The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/151013

Please be advised that this information was generated on 2019-03-18 and may be subject to change.
Inclusive production of the $X(4140)$ state in $\bar{p}p$ collisions at D0

(The D0 Collaboration*)

1 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3 Universidade Federal do ABC, Santo André, Brazil
4 University of Science and Technology of China, Hefei, People’s Republic of China
5 Universidad de los Andes, Bogotá, Colombia
6 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
7 Czech Technical University in Prague, Prague, Czech Republic
8 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
9 Universidad San Francisco de Quito, Quito, Ecuador
10 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
11 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
12 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
13 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
14 LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
15 CEA, Ifju, SPP, Saclay, France
16 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
17 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
18 III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
19 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
21 Institut für Physik, Universität Mainz, Mainz, Germany
22 Ludwig-Maximilians-Universität München, München, Germany
23 Panjab University, Chandigarh, India
24 Delhi University, Delhi, India
25 Tata Institute of Fundamental Research, Mumbai, India
26 University College Dublin, Dublin, Ireland
27 Korea Detector Laboratory, Korea University, Seoul, Korea
28 CINVESTAV, Mexico City, Mexico
29 Nikhef, Science Park, Amsterdam, the Netherlands
30 Radboud University Nijmegen, Nijmegen, the Netherlands
31 Joint Institute for Nuclear Research, Dubna, Russia
32 Institute for Theoretical and Experimental Physics, Moscow, Russia
33 Moscow State University, Moscow, Russia
34 Institute for High Energy Physics, Protvino, Russia
35 Petersburg Nuclear Physics Institute, St. Petersburg, Russia
36 Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
37 Uppsala University, Uppsala, Sweden
38 Taras Shevchenko National University of Kyiv, Kiev, Ukraine
39 Lancaster University, Lancaster LA1 4YB, United Kingdom
40 Imperial College London, London SW7 2AZ, United Kingdom
41 The University of Manchester, Manchester M13 9PL, United Kingdom
42 University of Arizona, Tucson, Arizona 85721, USA
43 University of California Riverside, Riverside, California 92521, USA
44 Florida State University, Tallahassee, Florida 32306, USA
45 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
46 University of Illinois at Chicago, Chicago, Illinois 60607, USA
47 Northern Illinois University, DeKalb, Illinois 60115, USA
48 Northwestern University, Evanston, Illinois 60208, USA
49 Indiana University, Bloomington, Indiana 47405, USA
50 Purdue University Calumet, Hammond, Indiana 46323, USA
51 University of Notre Dame, Notre Dame, Indiana 46656, USA
52 Iowa State University, Ames, Iowa 50011, USA
53 University of Kansas, Lawrence, Kansas 66045, USA
54 Louisiana Tech University, Ruston, Louisiana 71272, USA
55 Northeastern University, Boston, Massachusetts 02115, USA
56 University of Michigan, Ann Arbor, Michigan 48109, USA
57 Michigan State University, East Lansing, Michigan 48824, USA
58 University of Mississippi, University, Mississippi 38677, USA
59 University of Nebraska, Lincoln, Nebraska 68588, USA
60 Rutgers University, Piscataway, New Jersey 08855, USA
The $X(4140)$ state was first seen in 2009 as a narrow structure in the $J/\psi\phi$ system near threshold. The CDF Collaboration reported the first evidence for this state (then designated $Y(4140)$) in the decay $B^+ \rightarrow X(4140)K^+ \rightarrow J/\psi\phi K^+$ (charge conjugation is implied throughout this paper) and measured the invariant mass $M = 4143.0 \pm 2.9$ (stat) ± 1.2 (syst) MeV and width $\Gamma = 11.7^{+8.3}_{-5.0}$ (stat) ± 3.7 (syst) MeV. The LHCb Collaboration found no evidence for the $X(4140)$ state in a 2.4 standard deviation disagreement with the CDF measurement. However, the presence of $X(4140)$ in $B^+ \rightarrow X(4140)$ decay was later confirmed by the CMS and D0 Collaborations. The BaBar Collaboration searched for resonant production in the $J/\psi\phi$ mass spectrum in $B^{+\!0}$ decays and obtained a significance below 2σ, but noted that the hypothesis that the events are distributed uniformly on the Dalitz plot provides a poorer description of the data. The quantum numbers of the $X(4140)$ state have not been measured. Since both the J/ψ and ϕ mesons have $I^GJ^{PC} = 0^-1^-$, the state has positive G and C parities.

