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We study quantum corrections to the classical Bianchi I and Bianchi IX universes. The modified
dynamics is well motivated from the asymptotic safety program where the short-distance behavior of
gravity is governed by a nontrivial renormalization group fixed point. The correction terms induce a phase
transition in the dynamics of the model, changing the classical, chaotic Kasner oscillations into a uniform
approach to a point singularity. The resulting implications for the microscopic structure of spacetime are
discussed.
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I. INTRODUCTION

One of the most fascinating features of general relativity
(GR) is the appearance of spacetime singularities where the
theory essentially predicts its own breakdown. Following
the theorems by Hawking and Penrose, such singularities
occur under quite general conditions [1], e.g. in the form of
the (spacelike) big bang singularity. This leads to rather
tantalizing questions about a universal behavior of the
dynamics close to a singularity, especially once quantum
effects are taken into account.
In the classical treatment of the problem, the general

dynamics near a spacelike singularity has been analyzed in
a series of seminal works by Belinsky, Khalatnikov and
Lifshitz (BKL) [2–4], building on the idea that sufficiently
close to the singularity, time derivatives overwhelm the
spatial ones. This results from an asymptotic ultralocal
behavior: at each spacetime point the light cones collapse
into timelike lines, which effectively decouple [5]. Thus a
finite region close to the singularity can be well approxi-
mated by a homogeneous spacetime. BKL studied a
representative class of homogeneous and anisotropic mod-
els, showing that the asymptotic dynamics consists of an
endless, chaotic succession of phases where spacetime
appears flat and highly anisotropic.
On the other hand, on general grounds one expects that

close to a singularity, quantum gravitational corrections
should play an important role in the description of the
dynamics. Inquiring how these corrections may modify the
BKL scenario constitutes a crucial step in understanding
the asymptotic approach to a classically singular point. This
has been explored in recent years in the context of loop
quantum cosmology [6,7] and string theory [8]. In this
work we will study for the first time the quantum corrected
BKL behavior in the context of Weinberg’s asymptotic
safety scenario [9–12]. In this scenario, the ultraviolet

completion of gravity is provided by a scale-invariant high-
energy phase. This phase is realized through a nontrivial
fixed point of the renormalization group (RG) flow which
renders the theory nonperturbatively renormalizable.
Wewill consider the effect of quantum corrections in two

relevant anisotropic models, namely the (flat) Bianchi I and
the (closed) Bianchi IX. Our analysis will show that in both
cases the scale invariance of the theory at high energies is
capable of changing the qualitative features of the dynam-
ics in novel and unexpected ways.

II. CLASSICAL BKL DYNAMICS
AND SINGULARITIES

In the BKL analysis the evolution of spacetime near a
singularity is modeled by a homogeneous and anisotropic
Bianchi IX metric, with line element

ds2 ¼ −dt2 þ ða2lalb þ b2mamb þ c2nanbÞdxadxb: ð1Þ
Here aðtÞ; bðtÞ; cðtÞ are scale factors depending on the
cosmological time t, and the x-dependent three-vectors
la; ma and na define the directions along which spatial
distances vary with the corresponding scale factor. BKL
revealed that the classical dynamics of the scale factors,
governed by Eq. (5) with λ� ¼ 0, follows a complex pattern
of oscillations between so-called Kasner phases, where
terms including spatial derivatives of the three-vectors are
negligible (see Fig. 2, upper panel). In a Kasner phase the
scale factors exhibit a distinctive power-law behavior

aðtÞ ¼ tp1 ; bðtÞ ¼ tp2 ; cðtÞ ¼ tp3 ; ð2Þ
with the Kasner exponents pi satisfying

