The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/154472

Please be advised that this information was generated on 2020-04-23 and may be subject to change.
XoxF-Type Methanol Dehydrogenase from the Anaerobic Methanotroph “Candidatus Methylomirabilis oxyfera”

Ming L. Wu,a* Hans J. C. T. Wessels,b Arjan Pol,a Huub J. M. Op den Camp,a Mike S. M. Jetten,a Laura van Niftrik,a Jan T. Keltjensa

Department of Microbiology, Radboud University Nijmegen, Institute for Water and Wetland Research, Nijmegen, The Netherlands; b Nijmegen Centre for Mitochondrial Disorders, Centre for Proteomics, Glycomics and Metabolomics, Laboratory of Genetic, Endocrine and Metabolic Disease, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands

“Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gram-negative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one so-called MxaFI-type MDH and two XoxF-type MDHs (XoxF1 and XoxF2). MxaFI MDHs represent the canonical enzymes, which are composed of two PQQ-containing large (α) subunits (MxaA) and two small (β) subunits (MxaI). XoxF MDHs are novel, ecologically widespread, but poorly investigated types of MDHs that can be phylogenetically divided into at least five different clades. The XoxF MDHs described thus far are homodimeric proteins containing a large subunit only. Here, we purified a heterotetrameric MDH from “Ca. Methylomirabilis oxyfera” that consisted of two XoxF and two MxaI subunits. The enzyme was localized in the periplasm of “Ca. Methylomirabilis oxyfera” cells and catalyzed methanol oxidation with appreciable specific activity and affinity (Vmax of 10 μmol min⁻¹ mg⁻¹ protein, Km of 17 μM). PQQ was present as the prosthetic group, which has to be taken up from the environment since the known gene inventory required for the synthesis of this cofactor is lacking. The MDH from “Ca. Methylomirabilis oxyfera” is the first representative of type 1 XoxF proteins to be described.

Received 7 October 2014 Accepted 11 December 2014
Accepted manuscript posted online 19 December 2014

Editor: G. Voordouw

Address correspondence to Jan T. Keltjens, JKeltjens@science.ru.nl.
* Present address: Ming L. Wu, Centre for Proteomics, Glycomics and Metabolomics, Laboratory of Genetic, Endocrine and Metabolic Disease, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands.

Supplemental material for this article may be found at http://dx.doi.org/10.1128/AEM.03292-14.

rations described to date lack this protein, even though the mxaF and mxaI genes are commonly linked to each other in genomes (8). The mxaACKLD gene products are essential for Ca\(^{2+}\) insertion into the apoprotein (19, 24), whereas the products of the mxaRSEH genes are thought to play a role in further MDH maturation (25–27). MxaB is a DNA-binding protein involved in transcriptional regulation, as are the two-component regulators encoded by the mxb and mxc clusters (28). The gene products of the pqqABCDE and pqqEF clusters are involved in PQQ biosynthesis for which the 23- to 24-amino-acid (aa) gene product of pqqA is the proposed precursor of PQQ (29–31).

Genome sequencing projects revealed the presence of MxaF homologs, termed XoxF proteins, that showed, at most, 50% sequence identity to known MxaFs (32–34). xoxF genes can be detected in many genomes, not only of methanotrophic and methylo trophic species, but also of microorganisms that have not been implicated in such a life-style (8, 34). Phylogenetic analysis divides XoxF proteins into at least five different clades (XoxF1 to XoxF5) (8, 34). Despite their widespread occurrence, the function of XoxF proteins has been enigmatic for some time. Unlike mxaF, xoxF genes were hardly expressed during growth under laboratory conditions and their deletion did not result in a clear phenotype (32). In striking contrast, xoxF genes were highly expressed in the plant phyllosphere (35) and by communities of nutrient-limited coastal ocean waters (36). Certain methanotrophs, such as the Verrucomicrobia (37), lack genes coding for an MxaF MDH, and an XoxF protein would be the only candidate for methanol oxidation. In agreement with this, the deletion of xoxF from Rhodobacter sphaeroides resulted in the loss of this phototroph’s ability to use methanol for photorespiration and aerobic respiration (38). Moreover, the purification of XoxF proteins from different bacterial species established their function as MDHs (39–43). These studies also shed light on their elusive nature. The proteins were specifically induced in the presence of rare earth elements (REEs) like La\(^{3+}\) or Ce\(^{3+}\) (40–42). The recent resolution of the crystal structure of the XoxF MDH from the Verrucomicrobia phylum member Methy lacidiphilum fumariolicum SolV showed that this REE took the position near the PQQ catalytic site usually occupied by calcium in MxaF MDHs (43). Importantly, all of the XoxF MDHs described thus far are homodimeric proteins lacking a small subunit.