A meson decaying into a charmed quark pair might be an excited charmonium state. However, the standard nonrelativistic quark model of a single $c\bar{c}$ pair does not predict a hadronic state at this mass. Also, at masses above the open-charm threshold of 3740 MeV such states are expected to decay predominantly to pairs of charmed mesons and to have a much larger width than is experimentally observed. It has been suggested that $X(4140)$ could be a molecular structure made of two charmed mesons, e.g., (D_s, \bar{D}_s). Other possible states are hybrids composed of two quarks and a valence gluon ($q\bar{q}g$), four-quark combinations ($c\bar{c}s\bar{s}$), or states with higher Fock components. For details see the reviews in Ref. [8] and [4] and references therein. The Belle Collaboration found no evidence for $X(4140)$ in the process $\gamma\gamma \rightarrow J/\psi\phi$ [9], making its interpretation as a hadronic molecule with spin-parity $J^P = 0^+ \leftrightarrow 2^+$ unlikely.

In addition to $X(4140)$, the CDF Collaboration reported seeing a second enhancement in the same channel, located near 4280 MeV. A similar structure is seen by the CMS Collaboration at a slightly higher mass of 4316.7 \pm 3.0 (stat) \pm 7.3 (syst) MeV. Belle also reports a new structure at $M = 4350.6^{+5.6}_{-5.3}$ (stat) ± 0.7 (syst) MeV.

In this Article we present results of a search for the $X(4140)$ resonance in the $J/\psi\phi$ system produced inclusively in $p\bar{p}$ collisions, either promptly, by pure QCD, or through weak decays of b hadrons. The measured production rates are normalized to the rate of the process $B^0 \rightarrow J/\psi\phi$ measured with the same dataset. The data sample corresponds to an integrated luminosity of 6 fb$^{-1}$ of $p\bar{p}$ collision data collected by the D0 experiment at the Fermilab Tevatron collider, we report the first evidence for the prompt production of $X(4140)$ and find the fraction of $X(4140)$ events originating from b hadrons to be $f_b = 0.39 \pm 0.07$ (stat) ± 0.10 (syst). The ratio of the non-prompt $X(4140)$ production rate to the B_s^0 yield in the same channel is $R = 0.19 \pm 0.05$ (stat) ± 0.07 (syst). The values of the mass $M = 4152.5 \pm 1.7$ (stat)$^{+6.2}_{-5.2}$ (syst) MeV and width $\Gamma = 16.3 \pm 5.6$ (stat) ± 11.4 (syst) MeV are consistent with previous measurements.

*with visitors from *Augustana College, Sioux Falls, SD, USA, The University of Liverpool, Liverpool, UK, DESY, Hamburg, Germany, CONACyT, Mexico City, Mexico, SLAC, Menlo Park, CA, USA, University College London, London, UK, Centro de Investigacion en Computacion - IPN, Mexico City, Mexico, Universidade Estadual Paulista, Sao Paulo, Brazil, Karlsruher Institut für Technologie (KIT) - Steinbuch Centre for Computing (SCC), D-76128 Karlsruhe, Germany, Office of Science, U.S. Department of Energy, Washington, D.C. 20585, USA, American Association for the Advancement of Science, Washington, D.C. 20005, USA, Kiev Institute for Nuclear Research, Kiev, Ukraine, University of Maryland, College Park, Maryland 20742, USA and *European Organization for Nuclear Research (CERN), Geneva, Switzerland

(Dated: August 31 2015)
10.4 fb$^{-1}$ collected with the D0 detector in $par{p}$ collisions at 1.96 TeV at the Fermilab Tevatron collider.

