Feasibility of an antibiotic order form. First experience in the department of internal medicine of a university hospital

Willem L. Blok, Inge C. Gyssens, Yechiel A. Hekster, Peter P. Koopmans and Jos W.M. van der Meer

Introduction
Inadequate control of antimicrobial drug use may lead to excessive expenditure for antimicrobial drugs and improper prescribing. It may also result in the emergence of multiresistant bacteria that threaten both the patient receiving the antimicrobial drug and other patients in the hospital [1,2]. Education and guidelines or restrictions on the availability of antimicrobial drugs may improve the quality of prescribing [3].

Durbin et al. were the first to introduce an antibiotic order form. The order form was designed to encourage the physician to review basic clinical and laboratory information and to categorize antimicrobial drug use as prophylactic, empirical (culture results not available), and therapeutic [4]. Use of the order form was mandatory, i.e. antibiotics were delivered to the patient only if the form was completed. Furthermore, antibiotics were automatically discontinued by the pharmacy after a predetermined number of days depending on the indication. Over the past ten years, further experience with the form was reported from several US hospitals [5-12]. An antibiotic order form may improve the quality of prescriptions by increasing the awareness of the physician of the desired antimicrobial spectrum, i.e. which microorganism is suspected in a given patient, the desired duration of treatment, the potential need to adjust dosage, and potential allergy of the patient to the drug [7,9,13,14]. By filling in the antibiotic order form, the prescribers provide themselves the data for drug utilization surveillance. In return, the antibiotic order form facilitates prescribing by providing information on the formulary drugs and preferred dosing regimens at the time of prescription. However, the introduction of uniform prescription guidelines and yet another form to fill in may be met with opposition from prescribers. Therefore, we investigated physician's acceptance of and compliance with an antibiotic order form. In addition, an attempt is made to evaluate the quality of antimicrobial drug prescriptions with the help of the antibiotic order forms.

Methods
Setting
The order form was introduced in the departments of general internal medicine, gastroenterology, nephrology, and endocrinology of the 948-bed University Hospital Nijmegen, in the course of an intensified education program on the use of antimicrobial drugs. Total number of beds in these wards was 100. Most of the prescriptions were written by nine residents, who were supervised by six internists. Data are presented in the first seven months following the introduction of the antibiotic order form in September 1992.

Abstract
Inadequate control of antimicrobial drug use may lead to excessive expenditure for antimicrobial drugs and improper prescribing. It may also result in the emergence of multiresistant bacteria. An antibiotic order form may improve the quality of prescriptions by increasing the awareness of the physician of the antimicrobial spectrum needed (i.e. which microorganism is expected in a given patient), the desired duration of treatment, the potential need to adjust dosage, and the potential allergy of the patient to the drug.

Furthermore, such an antibiotic order form facilitates prospective evaluation of both the quantity and the quality of prescribing practice. However, the introduction of yet another form to fill in may be met with opposition from prescribers. We have developed an easy-to-use antibiotic order form that incorporated the conventional medication order that was already in use in our hospital. Compliance (percentage of antimicrobial drug prescriptions for which an order form was used) was on average 58% in the first two weeks after introduction, and remained thereafter between 60% and 90%, varying between the different wards. Data retrieved from the antibiotic order forms could be used for surveillance.

We conclude that this antibiotic order form was feasible in a large department of internal medicine of a university hospital. Future usefulness will depend on compliance and on personnel support for data processing and intervention.
Drug supply and antibiotic order form