The genome of “Ca. Methydomirabilis oxyfera” codes for three MxaF homologs that have been annotated as MxaF1 to MxaF3 and that are encoded by one long gene cluster (2). However, key genes known to be required for the biosynthesis of PQQ are absent from the genome of “Ca. Methydomirabilis oxyfera” (44). A closer analysis described in this paper affil- iates these three “MxaFs” with an MxaF MDH and two different XoxF MDHs. To address the question of which of these proteins is functionally expressed, we purified MDH from the organism. Curiously, the only active MDH that could be isolated was a heterotetrameric enzyme composed of two XoxF1-type large subunits and two small subunits, and it contained PQQ as its prosthetic group. Using specific antibodies directed against the XoxF1 large subunit, we localized the enzyme to the periplasm of “Ca. Methydomirabilis oxyfera” cells.

MATERIALS AND METHODS

“Ca. Methydomirabilis oxyfera” enrichment culture. “Ca. Methydomi- rabilis oxyfera” strain Ooij was enriched from a sediment sample taken from a ditch draining agricultural land in the Ooij polder, a floodplain of the River Rhine in The Netherlands, by the sequencing batch reactor tech-
sulfate (PMS)-mediated reduction of 2,6-dichlorophenol indophenol (DCPIP) at 600 nm (ε_{600} of 21,500 M^{-1} cm^{-1}) essentially as described by Antony and Zatman (53) with 100 mM Tris-HCl (pH 8.0) as the buffer and increased concentrations of methanol (20 mM) and NH4Cl (45 mM). Reaction mixtures (0.5 mL) contained 1 mM KCN to suppress the reoxidation of reduced DCPIP. Enzyme kinetic parameters were assessed by nonlinear regression analysis with the Origen 8.5.1 program (OrigenLab Corporation, Northampton, MA) by using Michaelis-Menten kinetics.

Analytical ultracentrifugation. Analytical equilibrium ultracentrifugation was performed at 20°C in a Beckman XL-I Proteomelab ultracentrifuge (Beckman Coulter, Fullerton, CA) equipped with an An-60 Ti rotor and cells with a 1.2-cm path length. Prior to ultracentrifugation, the protein was equilibrated in 25 mM HEPES-KOH buffer (pH 7.5) containing 25 mM KCl and 1 mM methanol and adjusted to an A_{280} (1 cm) of 0.75. The speed used was 30,000 rpm. Equilibrium data were evaluated for 300 scans with the SEDFIT program (54) and assuming a fractional ratio (βf / f0) of 1.05 for a slightly ellipsoid protein.

UV-visible light absorption spectroscopy and ICP-MS. The absorption spectrum of the purified enzyme was recorded in a cuvette with a 1-cm path length at room temperature on a Cary 50 spectrophotometer (Agilent, Santa Clara, CA). The concentration and content of the PQQ were determined in a cuvette with a 0.75. The speed used was 30,000 rpm. Equilibrium data were evaluated for 300 scans with the SEDFIT program (54) and assuming a fractional ratio (βf / f0) of 1.05 for a slightly ellipsoid protein.

Protein MS. SDS-gel slices containing the purified MDH were subjected to tryptic in-gel digestion according to Wilm et al. (56). Peptides were extracted and prepared for matrix-assisted laser desorption ionization—time of flight (MALDI-TOF) MS as described by Farhoud et al. (57). The MS of the digests was performed on a Bruker Biflex III spectrometer (Bruker Daltonics, Fremont, CA) operated in reflectron mode. Spectra (500 to 4,000 m/z) were analyzed with the Mascot Peptide Mass Fingerprint search program (Matrix Science, London, United Kingdom) against the "Ca. Methylochlorobacter oxyfera" database, with oxidation (M) as variable modification, 0.2 Da peptide tolerance, and a maximum of one missed cleavage. Molecular masses of the native large and small subunits were determined by MALDI-TOF MS operating in the linear mode. These analyses of the as-isolated enzyme were performed by using the [M + H]^+, [2M + H]^+, [M + 2H]^+, and [M + 3H]^+ peaks for determination of molecular masses.

To verify the presence of PQQ, tandem MS was employed. A protein sample was analyzed by C_{18} reversed-phase nanoflow liquid chromatography (Easy nano-LC; Proxeon, Thermo Fisher Scientific, Waltham, MA) coupled online via a nanoflow electrospray ionization source (Proxeon) to a 7T linear ion trap Fourier transform ion cyclotron resonance (ICR) mass spectrometer (LTQ FT Ultra; Thermo Fisher Scientific). Samples were loaded at a flow rate of 1.2 μL min^{-1} directly onto the analytical column with 5% acetonitrile. After sample application, peptides and PQQ were eluted from the column with a 15-min linear gradient of 5 to 30% acetonitrile at a flow rate of 0.3 μL min^{-1}. The mass spectrometer was operated in negative-ion mode and optimized for PQQ detection by direct infusion of 1 μM PQQ (Sigma-Aldrich, St. Louis, MO) in 0.5% acetic acid. The ICR cell was programmed to acquire selected ion monitoring spectra of 314 to 344 m/z. The linear ion trap was set to acquire fragmentation scans of m/z 29 with the following parameters: 3E4 ions, a 3TH isolation width, 30% normalized collision energy, a 30-ms activation time, and an activation q of 0.25. Analysis of the MDH sample was performed first and followed by a blank run. Here, the PQQ standard was analyzed. This order was chosen to prevent carryover effects. A simulated (deprotonated) precursor ion spectrum of PQQ was generated with Thermo Scientific Qual browser software.