The D0 detector consists of a central tracking system, calorimeters, and muon detectors [11]. The central tracking system comprises a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located inside a 1.9 T superconducting solenoidal magnet. The tracking system is designed to optimize tracking and vertexing for pseudorapidities $|\eta| < 3$, where $\eta = -\ln[\tan(\theta/2)]$, and θ is the polar angle with respect to the proton beam direction. The SMT can reconstruct the $p\bar{p}$ interaction vertex (primary vertex) for interactions with at least three tracks with a precision of 0.004 cm in the plane transverse to the beam direction. The muon detector, positioned outside the calorimeter, consists of a central muon system covering the pseudorapidity region $|\eta| < 1$ and a forward muon system covering the pseudorapidity region $1 < |\eta| < 2$. Both central and forward systems consist of a layer of drift tubes and scintillators inside 1.8 T iron toroidal magnets with two similar layers outside the toroids [12].

Events used in this analysis are collected with both single-muon and dimuon triggers. Muon triggers require a coincidence of signals in trigger elements inside and outside the toroidal magnets. Dimuon triggers in the central rapidity region require at least one muon to penetrate the toroid. In the forward region, both muons are required to penetrate the toroid.

We study a wide range of the $J/\psi\phi$ invariant mass, from threshold to 5.7 GeV, covering both the $X(4140)$ and the decay $B_s^0 \to J/\psi\phi$. Candidate events are required to include a pair of oppositely charged muons in the invariant mass range $2.9 < M(\mu^+\mu^-) < 3.3$ GeV, consistent with J/ψ decay, accompanied by two additional particles of opposite charge, assumed to be kaons, with $p_T > 0.4$ GeV and $1.011 < M(K^+K^-) < 1.030$ GeV. In the event selection, both muons are required to be detected in the muon chambers inside the toroidal magnet, and at least one of the muons is required to be also detected outside the iron toroid [12]. Each muon candidate is required to match a track found in the central tracking system, and each of the four final-state tracks is required to have at least one SMT hit and at least one CFT hit. The dimuon invariant mass is constrained to the world-average J/ψ mass [1], and the four-track system is constrained to a common vertex. To reconstruct the primary vertex, tracks are selected that do not originate from the $J/\psi\phi$ candidate, and a constraint is applied to the average beam position in the transverse plane. We require $J/\psi\phi$ candidates to have $5 < p_T < 20$ GeV and rapidity $|y| < 2$.

We define the signed decay length of the $J/\psi\phi$ system, L_{xy}, to be the vector pointing from the primary vertex to the decay vertex, projected onto the direction of the transverse momentum. The distribution of L_{xy} for the selected events is shown in Fig. 1.

We focus on two ranges of the $J/\psi\phi$ invariant mass, $M(J/\psi\phi) < 4.36$ GeV and $4.8 < M(J/\psi\phi) < 5.7$ GeV.

The low-mass range includes the $X(4140)$ state. The high-mass range includes the reference decay process, $B_s^0 \to J/\psi\phi$. Background arises primarily from non-resonant pairs in the ϕ mass window. At low L_{xy}, background comes from J/ψ mesons directly produced in $p\bar{p}$ collisions combined with random particles from the underlying event. At higher values of L_{xy}, background consists of J/ψ mesons paired with random products of b hadron decays.

We divide the data in each mass range into three independent subsamples according to the value of L_{xy}: (1) $-0.025 \leq L_{xy} < 0$ cm, (2) $0 \leq L_{xy} \leq 0.025$ cm, and (3) $L_{xy} > 0.025$ cm. Region 1 includes half of the prompt events and almost no B-decay events (the fit result shown in Table I is 37 ± 26 events). Region 2 includes the remaining half of all prompt events and a fraction of non-prompt events. The rest of the non-prompt events populate region (3). Given the average resolution of 0.006 cm in L_{xy}, we assume that the fraction of prompt events in Region 3 is negligible. We perform binned maximum likelihood fits to the distributions of the $J/\psi\phi$ invariant mass for events in the six subsamples defined above. In the fits in the B_s^0 mass region, the signal is described by a Gaussian function and background is described by a second-order Chebychev polynomial. We also allow for the presence of the decay $B_s^0 \to J/\psi\phi$, where we set the mass to the world-average B_s^0 mass, and we find no evidence of a signal. The fit for Region 3 yields $3166 \pm 81 B_s^0$ events.