X3

i¼1

pi ¼ 1;
X3

i¼1

ðpiÞ2 ¼ 1: ð3Þ

Ordering the Kasner exponents according to p1 ≥ p2 ≥ p3

the solution to Eqs. (3) can be given in terms of a single
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parameter u [see Eq. (9) for r ¼ 1 below] and is displayed
in the second diagram of Fig. 1. Thus classically p1; p2 > 0
and p3 < 0, with p1 ¼ 1 and p2 ¼ p3 ¼ 0 appearing as a
special case.
Each oscillation to a new Kasner phase in the Bianchi IX

model changes the value of the Kasner exponents according

to a well-defined alternation rule [4]. The power-law
behavior (2) thus characterizes the approach of the model
to the initial space-like singularity located at t ¼ 0.
Extending the classification [13], the possible asymptotic
behaviors are summarized in Table I. The classical Bianchi
I model, where the Kasner exponents satisfy (3), exhibits
either a pancake or a cigar-type singularity. This picture is
drastically modified by the quantum effects studied below.

III. QUANTUMEFFECTS VIA RG IMPROVEMENT

At an RG fixed point the theory becomes scale invariant.
This entails, in particular, that the dimensionful Newton’s
constant G and the cosmological constant Λ acquire a
specific energy dependence, namely, for k → ∞, GðkÞ →
~g�k−2 and ΛðkÞ → ~λ�k2, where k is the RG scale. The
analysis of the gravitational beta function establishes that
~g� > 0 and ~λ� > 0 are numerical coefficients of order unity,
given by the position of the fixed point [14].
The scale dependence exhibited by G and Λ has

profound consequences for the microscopic structure of
spacetime at distances below the Planck scale. In order to
study these features based on first principles, one has to
compute the loop corrections capturing quantum effects at
the relevant energy scale. Alternatively, one may exploit the
fact that loop corrections are, in general, minimized by
choosing the RG scale k to be of the order of the
characteristic scale of the process one wants to study.
This procedure is known to reproduce the correct Uehling
potential for a static particle [15]. Similar techniques have
been applied to black holes [16–18] and cosmology [19].
Following this strategy, we apply the technique of

“improved equations of motion” in order to study the
effect of the fixed-point scaling for the BKL scenario. The
starting point are the classical Einstein equations including
a cosmological constant, Gμν ¼ −Λgμν, with Gμν the
classical Einstein tensor. The RG improvement promotes
Λ to a scale-dependent coupling constant. Close to the
singularity this scale dependence follows the fixed-point
scaling, so that Gμν ¼ −λ�k2gμν. The RG scale is then
identified with the cosmological time t, k ¼ ζt−1, with
ζ ¼ Oð1Þ, since this sets the typical time scale of the
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FIG. 1 (color online). Admissible Kasner exponents of the
quantum-improved Kasner system for the illustrative examples
(from top to bottom) λ� ¼ −1=12, λ� ¼ 0, λ� ¼ 1, and λ� ¼ 4.
The labels inserted in the diagram refer to the singularity
classification of Table I and indicate what type of spatial
singularity is encountered for the corresponding value of u.

TABLE I. Classification of the singular behavior of the scale
factors (2). The first four types of spatial singularities follow the
classification of [13] while the brick and plane-type singularities
are new features appearing in the quantum-improved model.

Singularity Asymptotic Kasner exponents

Point (PT) p1; p2; p3 > 0
Barrel (B) p1; p2 > 0; p3 ¼ 0
Pancake (PC) p1 > 0; p2 ¼ p3 ¼ 0
Cigar (C) p1; p2 > 0; p3 < 0
Brick (BR) p1 > 0; p2 ¼ 0; p3 < 0
Plane (PL) p1 > 0; p2; p3 < 0
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dynamics. The RG-improved equations of motion [20]
have the form