Antiserum production. Polyclonal antiserum against the "Ca. Methylochlorobacter oxyfera" MDH large (α) subunit (α-XoxF1) was raised by injection of rabbits with the synthetic peptide NQYDPELRSGRDWKN (aa 317 to 331). This antiserum target region was selected on the basis of a unique protein surface peptide sequence deduced from BLAST and ClustalW analyses (see Fig. S1A in the supplemental material). Prior to immunization, an extra amino-terminal cysteine was added to the peptide sequence to enable conjugation to keyhole limpet hemocyanin (Eurogentec, Seraing, Belgium). Two rabbits were immunized by using a 3-month immunization protocol. The antisera from both rabbits were pooled and affinity purified (Eurogentec). This affinity-purified antiserum (α-XoxF1) was used as the primary antiserum for immunoblot analysis and immunogold labeling as described below.

Antiserum specificity. Antiserum specificity was tested by immunoblot analysis. "Ca. Methylochlorobacter oxyfera" cell extracts (30 μg of protein per lane) and purified MDH (10 μg of protein per lane) were separated by SDS–10% PAGE and transferred to a Protran nitrocellulose membrane (Whatman plc, Maidstone, United Kingdom). Immunoblotting and testing of antiserum specificity were performed as described previously (58).

Immunogold labeling and transmission electron microscopy. Chemical fixation and gelatin embedding of cells from the "Ca. Methylochlorobacter oxyfera" enrichment culture, cryosectioning, and subsequent immunogold labeling were done by established protocols (58, 59). The primary antiserum was diluted 50-fold in phosphate-buffered saline containing 1% BSA. Carbon-Formvar-coated grids (copper, hexagonal 100 mesh) containing ultrathin cryosections of "Ca. Methylochlorobacter oxyfera" cells were investigated in a transmission electron microscope at 60 kV (JEOL 1010; JEOL Ltd., Akishima-Tokyo, Japan) operating under the iTEM software (Olympus Soft Imaging Solutions, Münster, Germany). Images were recorded with a charge-coupled device camera (MegaView; Olympus Soft Imaging Solutions).

RESULTS

Genomic organization of three MDH systems of "Ca. Methylochlorobacter oxyfera." The genome of "Ca. Methylochlorobacter oxyfera" codes for three different MDH systems (MDH-1, MDH-2, and MDH-3) that are located on the same strand of a cluster of partly overlapping genes (DAMO_0112 to DAMO_0138) (Fig. 1). The cluster is made up of three subclusters. Each subcluster is preceded by genes encoding proteins (DAMO_0112, DAMO_0124, and DAMO_0134) showing 40 to 74% amino acid sequence identity both to each other and to the large subunits (MxaF1, XoxF) of well-defined MxaF1 and XoxF MDHs (see next). In all three subclusters, genes coding for the putative MDH large subunits are linked to mxaF1 and mxaG homologs (termed xoxf1 and xoxg in the
case of XoxF systems). Herein, distinct MxaG/XoxG proteins with the typical CXCH motif for heme c binding would represent the cognate physiological electron acceptor for methanol oxidation, cytochrome c_{55}. The function of the MxaL/XoxL-like proteins (DAMO_0113, DAMO_0125, DAMO_0136) is not known, but sequence analysis identified it as a member of the family 3 extra- cellular solute-binding proteins (COG0834, pfam13531), suggesting a role in the binding of methanol or the release of the toxic reaction product formaldehyde. Only the MDH-1 subcluster harbors a gene (DAMO_0115) coding for the small (β) subunit of canonical heterotetrameric MxaFl MDHs. Similarly, only the MDH-1 subcluster comprises the nearly complete set of genes coding for proteins involved in PQ and Ca$^{2+}$ insertion (mxa-ACKLD; DAMO_0118 to DAMO_0121) and in MDH matura- tion (mxaRSE; DAMO_0116 to DAMO_0117, DAMO_0122) (Fig. 1). In "Ca. Methylomirabilis oxyfera," the mxaL and mxaD genes are fused (DAMO_0121). The gene order in the MDH-1 subcluster is the same as that found in M. extorquens (19) and in Mxa systems in other organisms (8). However, homologs of mxaH and the regulatory mxaAB are absent, which is not unusual (8).

MDH-2 and MDH-3 subclusters lack nearly all of the genes coding for Ca$^{2+}$ insertion and maturation proteins, which seems to be a common property of XoxF systems (8). In this respect, the presence of an MxaE homolog (DAMO_0128) in the MDH-2 subcluster is remarkable. The two subclusters are separated by five genes (DAMO_0129 to DAMO_0133) (Fig. 1), of which DAMO_0129 and DAMO_0131 encode putative TonB-dependent and TonB-like transporter proteins, respectively. It is interesting that homologs of DAMO_0129 and DAMO_0131 are widely detected in genomes of XoxF-containing methylo- trophs (data not shown), DAMO_0132 and DAMO_0133 code for "Ca. Methylomirabilis oxyfera"-specific exported surface proteins that are structurally characterized by β-propeller strands. Deep RNA sequencing indicated that the DAMO_0130 coding region is one of the most highly expressed parts of the genome (Fig. 1), but it remains to be established whether its transcript is translated into an unknown protein (as annotated) or it is a small noncoding RNA that has some regulatory function.