In fitting the low mass range, we assume a signal described by an S-wave relativistic Breit-Wigner function convolved with a Gaussian resolution of $\sigma(M) = 4$ MeV. The background is parametrized by the function $f(m) \propto m \cdot (m^2/m_{thr}^2 - 1)c^1 \cdot e^{-m^2/c^2}$ where m_{thr} is the kinematic threshold, and c_1 and c_2 are free parameters. For events in the L_{xy} Region 3, we allow the signal mass and width parameters to vary. The fit yields 616 ± 170 signal events, a mass of 4152.5 ± 1.7 MeV, and a width of 16.3 ± 5.6 MeV. The statistical significance of the signal, based on
the increase of the likelihood with respect to the fit with no signal, $-2\Delta \ln \mathcal{L} = 42.5$ for 3 degrees of freedom, is 5.9 standard deviations. For the fits in L_{xy} Regions 1 and 2 we set the mass and width to the Region 3 values.

The mass distributions with superimposed fits for both mass regions and for all three L_{xy} are shown in Fig. 2. The $X(4140)$ and B^0_s yields are presented in Table I. We also show the expected number of $X(4140)$ events originating from b-hadron decays in the two low L_{xy} regions assuming that the L_{xy} distribution of the “non-prompt” $X(4140)$ is similar to that of B^0_s. For the Regions 1 and 2, we find an excess of signal events, indicating prompt production of $X(4140)$. For events in Region 2, the increase in the likelihood between the fit with a free signal yield and the fit with the expected non-prompt contribution only, $-2\Delta \ln \mathcal{L} = 23.6$, corresponds to a statistical significance of 4.9σ for the net prompt signal. The statistical significance of the total signal in this L_{xy} region is 6.2σ. For Region 1, the corresponding values of statistical significance are 3.9σ and 4.2σ. If the mass and width parameters are allowed to vary, the fit for Region 2 gives the total yield $N = 932 \pm 216$, $M = 4146.8 \pm 2.4$ MeV, and $\Gamma = 15.8 \pm 3.8$ MeV. The data in Region 1 do not yield a stable fit. Fixing the $X(4140)$ mass to 4152.5 MeV in this region, as obtained in Region 3, we fit a total yield of $N = 601 \pm 205$ and Γ of 19.8 ± 5.9 MeV.

There are several uncertainties that may affect measurements of the $X(4140)$ yield, mass, and width, the ratio R of the yields of non-prompt $X(4140)$ and B^0_s, and the fraction f_b of all $X(4140)$ events that originate from weak decays of b hadrons.

The mass resolution of 4.0 MeV, obtained in simulations, is in agreement with an approximately linear rise with the released kinetic energy for decays with a similar topology: $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$, $X(3872) \rightarrow J/\psi \pi^+ \pi^-$, and the decay $B^0 \rightarrow J/\psi \phi$. We assign an uncertainty of ±0.1 MeV to the resolution at the $X(4140)$ mass.

We assign an asymmetric uncertainty of 3 MeV to the $J/\psi \phi$ mass scale in the vicinity of $X(4140)$, based on the range of the mass deficit between 1 MeV and 5 MeV compared to world-average values, found in several channels with this topology. We assign the uncertainty in the signal model, taken from the range of results obtained with relativistic and nonrelativistic Breit-Wigner shapes and a relativistic P-wave Breit-Wigner shape. Simulations show the event reconstruction and selection efficiency to be independent of the $M(J/\psi \phi)$ invariant mass, with a possible variation of ±10% [5]. The possible variation of the efficiency within the $X(4140)$ mass range affects the mass, width, and yield of the signal. To assess the effects of the fitting procedure and background size and shape, we vary the fitting mass range and bin size. Some of the single-muon triggers include a trigger term requiring a presence of tracks with non-zero impact parameter. Events recorded solely by such triggers constitute approximately 5% of all events. Assuming that such triggers are 100% efficient for events originating from weak decays of b hadrons and reject all prompt events, we apply a 5% correction to the prompt yield. We assign a systematic uncertainty of ±5% on the fraction f_b due to this correction. Finally, our assumption of the equality of the relative rates in regions (1) – (3) for the non-prompt $X(4140)$ and B^0_s is based on expectation of the equality of the average lifetime of b-hadron parents of the $X(4140)$ and that of the B^0_s in the $J/\psi \phi$ channel. The world-average of the B^0_s lifetime is 6% lower than the lifetime averaged over all b hadron species [1]. We assign an asymmetric uncertainty in the ratio R and the fraction f_b based on this difference. The systematic uncertainties are summarized in Table III.