Gμν ¼ −λ�t−2gμν ð4Þ

with λ� ≡ ~λ�ζ2 being of order unity. Notably, the improved
equation (4) also arises from a covariant cutoff identifica-
tion. Asymptotically, k2∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CμνρσCμνρσ

p ≃t−2þsubleading,
with the Weyl tensor constructed from the classical sol-
ution. Thus the implemented cutoff identification agrees
with the intuitive expectation that the curvature sets the
effective scale where coupling constants are evaluated [21].
Moreover, matter contributions to the field equations,
GNTμν↦~g�ζ−2t2Tμν, receive an additional suppression
factor from the scale identification and play no role in
the dynamics close to t → 0. Thus the RG-improved
vacuum equations (4) constitute a self-consistent descrip-
tion of the BKL scenario, taking into account the quantum
corrections expected from a nontrivial fixed point of the
RG flow.
Substituting the metric (1) into (4) and subsequently

specializing the spatial derivative terms to the Bianchi IX
case [2] results in

2α;ττ − ðb2 − c2Þ2 þ a4 ¼ 2a2b2c2
λ�

tðτÞ2 ;

2β;ττ − ða2 − c2Þ2 þ b4 ¼ 2a2b2c2
λ�

tðτÞ2 ;

2γ;ττ − ða2 − b2Þ2 þ c4 ¼ 2a2b2c2
λ�

tðτÞ2 ; ð5Þ

where

a ¼ eα; b ¼ eβ; c ¼ eγ and dt≡ abcdτ:

ð6Þ

For λ� ¼ 0, Eqs. (5) are the classical equations of motion
for the Bianchi IX universe with the potential terms
originating from the curvature of the spatial slices. The
contributions resulting from the RG improvement appear
on the right-hand side. Since these terms grow as t−2 we
expect that they will modify the dynamics close to the
spatial singularity situated at t ¼ 0.

IV. QUANTUM-IMPROVED KASNER SOLUTIONS

We now show that the extra term indeed alters the
singularity structure of the model and induces a phase
transition in the classical Bianchi IX oscillations.
We start by studying the dynamics of the system (5) for

the case where the potential terms on the left-hand side
vanish. This corresponds to the Bianchi I universe where
the spatial slices are flat. In this case, the scale factors
follow the power-law behavior (2) with the Kasner expo-
nents satisfying

X3

i¼1

pi ¼ r;
X3

i¼1

ðpiÞ2 ¼ rþ λ�; ð7Þ

with

r≡ 1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12λ�

p
Þ: ð8Þ

The quantum-improved Kasner system admits power-law
solutions if λ� ≥ −1=12 and agrees with the classical
system (3) for λ� ¼ 0. Following [2], the solutions of the
system (7) can be parametrized by

p1ðuÞ ¼
1

3
ðr − ffiffiffi

r
p Þ −

ffiffiffi
r

p
u

1þ uþ u2
;

p2ðuÞ ¼
1

3
ðr − ffiffiffi

r
p Þ þ

ffiffiffi
r

p
uð1þ uÞ

1þ uþ u2
;

p3ðuÞ ¼
1

3
ðr − ffiffiffi

r
p Þ þ

ffiffiffi
r

p ð1þ uÞ
1þ uþ u2

: ð9Þ

Since this parametrization is invariant under the
transformations p1ð1=uÞ ¼ p1ðuÞ, p2ð1=uÞ ¼ p3ðuÞ,
p3ð1=uÞ ¼ p2ðuÞ, all possible asymptotic behaviors are
covered by taking u ∈ ½0; 1�.
Based on the parametrization (9) one can distinguish the

following phases, governed by the value of λ�:

PhaseO∶ −
1

12
≤ λ� < 0

PhaseC∶ λ� ¼ 0

Phase I∶ 0 < λ� < 4

Phase II∶ λ� ≥ 4: ð10Þ

The characteristic features of each phase are depicted in
Fig. 1, illustrating, from top to bottom, Phase O, the
classical Kasner solution, Phase I, and Phase II. The
classical solutions (λ� ¼ 0) in Phase C generically admit
two positive and one negative Kasner exponents. The
parameter λ� essentially shifts the system of Kasner
exponents to more negative (λ� < 0) or more positive
(λ� > 0) values. Depending on the value of u the parameter
space in Phase O admits classical Kasner solutions as well
as a new class of them where two Kasner exponents are
negative and one is positive. Phase I supports both classical
Kasner behavior and a new set of solutions where all three
Kasner exponents are positive. In Phase II, λ� ≥ 4, the value
of λ� is sufficiently positive that the classical Kasner
behavior does not occur anymore and the Kasner exponents
are positive semidefinite for all values u. Note that
asymptotic safety predicts λ� > 0, so the quantum-
improved system is either in Phase I or Phase II.
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V. MODIFIED ASYMPTOTICS OF THE
QUANTUM BKL SYSTEM

The full Bianchi IX system (5) can be solved numeri-
cally. Typical solutions for the cases λ� ¼ 0 (Phase C) and
λ� ¼ 1 (Phase I) are shown in Fig. 2. Phase C exhibits the
endless chaotic oscillations discovered by BKL. In Phase I
this chaotic behavior is modified by the appearance of the
PT solutions of the improved Bianchi I model. For
sufficiently large negative τ the oscillatory Kasner behavior
ends and all scale factors vanish for t → 0, resulting in a
point singularity.
This change in the dynamics can be understood as

follows. In the classical case, bounces in the Bianchi IX
model are triggered by one of the terms in the classical
potential becoming large, i.e., when the scale factor with a
negative Kasner exponent grows as t → 0. As a result of the
bounce the Kasner exponents are swapped and the system
enters into the next Kasner phase. This mechanism stops
operating if the system bounces into a phase where all three
Kasner exponents are positive. In this case all scale factors
vanish simultaneously as t → 0 and the contribution of the

classical potential is subleading compared to the quantum
corrections. Thus, the asymptotic dynamics is governed by
the quantum-improved Kasner system restricted to the
parameter range u where all Kasner exponents are positive.

VI. CONCLUSIONS

We have shown how the asymptotic dynamics of a
Bianchi IX model near a spatial singularity changes with
respect to the classical BKL result once quantum correc-
tions motivated by Weinberg’s asymptotic safety scenario
are taken into account. The system exhibits a new type of
asymptotic behavior where all Kasner exponents become
positive and a pointlike singularity is approached. The
transition between the chaotic Kasner oscillations and the
nonchaotic approach to the singularity is triggered by
quantum corrections dominating over the classical regime
when the curvature becomes large.
While this phase transition is of broad interest in general

relativity and quantum gravity, the modification of the
classical Kasner behavior is particularly relevant for char-
acterizing the short distance structure of the asymptotically
safe quantum spacetime [22]. Our results are in complete
agreement with the observation [23] that the cosmological
constant crucially influences the short distance behavior of
quantum spacetime. Notably, the renormalization group
improvement studied in this paper constitutes a characteri-
zation of the quantum spacetime which is complementary
to the one provided by the spectral dimension ds, which
asymptotes to ds ¼ 2 in the fixed-point regime [24–27].
The result that the quantum-improved anisotropic space-
times generically develop a point singularity where the
scale factors of all three spatial dimensions vanish simul-
taneously supports the picture that the reduction of the
spectral dimension does not necessarily imply the dimen-
sional reduction of position space to the same value. This
may serve as an illustrative example that in quantum
gravity the dimensionalities of effective position and
momentum spaces do not necessarily need to agree.
Naturally, it would be very interesting to initiate a similar
position-space study in other quantum gravity programs to
investigate whether a similar mechanism is operative and to
compare the resulting refined picture of microscopic
quantum spacetimes.
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FIG. 2 (color online). Comparison between the classical (Phase
C) and quantum-improved (Phase I) evolution of α, β, γ in the
Bianchi IX model using identical initial conditions. Including the
quantum dressing the system exhibits a dynamical phase tran-
sition from Kasner oscillations to a nonchaotic approach to a
point singularity as τ decreases.
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