As described below, all of the amino acids involved in the bind- ing of the PQQ prosthetic group are conserved in all three MDH large subunits from "Ca. Methylomirabilis oxyfera." Moreover, in this work, the presence of this cofactor in one of these MDHs could be confirmed by direct purification. Therefore, it was puzzling that the genome of the organism possessed only three of the seven or eight genes required for PQQ biosynthesis (44), i.e., DAMO_0005 (ppqF), DAMO_0004 (ppqG), and DAMO_0982 (ppqE) (2, 44). However, reexamination of the gene products revealed only low sequence similarity to the particular PQQ biosyn- thesis enzymes. Like validated PqqF (760 aa) (30), DAMO_0005 (427 aa) and DAMO_0004 (448 aa) belong to the Zn-dependent M16 peptidase superfamily. DAMO_0982 (371 aa) and PqqE (380 aa) are members of the radical S-adenosylmethionine super- family. Significant differences in protein length and low se- quence similarities (<20%) with respect to known PQQ biosyn- thesis proteins suggest other functions for these three "Ca. Methylomirabilis oxyfera" proteins, if they are expressed. Hence, "Ca. Methylomirabilis oxyfera" seems to be devoid of PQQ biosynthesis machinery, at least as far as we know.

Sequence analysis of the MDH large and small subunits of "Ca. Methylomirabilis oxyfera." The sequences of the three MDH large subunits (DAMO_0112, DAMO_0124, and DAMO_0134) are 42 to 50% identical, and nearly all of the amino acids that had been implicated in MDH crystal structures with the binding of PQQ and metal (calcium) prosthetic groups are conserved in these subunits (see Fig. S1A in the supplemental material). Major differences included deletions and/or insertions of small amino acid stretches. More-detailed sequence comparison and phylogenetic analysis assigned those large subunits to three different phylogenetic clades (see Fig. S2 in the supplemental material). DAMO_0112 was affiliated with the MxaF MDHs. At the amino acid level, DAMO_0112 (refered to here as MxaF_Mo) displayed 69 to 74% sequence identity to MxaF MDHs with validated function and known crystal structures. According to the numbering system of Chistoserdova (34), DAMO_0124 and DAMO_0134 are members of the XoxF1 and XoxF2 MDHs, respectively. XoxF1 from "Ca. Methylomirabilis oxyfera" (DAMO_0124; XoxF1_Mo) showed the highest sequence identity (67 to 74%) to putative MDHs from methanotrophic Methylocitera, Methyloferula, and Methylocella species, as well as Hyphomicrobium and Xanthomon- nas representatives. XoxF2 from "Ca. Methylomirabilis oxyfera" (DAMO_0134; XoxF2_Mo) showed the highest sequence identity (62 to 63%) to tentative MDHs from the thermoacidophilic methanotrophic Verrucomicrobia (37), including the XoxF-type MDH from M. fumariciloic SoV (XoxFSov), the crystal structure of which has been resolved (43). A particular feature of XoxFSov is the presence of a lanthanide REE (La$^{3+}$, Ce$^{3+}$) at its catalytic site instead of Ca$^{2+}$. This REE is coordinated in close proximity to PQQ by three highly conserved amino acids (Glu172, Arg256, and Asp299; numbering according to that of processed XoxFMf) that are also involved in the coordination of Ca$^{2+}$ (8, 43). However, the proper coordination of the REE requires one more amino acid, Asp301. Besides other sequence characteristics, the presence of Asp301 is a highly diagnostic property of XoxF MDHs (8). Next, two amino acid substitutions (Pro259\rightarrowThr, Ala171\rightarrowGly) are observed to accommodate the larger REE in the XoxFMf structure (43). Sequence comparison showed that Asp301 was present in both XoxF1Mo and XoxF2Mo (see Fig. S1A in the supplemental material). In addition, XoxF2Mo displayed the same proline-to-threonine and alanine-to-glycine substitutions seen in XoxFMf but these substitutions were different in XoxF1Mo (Pro\rightarrowAsp, Thr\rightarrowHis) (see Fig. S1A). These observations might indicate that both XoxF MDHs from "Ca. Methylomirabilis oxyfera" possess a REE instead of calcium.

