 2009; Field et al., 2005; Wang et al., 2014; Yang et al., 2005; Brenner et al., 2010; Etzel et al., 2006).
duration (1 year). The non-linear association was explored by applying the time since quitting smoking with the SCLC risks using estimates from ship, we plotted cumulative smoking, age of smoking initiation, and time since quitting for former smokers. To explore the non-linear association between smoking and SCLC, we generated common categories of smoking, including age of initiation of smoking, duration, intensity, and time since quitting for former smokers. To explore the non-linear exposure-response relationship for SCLC risk was observed for all quantitative smoking variables (Table 2). Cumulative smoking intensity (cigarettes per day) in SCLCs or COPDs were significantly higher than in their respective controls, while the time since quitting smoking was significantly lower than that in controls (P < 0.01). The frequency of COPD diagnosis was higher among SCLC cases (20.6%) than controls (7.6%) (P < 0.001).

3.2. Association of Smoking Behaviors With SCLC Risk

Former smokers had a significantly higher risk on SCLC vs. non-smokers (OR, 6.21, 95% CI 5.21–7.41, P < 0.001) while a much higher risk existed among current smokers vs non-smokers (OR, 26.72, 95% CI 80, 592 for those who had pack-years ≥ 20 to 69.03 for those who had pack-years ≥ 20 or more years). The proportion mediated was obtained by ORd × (ORi – 1) / (ORd × ORi – 1), where ORd is the direct effect odds ratio and ORi is the indirect effect odds ratio (Campbell, 1996). All tests were two-sided and evaluated using SAS software (version 9.4; SAS Institute, Cary, NC) or STATA statistical package (Version 14; StataCorp, LP, College Station, TX, USA). A P-value of less than 0.05 was considered statistically significant.

3. Results

3.1. Characteristics of Study Populations

In the 24 studies with recruitment initiated since 1969, 4346 SCLC patients and 37,942 non-SCLC controls were identified (Table S1). Among ten studies with available COPD status, 1543 COPD and 14,665 non-COPD subjects were further analyzed to explore stratified and mediation effects. Demographic characteristics are summarized in Table 1. SCLC patients were significantly older, male-predominant, less educated, and more commonly had a family history of lung cancer than their respective controls (P < 0.01). For smoking behaviors, the proportions of current smokers/former smokers, the amount of lifetime cumulative smoking pack-years, smoking duration, and smoking intensity (cigarettes per day) in SCLCs or COPDs were significantly higher than in their respective controls, while the time since quitting smoking was significantly lower than that in controls (P < 0.01). The frequency of COPD diagnosis was higher among SCLC cases (20.6%) than controls (7.6%) (P < 0.001).

4. Discussion

The associations between cumulative smoking and SCLC risk were further tested in subgroups with and without preexisting COPD. We conducted the Wald test for effect modification from COPD by adding an interaction term. It is well-established that smoking is the risk to both COPD and SCLC, and COPD is a risk factor to SCLC. To explore whether the effect of smoking on the risk of SCLC is mediated through COPD, the VanderWeele’s mediation analysis was performed (VanderWeele and Vansteelandt, 2010). The smoking effect on SCLC was decomposed to two parts: the indirect effect which represents the effect of smoking is mediated through COPD and the direct effect which represents the effect of smoking on SCLC by pathways other than COPD. To obtain direct and indirect effects of smoking on SCLC risk, ORs for mediation analysis in the case–control setting were calculated by combining the regression of COPD and the regression of SCLC risk (VanderWeele and Vansteelandt, 2010; VanderWeele et al., 2012). The proportion mediated was obtained by ORd × (ORi – 1) / (ORd × ORi – 1), where ORd is the direct effect odds ratio and ORi is the indirect effect odds ratio (Campbell, 1996).

All tests were two-sided and evaluated using SAS software (version 9.4; SAS Institute, Cary, NC) or STATA statistical package (Version 14; StataCorp, LP, College Station, TX, USA). A P-value of less than 0.05 was considered statistically significant.
similar dose–response model (ORs from 4.35 ± 10 cigarettes-per-day to 34.49 ± 40 cigarettes-per-day, \(P_{\text{trend}} < 0.001 \)), as well as smoking duration (ORs ranged from 2.37 ± 20 years to 48.80 ± 50 years, \(P_{\text{trend}} < 0.001 \)), and age of initiation (ORs from 7.09, smoking_after_30 to 24.04, smoking_before_15, \(P_{\text{trend}} < 0.001 \)). The former smokers with longer cessation showed a considerably decreased risk on SCLC risk in a dose–response trend vs. subjects who had quit smoking for less than 5 years [OR for those who had quit for 5–9 years (OR_{5–9}) - 0.57, 95% CI 0.45–0.73; OR for 10–19, - 0.28, 95% CI 0.23–0.36; OR ≥ 20, 0.11, 95% CI 0.09–0.14; \(P_{\text{trend}} < 0.001 \)]. The sensitivity analysis yielded similar results with further adjustment for study areas (Caucasian-dominated areas vs. non-Caucasian-dominated areas), source of controls (hospital-based vs. population-based), and family history of lung cancer (yes vs. no) (Table 2).