In the University Hospital Nijmegen, the pharmacy delivered formulary drugs for inpatients to the wards on a twice-weekly basis. Computerized drug consumption data were available per ward level, but not for individual patients. Formulary drugs were kept in ward stocks, that were managed by nurses. Non formulary drugs had to be ordered on individual prescriptions and were directly controlled by the pharmacy. Formulary drugs for individual patients were prescribed on medication orders consisting of a strip of paper and duplicate sticker that was pasted on the patient's Kardex® medication card. The strips were kept in the patient's nursing record, and the stickered Kardex® cards were sent to the pharmacy after discharge of the patient. So far, Kardex® cards were the only resource for antimicrobial drug surveillance individual patient level. In this drug delivery system, a conventional antibiotic order form could not be used, because the nurses, not the pharmacy technicians, were dispensing the majority of the drugs out of a stock. Therefore, an adapted antibiotic order form was developed (Figure 1). Although it was not only introduced for antibacterial drugs, but also for antiviral and antifungal drugs, we preferred to keep its original name 'antibiotic order form'. The lower part of the antibiotic order form was similar to the original medication order strip. After filling in the order on the sheet, the duplicate sticker could be pasted on the Kardex® card. The text on the order form stickers was printed in blue instead of black ink, and therefore the sticker could easily be identified when checking the cards. The order forms were gathered by the ward clerk and processed for surveillance by an investigator (WB). Prescribers were asked to categorize all their prescriptions of antimicrobial drugs as prophylaxis, empirical therapy, or directed therapy. For empirical prescriptions, they were asked to state the suspected causative microorganism; for directed therapy, they were asked for the isolated pathogen. Empirical therapy had to be streamlined to directed therapy after 72 hours, and documented by another form.

Further items to be filled in included patient data, date of prescription, site of infection, weight, serum creatinine, and a history of allergy. A limited number of formulary antimicrobial drugs and dosage regimens were printed on the form and could be ticked off. The prescriber was asked to state his/her reasons to deviate from the preprinted antimicrobial drugs and/or dosing regimens. The use of the form was voluntary, i.e. delivery of the antimicrobial drugs to the patients was not dependent on completion of the form.

Compliance

Compliance (percentage of prescriptions for which an order form was used) was measured by checking the Kardex® cards as described above. Pharmacy technicians identified the patients to whom antimicrobial drugs were prescribed on their twice weekly visits to the wards. They scored the total number of antimicrobial drug prescriptions and these figures were compared with the antibiotic order forms received. When order forms were missing, no further action was undertaken. Newsletters provided the physicians with feedback of their actual compliance.

Quantity of use

The number of prescriptions is an incomplete estimate of the quantity of antimicrobial drug use, as duration of treatment may vary. Therefore, an estimate of the prevalence of antimicrobial drug use was made. Twice a week, pharmacy technicians scored the number of patients that actually received antimicrobial therapy. The score of one month was related to the number of bed-days of that month. Thus, the estimate of the prevalence presented is the twice-weekly-scored number of patients receiving an antimicrobial drug/100 bed days over a month. Prescriptions on the forms were quantified according to the patient's age. The distribution of the types of antimicrobial drugs prescribed on the forms was calculated.

Quality of use

Data extracted from the antibiotic order forms were used to quantify the sites of infection, the microorganisms suspected or isolated, and the reasons to deviate from the antimicrobial drugs or the dosages indicated on the form. Prescriptions that were categorized as empirical therapy were evaluated separately for adequacy of microbiological spectrum, i.e. if the isolated pathogen was susceptible to the drug. No attempt was made to evaluate microbiological efficacy, i.e. the actual cure rate of infections.

Results

Compliance

Acceptance of the antibiotic order form by physicians was high. Compliance rose from 58% in the first two weeks after introduction to 76% from week five to eleven. Thereafter, compliance remained between 60% and 90%, varying between the different wards. However, many forms were not filled in completely. Localization of infection was indicated on 84% forms, and on 73% of those forms, a suspected or isolated pathogen was indicated.

Quantity of use

Six hundred and fifty-eight forms with new therapeutic antibiotic prescriptions were collected over seven months. The number of patients on antimicrobial drugs/100 bed days as scored by the pharmacy technicians was 9.0, 9.8, 8.6, 9.8, 8.8, 10.6 and 12.8. The frequency distribution of the types of antimicrobial drugs prescribed is given in Figure 2. Penicillins were the most frequently prescribed drugs (41%), followed by cephalosporins (14%) and cotrimoxazole (11%).