As mentioned before, only the MDH-1 subcluster contained a gene coding for a small subunit, namely, DAMO_0115 (Fig. 1). DAMO_0115 was translated as a polypeptide (MxaI$	ext{Mo}_{0115}$) of 94 aa. SignalP analysis (51) suggested a 25-aa leader sequence, pointing to the translocation of the processed protein across the cytoplasmic membrane. The processed protein (69 aa; theoretical molecular mass, 8,075.11 Da) showed 61 to 65% sequence identity to the small subunit of MDHs with known crystal structures (see Fig. S1B in the supplemental material). In these structures, the small subunit tightly binds to the large subunit through a conserved set of large-subunit amino acids (see Fig. S1A). To quite an extent, these amino acids are also conserved in XoxFs, even though the latter may not contain such a small subunit. Like MxaIMo_{0115}, all three MDH large subunits from "Ca. Methylomirabilis oxyfera" were predicted to contain N-terminal leader sequences, again suggesting a periplasmic localization of the processed enzymes. After cleavage of the N-terminal 29 or 30 aa, this would result MxaFMo_{0112}.
TABLE 1 Purification of MDH from “Ca. Methylomirabilis oxyfera” enrichment culture

<table>
<thead>
<tr>
<th>Purification step</th>
<th>Total protein (mg)</th>
<th>Sp act (µmol min⁻¹ mg⁻¹)</th>
<th>Total activity (µmol min⁻¹)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell extract</td>
<td>24.5</td>
<td>1.10 ± 0.06</td>
<td>26.4</td>
<td>100</td>
</tr>
<tr>
<td>Soluble fraction</td>
<td>19.7</td>
<td>0.97 ± 0.05</td>
<td>19.2</td>
<td>73</td>
</tr>
<tr>
<td>Membranes</td>
<td>3.4</td>
<td>0.53 ± 0.03</td>
<td>1.8</td>
<td>7</td>
</tr>
<tr>
<td>(NH₄)₂SO₄ 5.7%</td>
<td>5.7</td>
<td>2.94 ± 0.23</td>
<td>16.9</td>
<td>64</td>
</tr>
<tr>
<td>Hydroxyapatite</td>
<td>0.9</td>
<td>9.66 ± 1.52</td>
<td>8.4</td>
<td>32</td>
</tr>
</tbody>
</table>

XoxF₁Mo and XoxF₂Mo, apoprotein molecular masses of 63,526, 67,660, and 63,713 Da, respectively.

Deep RNA sequencing (2) indicated that mxaF was most highly expressed at the mRNA level (transcriptome coverage: mxaF₆₃,526 - 62-fold; xoxF₁₆₃,526 - 14-fold; xoxF₂₆₃,526 - 6-fold (Fig. 1)). Strikingly, XoxF₁₆₃,526 was most highly expressed in the proteome of “Ca. Methylomirabilis oxyfera” strain Ooij, which was used in the present study, whereas XoxF₂₆₃,526 was most abundant in the proteome of closely related “Ca. Methylomirabilis oxyfera” strain Twente (2), despite the fact that both strains were enriched and cultured under similar conditions. The above considerations raise the questions of which of the three MDHs is (are) functionally expressed, whether their large subunit contains PQQ or an alternative cofactor, which metal is present at the catalytic site, and where the MDH is localized. To address these questions, we purified the MDH from “Ca. Methylomirabilis oxyfera” and assessed its cellular localization by immunogold labeling.

Purification of a heterotetrameric XoxF MDH from “Ca. Methylomirabilis oxyfera.” MDH was purified with a 32% yield by the two-step purification procedure summarized in Table 1. The preparation obtained after the hydroxyapatite step represented the predominant MDH activity (>95%); a few other fractions displayed negligible activity and were not further investigated. After ultracentrifugation of the cell extract, 93% of the MDH activity was recovered in the supernatant. Hence, MDH is soluble or only loosely membrane associated. The purification factor (8.4-fold) suggested that MDH is a major protein. The purified enzyme catalyzed methanol oxidation by simple Michaelis-Menten kinetics with apparent Vₘₐₓ values of 10 µmol min⁻¹ mg⁻¹ and Kₘ values of 10 µmol min⁻¹ mg⁻¹ and 17 µM, respectively. The presence of ammonium strongly stimulated its activity; in the absence of ammonium, it was 10-fold less active.