3.3. Stratified Analyses of Smoking Behaviors on SCLC Risk

Further, we performed the stratified analyses by COPD, gender, ethnicity, source of control, and 1st degree family history of lung cancer. All the smoking variables showed a higher effect on SCLC risk in COPD subgroup than those in non-COPD subjects with significance or borderline significance except for time since quitting smoking which was probably due to insufficient sample size (Table S2). Male smokers had a trend of stronger dose–response on SCLC risk than that in female but with a lack of statistical significance (Table S3). Smoking variables in Caucasian-dominated populations showed stronger effects on SCLC risk than those in non-Caucasian dominant populations (Table S4). No statistical significance was observed for time since quitting smoking probably due to insufficient sample size from non-Caucasian populations (Table S4). Furthermore, stratified analyses by control type showed a trend of higher effects of smoking behaviors on SCLC risk in the studies with population-based controls than those in the studies with hospital-based controls (Table S5). Furthermore, in stratified analysis by family history of lung cancer, smoking behaviors showed a trend of, but non-significant, stronger effects in subjects with family history of lung cancer than the others (Table S6).

3.4. Non-linear Exposure–Response Relationships

Further, non-linear exposure–response relationships of smoking pack-years and time since quitting smoking were explored using restricted cubic spline regression model (Fig. 1). The SCLC risk for cumulative smoking pack-years revealed an upward spline with a knot at approximately 50 pack-years (\(P_{\text{non-linear}} < 0.001 \)); the slope of the first segment was larger than that of the second segment (Fig. 1a). The results were consistent in the subgroup analyses stratified by COPD status (Fig. 1b for non-COPD, 1c for COPD), by gender (1d for male, 1e for female), and study area (1f for Caucasian-dominated areas, 1g for non-Caucasian-dominated areas). In contrast, there were significantly decreasing trends between time since quitting smoking and SCLC risk among former smokers (Fig. 1h) which obtained consistent results among the subgroup analyses (Fig. i–m). We were not able to perform the cubic spline analysis among the former smokers in studies from non-Caucasian-dominated areas due to insufficient cases recruited.

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>SCLC (n = 4346)</th>
<th>COPD* (n = 503)</th>
<th>Non-COPD* (n = 1940)</th>
<th>Non-SCLC (n = 37,942)</th>
<th>COPD* (n = 1040)</th>
<th>Non-COPD* (n = 12,725)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian-dominated</td>
<td>4153(95.6)</td>
<td>503(100)</td>
<td>1940(100)</td>
<td>35,944(94.7)</td>
<td>1040(100)</td>
<td>12,725(100)</td>
</tr>
<tr>
<td>Non-Caucasian-dominated</td>
<td>193(4.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>61.2(10.5)</td>
<td>63.9(9.4)</td>
<td>60.6 (10.7)</td>
<td>61.3(10.3)</td>
<td>61.3(10.3)</td>
<td>61.3(10.3)</td>
</tr>
<tr>
<td>Gender (female), n (%)</td>
<td>1371(31.6)</td>
<td>193(38.4)</td>
<td>601 (31.0)</td>
<td>14,269 (37.6)</td>
<td>7442 (43.9)</td>
<td>7442 (43.9)</td>
</tr>
<tr>
<td>Ethnicity (Caucasian), n (%)</td>
<td>2310(87.1)</td>
<td>299(59.4)</td>
<td>1000 (51.6)</td>
<td>23,507 (85.2)</td>
<td>427(41.1)</td>
<td>7442 (58.5)</td>
</tr>
<tr>
<td>Education (greater than university), n (%)</td>
<td>487(15.9)</td>
<td>82(20.0)</td>
<td>260 (16.8)</td>
<td>7047 (32.1)</td>
<td>228(27.6)</td>
<td>3733 (43.9)</td>
</tr>
<tr>
<td>Smoking intensity (cigarettes per day), mean (SD)</td>
<td>24.1(12.4)</td>
<td>25.6(13.0)</td>
<td>23.0 (12.1)</td>
<td>18.7 (12.2)</td>
<td>19.3(12.5)</td>
<td>18.0 (12.4)</td>
</tr>
<tr>
<td>Time since quitting smoking among former smokers (years), mean (SD)</td>
<td>3.9(7.7)</td>
<td>4.0(8.0)</td>
<td>3.7 (7.4)</td>
<td>3.8 (7.3)</td>
<td>3.8 (7.3)</td>
<td>3.8 (7.3)</td>
</tr>
</tbody>
</table>