Quality of use

In 108 (16%) out of 658 forms the localization was left blank and they were excluded from the analysis. Localization of the infection and the mentioning of a (suspected) pathogen are analyzed in the remaining 550 forms (Table 1). Of the 403 forms that showed both localization of the infection and the (suspected) pathogen, 51% were categorized as empirical therapy and 49% as directed therapy. Fifty-three percent of all 550 prescriptions were made for the treatment of respiratory tract infections and urinary tract infections. Table 1 shows, as an example, 97 suspected pathogens and 37 isolated pathogens cited on 103 forms to treat respiratory tract infections.
Fill in from A to E which antibiotic you want to prescribe: dr: ___ ward: ___
A new prescription extension change in dose or route: go to D
B INDICATION PROPHYLAXIS DURATION type of operation <24 h other: days
empirical THERAPY, suspected microorganism: 3-5 days
directed THERAPY, isolated microorganism: days
LOCALIZATION blood urinary tract respiratory tract central nervous system
GI tract skin/soft tissue bone/joint other
C weight serum creatinine allergy: none yes, __
D DRUG in case of normal renal function
* after a loading dose ** after a test dose, loading schedule
E OTHER DRUG reason for other choice

Figure 1
Antibiotic order form with conventional medication order strip
Table 1 Localization of infections and categorization of 550 new antibiotic order forms

<table>
<thead>
<tr>
<th>Site of infection</th>
<th>Forms n (%)</th>
<th>Suspected pathogen n (%)</th>
<th>Isolated pathogen n (%)</th>
<th>No pathogen mentioned n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory tract</td>
<td>158 (29)</td>
<td>70 (35)</td>
<td>33 (16)</td>
<td>55 (37)</td>
</tr>
<tr>
<td>Urinary tract</td>
<td>133 (24)</td>
<td>38 (19)</td>
<td>69 (35)</td>
<td>26 (18)</td>
</tr>
<tr>
<td>Blood</td>
<td>85 (15)</td>
<td>23 (11)</td>
<td>43 (22)</td>
<td>19 (13)</td>
</tr>
<tr>
<td>Skin / soft tissue</td>
<td>57 (10)</td>
<td>29 (24)</td>
<td>22 (11)</td>
<td>6 (4)</td>
</tr>
<tr>
<td>Abdominal</td>
<td>63 (12)</td>
<td>22 (11)</td>
<td>18 (9)</td>
<td>23 (16)</td>
</tr>
<tr>
<td>Bone and joint</td>
<td>7 (1)</td>
<td>5 (3)</td>
<td>0 (0)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>6 (1)</td>
<td>1 (0)</td>
<td>5 (3)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Other site</td>
<td>41 (8)</td>
<td>15 (7)</td>
<td>10 (5)</td>
<td>16 (11)</td>
</tr>
<tr>
<td>Total</td>
<td>550 (100)</td>
<td>203 (100)</td>
<td>200 (100)</td>
<td>147 (100)</td>
</tr>
</tbody>
</table>

a Categorized as empirical therapy,
b Categorized as directed therapy

The prescribers deviated from the proposed antimicrobial drugs in 6% only. Overall, alternative drugs and/or alternative dosing regimens were prescribed in 22%. In the department of nephrology, dosing adaptations amounted to 38%, mostly due to renal function impairment.

A subgroup of 68 consecutive empirical prescriptions was analyzed in detail. Isolated microorganisms were susceptible to the empirically chosen drug in 23/31 (74%). The probability that the isolated pathogen was susceptible to the empirically started drug was higher when the prescribing physician cited a suspected pathogen on the form: Odds ratio 3.1 (95% confidence interval: 0.6-16.6). However, according to Fisher's exact test, the difference was not significant (P=0.23).

Table 2 Pathogens (n=134) as mentioned on 103 antibiotic order forms for respiratory tract infections

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Suspected n (%)</th>
<th>Isolated n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumococci</td>
<td>24 (25)</td>
<td>6 (16)</td>
</tr>
<tr>
<td>Hemophilus influenzae</td>
<td>22 (23)</td>
<td>5 (14)</td>
</tr>
<tr>
<td>Gram-negative bacteria</td>
<td>13 (13)</td>
<td>3 (8)</td>
</tr>
<tr>
<td>Gram-positive bacteria</td>
<td>7 (7)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Anaerobic bacteria</td>
<td>5 (5)</td>
<td>-</td>
</tr>
<tr>
<td>Legionella</td>
<td>4 (4)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Klebsiella</td>
<td>3 (3)</td>
<td>-</td>
</tr>
<tr>
<td>Proteus</td>
<td>-</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Meningococci</td>
<td>-</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>3 (3)</td>
<td>-</td>
</tr>
<tr>
<td>Streptococci</td>
<td>4 (4)</td>
<td>1* (3)</td>
</tr>
<tr>
<td>Staphylococci</td>
<td>3 (3)</td>
<td>5† (14)</td>
</tr>
<tr>
<td>Pneumocystis carinii</td>
<td>2 (2)</td>
<td>5 (14)</td>
</tr>
<tr>
<td>Moraxella catharrhalis</td>
<td>2 (2)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>-</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>5‡ (5)</td>
<td>3# (8)</td>
</tr>
<tr>
<td>Total</td>
<td>97 (100)</td>
<td>37 (100)</td>
</tr>
</tbody>
</table>