On native PAGE, purified MDH showed one single band with an apparent molecular mass of approximately 260 kDa (Fig. 2A). SDS-PAGE displayed two bands of 67 and 11 kDa (Fig. 2B). Linear-mode MALDI-TOF MS analysis applied to the isolated MDH revealed an Mᵣ of 8,200 ± 66 (n = 5) for the small subunit, which was significantly less than that judged by SDS-PAGE (see Fig. S3 in the supplemental material). However, this value was close to the calculated molecular mass (8,075.11 Da) of MxaI₆₃,526, which is encoded by a gene (DAMO_0115) in the MDH-1 subcluster, after cleavage of the predicted signal peptidase. In agreement with this, trypsin cleavage of the MDH small subunit and subsequent reflectron mode MALDI-TOF MS analysis verified the presence of several peptides that were to be expected in DAMO_0115 (see Fig. S1B). The large subunit was resistant to proteolytic cleavage, and only a few peptides were recovered within the 500-to-4,000 m/z frame used for MS analysis. These peptides uniquely mapped to DAMO_0124 (XoxF₁₆₃,526) (see Fig. S1A). Linear MALDI-TOF MS gave a molecular mass of 67.3 ± 0.27 kDa (n = 7) for the large subunit (see Fig. S3), which agrees with both that estimated by SDS-PAGE and that expected for N-terminally cleaved XoxF₁₆₃,526 (DAMO_0124; 67.66 kDa). It should be noted that the molecular masses of the other two large subunits are ~4 kDa less (MxaI₆₃,526; 65,526 Da; XoxF₂₆₃,526; 63,713 Da), differences that are incompatible with MS. Upon analytical equilibrium ultracentrifugation of native MDH, the dominant 280-nm-absorbing band could be modeled (SEDFIT) to an ~150-kDa protein (Fig. 2D), which is clearly less than that observed by native PAGE. This molecular mass of 150 kDa is consistent with an α₁β₂ protein composed of two 67-kDa large subunits and two 8-kDa small subunits. Besides this major band, three more bands were obtained during analytical ultracentrifugation of the apparently pure protein preparation (Fig. 2B). These bands sedimented at ~67, ~240, and ~310 kDa. The molecular mass of the first band (67 kDa) again agreed with that expected for XoxF₁₆₃,526. Both high-molecular-mass bands might represent higher aggregates (α₁α₂β₂, α₁β₁, α₁β₂). Taken together, the observations concluded that the MDH purified from “Ca. Methylomirabilis oxyfera” was predominantly a heterotetrameric (α₁β₂) enzyme composed of two MxaI₆₃,526 small subunits and two XoxF₁₆₃,526 large subunits.

The XoxF MDH from “Ca. Methylomirabilis oxyfera” contains PQQ. The UV-visible light absorption spectrum of the purified MDH from “Ca. Methylomirabilis oxyfera” exhibited the characteristics of a quinoprotein (Fig. 3), having an absorption maximum at 345 to 350 nm and a wide shoulder at 375 to 400 nm (60, 61). The spectrum of the enzyme (6.2 mg ml⁻¹) did not differ from the standard MDH (Fig. 3). Absorption at 345 nm was also indicative of the presence of a metal ion in the active site of the enzyme (62, 63). Incubation of the enzyme preparation with EGTA had no effect on the overall spectrum of the enzyme, indicating that the metal would be tightly bound. To assess the nature of the metal, ICP-MS was used as described before (43). The analysis revealed the presence of calcium only; rare earth metals were below the limit of detection (<0.1 mol%). Since column fractions lacking MDH contained calcium as well, presumably derived from hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂] used for purification, it was not possible to determine the content of this compound in the protein.

The presence of PQQ in the purified MDH from “Ca. Methylomirabilis oxyfera” was confirmed by MS with both precursor ion and fragmentation level data. The acquired precursor ion spectra from the PQQ standard and the purified MDH fully compared the simulated spectrum of PQQ. The monoisotopic mass of the [M-H]-PQQ ion from both the standard MDH (m/z 329.0053; Δ = 4.0 ppm) and the purified MDH (m/z 329.0052; Δ = 3.6 ppm) accurately matched the calculated (deprotonated) monoisotopic mass of PQQ (m/z 329.0040) (see Fig. S4A in the supplemental material). Moreover, the relative abundance of the ¹³C isotope peak in precursor spectra from both the PQQ standard (17%) and the purified MDH (16%) was in good agreement with the simulated spectrum (15%). The isotope abundance spectrum was simulated according to de Hoffmann and Stroobant (64). The presence of PQQ in the purified MDH was also confirmed by comparing the collision-induced dissociation fragmenta-
tion spectra of m/z 329 from the PQQ standard and the purified enzyme (see Fig. S4B). The two spectra were nearly identical and showed the presence of two abundant fragment ions corresponding to the loss of CO$_2$ (m/z 285 [M-H-CO$_2$]$^-$) and 2CO$_2$ (m/z 241 [M-H-2CO$_2$]$^-$) from the precursor ion. The findings agreed with those of Noji et al. (65), except that in neither the standard nor the purified enzyme was a third diagnostic fragment ion (m/z 197 [M-H-3CO$_2$]$^-$) detectable, which was probably due to different instrument characteristics and/or conditions.

Cellular localization of the XoxF MDH in “Ca. Methylomirabilis oxyfera.” The N-terminal signal sequences in XoxF1$_{Mox}$ suggested a periplasmic localization of the processed protein (see Fig. S1A in the supplemental material). To investigate this, we generated primary antiserum with a synthetic peptide targeting a sequence of XoxF1$_{Mo}$ (α-XoxF1) that was specific for this protein (see Fig. S1A). The specificity of the derived antiserum was confirmed using SDS–15% PAGE and immunoblot analysis. The results showed that the antiserum recognized a band corresponding to XoxF1, while it did not detect the MxaI protein. Immunoblot analysis also confirmed the presence of XoxF1 in the cell extract, indicating its periplasmic localization.