Values are presented as n (%) for categorical data or mean/standard deviation (SD) for continuous variables. The categorical variables were tested by Fisher's exact test and continuous variables were compared by Student t-test between groups/subgroups. The quantitative smoking variables were summarized among former or current smokers. SCLC: small cell lung cancer; COPD: chronic obstructive pulmonary disease.

Further, non-linear exposure–response relationships of smoking pack-years and time since quitting smoking were explored using restricted cubic spline regression model (Fig. 1). The SCLC risk for cumulative smoking pack-years revealed an upward spline with a knot at approximately 50 pack-years (\(P_{\text{non-linear}} < 0.001 \)); the slope of the first segment was larger than that of the second segment (Fig. 1a). The results were consistent in the subgroup analyses stratified by COPD status (Fig. 1b for non-COPD, 1c for COPD), by gender (1d for male, 1e for female), and study area (1f for Caucasian-dominated areas, 1g for non-Caucasian-dominated areas). In contrast, there were significantly decreasing trends between time since quitting smoking and SCLC risk among former smokers (Fig. 1h) which obtained consistent results among the subgroup analyses (Fig. i–m). We were not able to perform the cubic spline analysis among the former smokers in studies from non-Caucasian-dominated areas due to insufficient cases recruited.
4. Discussion

To our knowledge, this is the largest study investigating the relationship among multiple quantitative smoking risk factors, COPD, and risk of SCLC (Pesch et al., 2012). The major strength of this study is its large sample size, which allowed us to have greater power to detect the exposure–response relationship of smoking behaviors, COPD, and SCLC risk in more homogeneous subgroups, and the risks of smoking mediated through COPD (Zhai et al., 2014a). Furthermore, the multi-ethnic design makes this study generalizable to the other populations (St Sauver et al., 2012). The pooling study also took advantage of the well-planned questionnaires that collected data on detailed smoking behaviors such as cumulative smoking, age since smoking initiation, and time since quitting smoking, as well as COPD status.

Our study addressed the information gap regarding the non-linear exposure-response relationships between the cigarette smoking behaviors, COPD, and risk of SCLC. SCLC risk rises sharply with the first 50 pack-years of cumulative smoking, and increases continuously with further smoking. A similar steep slope with a subsequent leveling-off of lung cancer risk for intensity of smoking and a plateauing of the SCLC risks by duration of smoking were seen in previous studies (Pesch et al., 2012; Zhai et al., 2014a; Vineis et al., 2000). Findings of very high relative risks for SCLC in smokers are in agreement with experimental findings that more extensive damage triggers the regeneration of quiescent sub-populations of cells (Li and Clevers, 2010). Those cells that are centrally located in the lungs are possibly the cellular precursors of SCLC that more extensive damage triggers the regeneration of quiescent sub-populations of cells (Li and Clevers, 2010). The leveling-off association among extremely heavy and long-term smokers might be explained by a potential saturation effect, or competing risks among heavy smokers (Vineis et al., 2000).

Juvenile initiated cigarette smoking would have over 15-fold higher risk of SCLC in the following years compared with non-smokers. The increased, which underscores the importance of quitting smoking as early as possible.

To our knowledge, this is the largest study investigating the relationship among multiple quantitative smoking risk factors, COPD, and risk of SCLC (Pesch et al., 2012). The major strength of this study is its large sample size, which allowed us to have greater power to detect the exposure–response relationship of smoking behaviors, COPD, and SCLC risk in more homogeneous subgroups, and the risks of smoking mediated through COPD (Zhai et al., 2014a). Furthermore, the multi-ethnic design makes this study generalizable to the other populations (St Sauver et al., 2012). The pooling study also took advantage of the well-planned questionnaires that collected data on detailed smoking behaviors such as cumulative smoking, age since smoking initiation, and time since quitting smoking, as well as COPD status.