We test the stability of the results to the event selection by changing the ϕ mass window to $1.012 < M(K^+K^-) < 1.029$ GeV. As additional cross-checks, we perform fits to subsamples corresponding to the transverse momentum ranges $5 < p_T < 10$ GeV and $10 < p_T < 20$ GeV; to early and late data-taking periods; and to events in the central ($|y| < 1$) and forward rapidity regions. In each case, the background shape in the two subsamples is well described by the same functional form although it requires different values of the parameters. In all cases the sums of the resulting signal yields agree with the total yield within a few events.

Our measured values of the mass and width of the $X(4140)$ state are $0.43, 0.31, \text{ and } 0.19$. For the Regions 1 and 2, the masses of the $X(4140)$ are $\pm 10\%$ on the fraction f_b cut and for the trigger bias, we find the fraction of $X(4140)$ events originating from b hadrons to be $f_b = 0.39 \pm 0.07$ (stat) ± 0.10 (syst). The yield for the $X(4140)$ state at $L_{xy} > 0.025$ cm can also be compared with the yield of 52 ± 19 events of $X(4140)$ from the decay process $B^+ \rightarrow J/\psi \phi K^+$ obtained by D^0 [6] for the same data set. After correcting for a factor of 2.5 ± 0.5 for the efficiency of the full reconstruction of the B^+ decay and lower kaon p_T threshold, we expect the yield from the B^+ decay to be $\approx 130 \pm 60$ events in this analysis. On the observed yield of 616 ± 170 events exceed this estimate suggesting that decays of b hadrons other than B^+ contribute to the non-prompt production of $X(4140)$.

The $J/\psi \phi$ invariant mass distributions presented in Fig. 2 show no evidence for states in the mass region $4250 < M(J/\psi \phi) < 4375$ MeV. Fits allowing for the states reported by CDF, CMS, and Belle, at $L_{xy} > -0.025$ cm, yield 267 ± 276, -283 ± 468, and -325 ± 254 events, respectively. Using the CL_s method [13], we obtain the 95% upper limits of 744, 557, and 338 events for the three states. In this upper limit calculation we did not account for systematic uncertainties as they were checked to have a negligible impact. The corresponding 95% upper limits on the rates relative to the total yield of the $X(4140)$ state are 0.43, 0.31, and 0.19.

In summary, we have carried out the first search for inclusive production of the state $X(4140)$ in hadronic collisions. We find strong evidence for its direct, prompt production, and observe its production in weak decays of b hadrons.
FIG. 2: (color online) Invariant mass distribution of $J/\psi \phi$ candidates in the mass window around (left) B^0_s and (right) $X(4140)$, for events with (a,b) $-0.025 < L_{xy} < 0$ cm, (c,d) $0 < L_{xy} < 0.025$ cm and (e,f) $L_{xy} > 0.025$ cm. The arrows indicate the structures seen by CDF [2], CMS [4], and Belle [10]. The signal and background models are described in the text.

TABLE I: Summary of event yields in three L_{xy} regions and their sum for B^0_s and $X(4140)$. For Regions 1 and 2 the mass of $X(4140)$ is assumed to be 4152.5 MeV and the width is taken to be 16.3 MeV. Also shown are the deduced yields for the non-prompt and prompt production of $X(4140)$. The uncertainties are statistical.