Analytical ultracentrifugation. Analytical ultracentrifugation was performed as described in Materials and Methods, and equilibrium data were fitted by the SEDFIT program (54). Concentrations are expressed in arbitrary units (AU) of absorbance at 280 nm.

UV-visible light absorption spectrum. The UV-visible light absorption spectrum of purified MDH was recorded in 150 mM phosphate buffer (pH 7.0) at 30°C. The protein concentration was 6.2 mg ml$^{-1}$. The spectrum showed a peak at 450 nm, corresponding to the absorption of the heme group. The values to the left are molecular sizes in kilodaltons.
firmed with both cell extracts of “Ca. Methylomirabilis oxyfera” and the purified enzyme by SDS-PAGE and immunoblot analysis (Fig. 2C). No bands were detected in blots incubated with the secondary antiserum only. These results showed that the derived α-XoxF1 antiserum was specific and suited for the intracellular localization of XoxF1 Mo in ultrathin cryosections of “Ca. Methylomirabilis oxyfera” cells. Ultrathin sections of “Ca. Methylomirabilis oxyfera” cells incubated with colloidal gold alone showed no gold particles associated with the atypical polygon-shaped “Ca. Methylomirabilis oxyfera” cells (negative control; data not shown) (58, 59). When ultrathin sections were incubated with α-XoxF1, very little background was detected and most of the gold particles were observed near the outer side of the cytoplasmic membrane, as expected for a periplasmic enzyme (Fig. 4).

DISCUSSION

The genome of the anaerobic methanotroph “Ca. Methylomirabilis oxyfera” codes for three different MDH systems that are localized in one large gene cluster, which is highly unusual: one MxaFI MDH and two XoxF MDHs (Fig. 1). Here, we purified the predominant MDH that is functionally expressed under the growth conditions used (Fig. 2 and Table 1). The enzyme was composed of two small and two large subunits, as is common among MxaFI MDHs (5–8). MALDI-TOF MS identified the small subunit as the N-terminally cleaved gene product of DAMO_0115 (MxaI s1). Five lines of evidence (SDS-PAGE, MALDI-TOF MS of the native and trypsin-cleaved protein, analytical ultracentrifugation, antibody specificities) consistently indicated that the large subunit with a size of 67 kDa was XoxF1Mo (DAMO_0124). Immunogold labeling localized the protein in the periplasm (Fig. 4), as is also known for MDHs from other methanotrophs and methylo trophs. In the established (PMS and DCPIP) dye-coupled assay (6, 53), “Ca. Methylomirabilis oxyfera” MDH catalyzed the oxidation of methanol with high affinity (Km of 17 μM) and a high Vmax of 10 μmol min−1 mg−1. The apparent Km for methanol is comparable to those of well-investigated MxaFI MDHs (2 to 20 μM), while the Vmax of the “Ca. Methylomirabilis oxyfera” enzyme was substantially higher than those of known MxaFI MDHs (0.8 to 1.0 μmol min−1 mg−1) (60, 63, 66). In addition, MDH was a major enzyme in “Ca. Methylomirabilis oxyfera.” Taking into account that the very slowly growing bacterium “Ca. Methylomirabilis oxyfera” oxidizes methane at an extremely low rate (1.7 nmol min−1 mg protein−1) (2, 46), the abundance of MDH and its favorable catalytic efficiency (Vmax/Km) allow the conversion of methanol, the product of methane activation, down to low concentrations.

“Ca. Methylomirabilis oxyfera” MDH contains PQ as its prosthetic group. While the unambiguous presence of this cofactor in an XoxF-type large subunit was established only quite recently (43), the finding was expected. Except for nicotinoprotein methanol/alcohol dehydrogenase (3, 4), all of the MDHs known to date rely on PQ as the catalytic center and PQ-binding motifs have been identified before in XoxF MDHs (see Fig. S1A) (8, 32). However, the genome of “Ca. Methylomirabilis oxyfera” lacks known PQQ biosynthesis machinery. So, either the organism has evolved a novel biosynthetic pathway, which is unlikely considering the highly specific chemistry of the (oxygen-dependent) reactions involved (67), or the microorganism derives the cofactor from producers in the enrichment culture. Our finding that the supply of boiled cells of M. fumariolicum strongly stimulated “Ca. Methylomirabilis oxyfera” culture activity and growth supports the latter view. Otherwise, the dependence on exogenous PQQ is not without precedent. For example, Escherichia coli and other enteric bacteria are incapable of PQQ synthesis, but the organisms readily incorporate the cofactor present in growth medium into their glucose dehydrogenase quinoproteins (68, 69). In addition, it has been known for quite some time that microorganisms that are capable of PQQ biosynthesis may excrete the compound, thereby stimulating the growth of other organisms (70). Still, it would be astonishing if “Ca. Methylomirabilis oxyfera,” with its unique life-style, depended on other microorganisms in the environment for the supply of an essential cofactor of one of its key enzymes.