4. Discussion

To our knowledge, this is the largest study investigating the relationship among multiple quantitative smoking risk factors, COPD, and risk of SCLC (Pesch et al., 2012). The major strength of this study is its large sample size, which allowed us to have greater power to detect the exposure–response relationship of smoking behaviors, COPD, and SCLC risk in more homogeneous subgroups, and the risks of smoking mediated through COPD (Zhai et al., 2014a). Furthermore, the multi-ethnic design makes this study generalizable to the other populations (St Sauver et al., 2012). The pooling study also took advantage of the well-planned questionnaires that collected data on detailed smoking behaviors such as cumulative smoking, age since smoking initiation, and time since quitting smoking, as well as COPD status.

Our study addressed the information gap regarding the non-linear exposure-response relationships between the cigarette smoking behaviors, COPD, and risk of SCLC. SCLC risk rises sharply with the first 50 pack-years of cumulative smoking, and increases continuously with further smoking. A similar steep slope with a subsequent leveling-off of
early as possible. The risk remains 3.59 fold higher (95% CI 2.71–7.46, \(P \leq 0.001 \)) after 20 years' cessation compared with never smokers. A possible mechanism for this long-term carcinogenic effect of smoking is that cigarette smoke can exert a wide range of irreversible changes in lung tissue that affect its function (Thorley and Tetley, 2007).

The risk of lung cancer in patients with COPD has long been established (Zhai et al., 2014a; Purdue et al., 2007; Raviv et al., 2011). However, most of the studies focused on the risk of overall lung cancer or NSCLC, while the relationship with SCLC was rarely explored or underpowered (Kato et al., 2011). Our analysis offers insights suggesting that 86% of increased risk of SCLC occurs in persons with COPD independent from smoking. Further, our study suggests that smoking has a higher damaging effect on lungs among subjects diagnosed of COPD than non-COPD subjects, which indicates a synergistic mechanism in lung cancer pathophysiology. This finding agrees with that of our previous study of non-small cell lung cancer (Zhai et al., 2014a). One biological explanation for this association between COPD and SCLC is that long-term pulmonary inflammation from COPD damages lung tissue and produces free radicals that may induce mutagenesis during tissue regeneration (Ballaz and Mulshine, 2003). Another potential mechanistic explanation is that
impaired mucociliary function in COPD patients could hamper the removal of harmful particles (Zhai et al., 2014b; Houtmeyers et al., 1999). Other mechanisms associated with the presence of COPD that might be associated with the inflammation and associated cytokines, development of lung cancer includes alterations to cell cycle regulation, shared genetic and epigenetic susceptibilities (Houghton, 2013). Furthermore, no study has previously investigated the role of COPD as a causal mediator between smoking and SCLC. Our study demonstrates that less than 10% of the smoking risk effect on SCLC is mediated through COPD. Wang et al. reported one-third of the effect of smoking behavior on lung cancer mediated through COPD. The findings indicate a histologically-different causal role of COPD among smoking and lung cancer, which warrants further validation and experimental study (Wang et al., 2010).

We acknowledge some limitations in our study. First, misclassification of SCLC or COPD has to be considered since our study included diverse countries in which different diagnostic criteria may apply. A pathology comparability analysis was performed by Stang et al. in a German case series; the agreement between pathologists was 94% among SCLC and lower in never smokers (Stang et al., 2006). Second, studies included were lacking information on spirometry, and underdiagnostics of COPD was thus significant among non-COPD subjects, which is about 70% of the total population (Mannino et al., 2000; Lamprecht et al., 2015; Bednarek et al., 2008). Due to underdiagnosed COPD patients, risks of smoking behaviors among non-COPD subgroups were, to some extent, overestimated. However, physician-diagnosed COPD is compatible with spirometry-based COPD for epidemiological studies (Straus et al., 2002; Eisinger et al., 2005; Murgia et al., 2014). A validation assessment also confirmed that self-reported physician–diagnosed COPD correlates with high rates of true COPD in medical records (Barr et al., 2002). Therefore, such underdiagnosis of COPD contributes to the more conservative results for the evaluation of the risk difference between COPD and non-COPD. On the other hand, a more accurate COPD diagnostic method will result in a higher stratified effect as well as stronger statistical power. Third, medication information of COPD patients was also important to this association study. Inhaled corticosteroids (ICS) are anti-inflammatory drugs that have proven benefits for worsening COPD patients (Kew and Seniukovich, 2014), as well as a decreased risk of lung cancer in a dose–response manner (Parimon et al., 2007; Lee et al., 2013). Statins are also recognized as powerful anti-inflammatory agents beyond low-density lipoprotein cholesterol reduction (Pruefer et al., 2002), which have a beneficial role in COPD treatment including reduced risk of lung cancer (Janda et al., 2009; van Gestel et al., 2009). Inclusion of the medication information in future study increases both statistical power and clinical interpretation. Besides, the source of controls, SCLC case ascertainment, COPD verification, geographical area, and recruitment period could explain partial heterogeneity. Though we detected a significant indirect effect of smoking on SCLC risk mediated by COPD, we were not able to determine the temporal relationship between COPD and SCLC in this study, and reverse causality of the pre-diagnosed stage of SCLC could thus possibly affect COPD development as well.