<table>
<thead>
<tr>
<th>Parent</th>
<th>$-0.025 < L_{xy} < 0$ cm</th>
<th>$0 < L_{xy} < 0.025$ cm</th>
<th>$L_{xy} > 0.025$ cm</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^0_s</td>
<td>191 ± 143</td>
<td>804 ± 169</td>
<td>3166 ± 81</td>
<td>4161 ± 236</td>
</tr>
<tr>
<td>$X(4140)$</td>
<td>511 ± 120</td>
<td>837 ± 135</td>
<td>616 ± 170</td>
<td>1964 ± 248</td>
</tr>
<tr>
<td>$X(4140)$ non-prompt</td>
<td>37 ± 26</td>
<td>156 ± 54</td>
<td>616 ± 170</td>
<td>809 ± 175</td>
</tr>
<tr>
<td>$X(4140)$ prompt</td>
<td>474 ± 123</td>
<td>681 ± 149</td>
<td>$\equiv 0$</td>
<td>1155 ± 193</td>
</tr>
</tbody>
</table>
b hadrons with a rate exceeding the expected rate for the known decay $B^+ \rightarrow J/\psi\phi K^+$. The significance of the prompt production, including systematic uncertainties, is 4.7σ. This is the first evidence for the prompt production of $X(4140)$. The significance of the non-prompt production, including systematic uncertainties, is 5.6σ. The non-prompt production rate of $X(4140)$ relative to B_0^0 observed in the same final state is $R = 0.19^{+0.05}_{-0.07}$ (syst). Assuming a relativistic Breit-Wigner line shape, we measure the mass and width of the $X(4140)$ state to be $M = 4152.5 \pm 1.7$ (stat) $+2_{-0.4}$ (syst) MeV and width $\Gamma = 16.3 \pm 5.6$ (stat) $+11.4$ (syst) MeV, consistent with previous measurements [2, 4, 5].

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation; National Research Center “Kurchatov Institute” of the Russian Federation; and Russian Foundation for Basic Research (Russia); National Council for Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine).

<table>
<thead>
<tr>
<th>Source</th>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
<th>Rate non-promp t (%)</th>
<th>Rate prompt (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass resolution</td>
<td>±0.1</td>
<td>±0.2</td>
<td>±1</td>
<td>±1</td>
</tr>
<tr>
<td>Mass bias</td>
<td>$+0.3$</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Efficiency</td>
<td>±4</td>
<td>±5</td>
<td>±4</td>
<td>±4</td>
</tr>
<tr>
<td>Signal model</td>
<td>±1</td>
<td>±2.7</td>
<td>±13</td>
<td>±15</td>
</tr>
<tr>
<td>Fitting range</td>
<td>±3</td>
<td>±7.0</td>
<td>±20</td>
<td>±6</td>
</tr>
<tr>
<td>Bin size</td>
<td>±1.6</td>
<td>±7.0</td>
<td>±25</td>
<td>±10</td>
</tr>
<tr>
<td>Trigger bias</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mean lifetime</td>
<td>±1.5</td>
<td>–</td>
<td>–</td>
<td>±5</td>
</tr>
<tr>
<td>Total</td>
<td>±1.4</td>
<td>±11.4</td>
<td>±35</td>
<td>±19</td>
</tr>
</tbody>
</table>

TABLE III: Summary of $X(4140)$ measurements.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Process</th>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF [2]</td>
<td>$B^+ \rightarrow J/\psi\phi K^+$</td>
<td>4143.0 \pm 2.9 \pm 1.2</td>
<td>11.7 $^{+7.6}_{-5.0}$ \pm 3.7</td>
</tr>
<tr>
<td>CMS [4]</td>
<td>$B^+ \rightarrow J/\psi\phi K^+$</td>
<td>4148.0 \pm 2.4 \pm 6.3</td>
<td>28 $^{+15}_{-11}$ \pm 19</td>
</tr>
<tr>
<td>D0 [5]</td>
<td>$B^+ \rightarrow J/\psi\phi K^+$</td>
<td>4159.0 \pm 4.3 \pm 6.6</td>
<td>19.9 \pm 12.6 $^{+3.0}_{-8.0}$</td>
</tr>
<tr>
<td>D0 (this work)</td>
<td>$\overline{p}p \rightarrow J/\psi +$ anything</td>
<td>4152.5 \pm 1.7 $^{+6.2}_{-0.4}$</td>
<td>16.3 \pm 5.6 \pm 11.4</td>
</tr>
</tbody>
</table>