The large subunit of purified MDH from “Ca. Methylomirabilis oxyfera” belongs to the XoxF MDHs. XoxF MDHs likely represent an ecologically highly relevant but grossly overlooked group of MDHs (8). Genes coding for these proteins are widely found in the genomes of methylo trophic and methanotrophic bacteria and can be phylogenetically differentiated into at least five lineages (see Fig. S2 in the supplemental material) (8, 34). While hardly expressed under laboratory growth conditions (32), xoxF genes are among the most highly expressed genes in natural sys-
tems (35, 36). The reason for their long-time elusiveness is that XoxF apparently harbors lanthanide REEs, compounds that are rarely included in laboratory trace element solutions, at its catalytic site (40–43). The presence of a REE may confer on the pro-rarely included in laboratory trace element solutions, at its cata-
typical MxaFIMo gene cluster (MDH-1) (Fig. 1). The function of the small
ence in the former of a small subunit that is derived from the
that containing MDH, in which the PQQ absorbance band is shifted to
the UV-visual light spectrum of

"Ca. Methylomirabilis oxyfera" MDH, having an absorbance maximum at 445 nm (Fig. 3), is
typical of a calcium-containing quinoprotein rather than a REE-
containing MDH, in which the PQQ absorbance band is shifted to
a longer wavelength (454 nm) (43). These considerations suggest that
"Ca. Methylomirabilis oxyfera” MDH possesses calcium. A second striking difference between the “Ca. Methylomirabilis oxyfera” MDH and the XoxF MDHs known thus far is the pres-
ence in the former of a small subunit that is derived from the
MxaFIMo gene cluster (MDH-1) (Fig. 1). The function of the small
subunit is not precisely known, but it has been suggested by us (8)
that it enables MxaF MDHs to properly coordinate calcium. Also
in the XoxF MDH described here, the small subunit might have
such a function. Obviously, the concerted action of different pro-
teins from different gene clusters requires tight regulation. The mechanisms underlying regulation are a wide-open field of re-
search, regarding not only “Ca. Methylomirabilis oxyfera” but also in other methylotrophs and methanotrophs that harbor mul-
tiple MxaF and XoxF MDH systems in their genomes.

The presence of multiple MDH systems offers a methylotroph the means to adapt its metabolism in an optimal way to prevailing environmental conditions (availability of sub-
strates and essential cofactors, like metals). The as yet poorly ex-
plored XoxF MDHs add to this by their (presumably) superior catalytic properties, yet utilizing difficult-to-access catalytic REES (8). The hybrid heterotetrameric MDH described here provides
“Ca. Methylomirabilis oxyfera” with a most efficient means to oxidize methanol in the pathway from methane to CO2.

ACKNOWLEDGMENTS

We thank Katinka van de Pas-Schoonen for support in the maintenance of the enrichment cultures and Geert-Jan Janssen from the General Instru-
ments Department for his help in operating the transmission electron microscope. Thomas Barneds of the Max Planck Institute for Biomedical Research (Heidelberg, Germany) is acknowledged for the analytical ultra-
centrifugation analysis. We thank Wouter Maalke and Naomi de Almeida for their support in operating the FPLC system.

The research by M.L.W. was funded by a Horizon grant (050-71-058), L.V.N. was funded by the Netherlands Organization for Scientific Re-
search (VENI grant 863.09.009), and M.S.M.J. was funded by two Euro-
pean Union Advanced Research Grants (ERC 223927, ERC 339880) and
by Zwaartekrachtsubsidie (gravitation grant) SIAM 024 002 002 from the Dutch Government to the Soehngen Institute for Anaerobic Micro-
biology.

REFERENCES

921. http://dx.doi.org/10.1038/nature04617.

2. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gliether J,
.org/10.1038/nature08883.

1177(99)00073-9.

.org/10.1016/S1570-9639(03)00042-6.

abb.2004.03.038.

two methylotrophic bacteria at 2.6-Å resolution. J Biol Chem 267:
22289–22297.

Methylobacterium extorquens at 1.94 Å. Structure 3:177–187.

0334.

12. Xia ZX, He YN, Dai WW, White SA, Boyd GD, Mathews FS. 1999. Detailed active site configuration of a new crystal form of methanol dehy-

13. Xia ZX, Dai WW, He YN, White SA, Mathews FS, Davidson VL. 2003. X-ray structure of methanol dehydrogenase from Paracoccus denitrificans

http://dx.doi.org/10.1021/bi051877j.

lographic analysis of a methanol dehydrogenase from the marine bacterium Methylophaga amnisulfidivorans MP(T). Acta Crystallogr Sect F

of methanol dehydrogenase from *Methylocystis* sp. GB 25 J Basic Biologi

21. Sowell SM, Abraham PE, Shah M, Verberkmoes NC, Smith DP, Baro-

30. Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp HJM. 2014. Rare earth metals are essential for methano-

35. Kelm KF, van Allen T, van de Pas-Schoonen KT, Jetten MS, Strous M. 2009. Enrichment and molecular detection of denitrifying meta-

42. Anthony C, Zatman LJ. 1967. Microbial oxidation of methanol—