5. Conclusion

This study emphasizes the non-linear association of smoking with the relative risk of SCLC. The pattern is partially supported by prior SCLC studies (Pesch et al., 2012; Vineis et al., 2000) and hypothesis-generating experiments. Smoking also has a strong effect on COPD, and COPD is an independent risk factor on SCLC, and further, a part of smoking risk effect on SCLC is mediated through COPD. The mutually shared genetic predisposition or common mechanistic pathway among smoking behaviors, COPD and SCLC warrants investigation to facilitate early detection of SCLC.

Table 3
Causal mediation analysis of smoking behaviors, COPD, and the risk of SCLC.

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR_{indirect} (95% CI)</th>
<th>P</th>
<th>OR_{direct} (95% CI)</th>
<th>P</th>
<th>%M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never vs former</td>
<td>1.03 (1.02, 1.05)</td>
<td>0.000</td>
<td>5.30 (4.84, 5.81)</td>
<td>0.000</td>
<td>3.57</td>
</tr>
<tr>
<td>Never vs current</td>
<td>1.06 (1.04, 1.09)</td>
<td>0.000</td>
<td>28.13 (23.41, 33.80)</td>
<td>0.000</td>
<td>5.86</td>
</tr>
<tr>
<td>Smoking pack-years per SD (25.3) increment</td>
<td>1.03 (1.02, 1.04)</td>
<td>0.000</td>
<td>2.33 (2.22, 2.44)</td>
<td>0.000</td>
<td>4.99</td>
</tr>
<tr>
<td>Smoking intensity</td>
<td>1.01 (1.01, 1.02)</td>
<td>0.000</td>
<td>1.63 (1.56, 1.71)</td>
<td>0.000</td>
<td>2.52</td>
</tr>
<tr>
<td>Smoking duration (years) per SD (13.2)</td>
<td>1.05 (1.03, 1.07)</td>
<td>0.000</td>
<td>2.58 (2.35, 2.84)</td>
<td>0.000</td>
<td>7.55</td>
</tr>
<tr>
<td>Age of initiation (years) per SD (5.6)</td>
<td>0.99 (0.80, 1.01)</td>
<td>0.158</td>
<td>0.89 (0.82, 0.95)</td>
<td>0.001</td>
<td>7.49</td>
</tr>
<tr>
<td>Time since quitting smoking among former smokers per SD (13.0)</td>
<td>0.98 (0.97, 0.99)</td>
<td>0.005</td>
<td>0.26 (0.22, 0.30)</td>
<td>0.000</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Odds ratios (OR) were in per standard deviation (SD, among all samples) increment. The SDs of smoking pack years, smoking intensity, smoking duration, age of initiation, time since quitting smoking among former smokers were 25.9 pack-years, 13.2 cigarettes per day, 17.9 years, 5.6 years, and 13.0 years, respectively.
Role of Sponsors
The sponsors of all the funding bodies had no role in the design of the study, the collection and analysis of the data, or the preparation of the manuscript.

Author Contributions
Dr. Ru-Yi Huang generated the conception, done the data analysis, interpreted the data, and wrote the manuscript. Dr. Yongyue Wei generated the conception together with analyzing the data in depth and revising the manuscript. Dr. RayJean Hung was in charge of the data harmonization, monitor of the consortium work and offered statistical assistance for the manuscript. All authors from the ILCCO group contributed to the design and execution of the work and to the preparation and drafting critically of this report. Additionally, all had the opportunity to contribute to the interpretation of the results and to the redrafting of the report. Approval of the final report was obtained from all authors. Dr. David Cristiani wrote and supervised the project concept and was responsible for the final report.

Conflicts of Interest
We declare that we have no conflicts of interest.

Acknowledgments
We thank Dr. June Carroll and the Mount Sinai Hospital Granovsky Gluskin Family Medicine Centre for helping with the recruitment of the MSH–PMH study. We thank the study participants and the Lung Cancer Study Team of the MGH Thoracic Oncology Center.

Appendix A Supplementary Data
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.embio.2015.09.031.

References

