PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/152409

Please be advised that this information was generated on 2019-11-13 and may be subject to change.
KOUNCIL: Kidney-Oriented Understanding of Correcting Ciliopathies

M Stokman1*, M Oud2, J Van Reeuwijk2, M Lilien3, N Van De Kar4, I Nijman1, C Gilissen2, HY Kroes1, E Bongers2, N Geijsen5, E Kamsteeg2, E Cuppen1, R Roepman2, R Giles6, K Renkema1, H Arts2, N Knoers1

From Cilia 2014 - Second International Conference
Paris, France. 18-21 November 2014

Objective
Nephronophthisis is an autosomal recessive renal ciliopathy that constitutes the leading monogenic cause of end-stage renal disease in children. The KOUNCIL consortium is a collaboration between the UMC Utrecht, the Radboud UMC Nijmegen and UC London aimed at elucidating the genetic etiology and pathophysiological mechanisms underlying nephronophthisis and identifying drugs that prevent or delay renal insufficiency. Our goal is to improve genome diagnostics, genetic counselling and therapeutic options for nephronophthisis patients.

Methods
We employ next-generation sequencing to identify novel disease genes in 100 nephronophthisis patients included within the AGORA biobank project. The functional effect of novel mutations is assessed using in vitro and in vivo models. Genotypic and phenotypic patient characteristics are registered in a nephronophthisis database, facilitating correlation analyses and identification of early phenotypic markers. Newly identified nephronophthisis-genes are incorporated into diagnostic next-generation sequencing panels of ciliary genes. We use a systems-biology approach to identify and functionally characterize nephronophthisis-associated protein modules. Finally, we use high-throughput repurposing screens in zebrafish embryos to identify FDA-approved drugs that halt renal failure.

Results
With this approach, we expect to uncover the causal mutation in 60-90% of nephronophthisis patients. KOUNCIL members were involved in the recent identification of three novel genes (IFT172, WDR34 and WDR60) for nephronophthisis-related disorders. Clinical guidelines and new diagnostic tools for nephronophthisis are developed and implemented in diagnostics. We expect to identify drugs that can lead to novel therapies for nephronophthisis.

Conclusion
The KOUNCIL study is designed to advance understanding of renal ciliopathies and improve clinical care for nephronophthisis patients.

Authors’ details
1Medical Genetics, University Medical Center Utrecht, the Netherlands. 2Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands. 3Pediatric Nephrology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands. 4Pediatric Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands. 5Hubrecht Institute, University Medical Center Utrecht, the Netherlands. 6Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands.

Published: 13 July 2015

doi:10.1186/2046-2530-4-S1-P50