a Group A,
† Chlamydia psittaci 2x,
‡ Mycoplasma pneumoniae 2x,
Herpes simplex,
§ Citrobacter, E. coli;
Herpes simplex

Discussion

Over the first half year after the introduction of the order form, surveillance of limited parameters of antimicrobial drug use could be done. According to the opinion of many prescribing physicians, incorporation of the conventional medication order in the antibiotic order form facilitated its use. As delivery of antimicrobial drug therapy to the patient was not dependent upon the completion of the antibiotic order form, compliance was limited. Higher compliance rates may be achieved when the use of the form is mandatory [15]. Nevertheless, with an overall compliance of 76%, we consider the data extracted from the forms as representative for the half year studied.

The scores of the pharmacy technicians, used as an estimate of the prevalence of antimicrobial drug use, allowed for monthly comparisons. There was no decrease in consumption over the first seven months. Comparison with consumption data before the introduction of the form is more difficult. In a one-month review performed two years earlier in the same department, antimicrobial drug consumption was accurately quantified with the data on the Kardex® medication cards. The incidence rate was 4.2 thera-
peutic courses/100 bed days (unpublished data). The
decrease in consumption following the use of the
form described in US hospitals, was probably achie­
ved by the automatic stop of drug delivery by the
pharmacy after 72 hours for empirical therapy or after
the planned duration of directed therapy had expired
[7]. In our setting, the planned duration filled in on
the forms had no consequences for the actual delivery
of the drugs to the patient.

This relatively high compliance with the form on
voluntary basis may have served the purpose of
enhancing quality of prescription. The prescribers
used almost exclusively the proposed drugs on the
form (94%). Moreover, half of the other prescriptions
were for tuberculostatic drugs, that had been omitted
from the form. In addition, the order form reminded
the prescriber to think of a suspected microorganism.
It is thought that there is a relationship between
the quality of prescribing antimicrobial drugs and the
knowledge of a (suspected) pathogen [16]. The deg­
eree of appropriateness of empirical therapy of 74%
compared favorably with the figures of the previous
case review before the implementation of the order
form. At that time, 67% of the isolated pathogens
were susceptible to the drug chosen. A suspected
microorganism was spontaneously mentioned in the
medical record in 20 % of empirical courses (unpu­
blished observations). Again, data before and after
the introduction of the form are not entirely compa­
rable, as, without a form, prescribers were not asked
for the (suspected) pathogen. Analyzing the prescri­
binding practices after the introduction of the antibiotic
order form by the in-depth method used in the
review before the introduction, may provide a better
evaluation of the effectiveness of the form.

We conclude that surveillance of antimicrobial drug
use by an order form was feasible in this large depart­
ment of internal medicine. Future usefulness of the
form will depend on the level of compliance and the
availability of personnel and support for data proces­
sing and intervention.

Acknowledgements
We thank pharmacy technicians Jolanda Komen, Kitty
van Heesch, Sylvie Kok and Ger Konings for scoring
antimicrobial drug use.

References
1. Mouton RP, Clerum JH, Van Loenen AC. Relationship
between antibiotic consumption and frequency of antibiotic
resistance of four pathogens - a seven year study. J
cin resistance from annual usage in hospital. Lancet
1986;i:804-805.
3. Quintiliani R. Strategies for the cost-effective use of antibiotics.
In: Gorbach SL, Bartlett JG, Blacklow NR (eds.) Infectious Diseases. Philadelphia: W.B. Saunders Company, 1992: 348-
352.
4. Durbin WAJ, Lapidas B, Goldmann DA. Improved antibiotic
usage following introduction of a novel prescription system.
5. Kowalsky SF, Echols RM, Peck F Jr. Preprinted order sheet to
enhance antibiotic prescribing and surveillance. Am J Hosp
6. Schaffner W, Ray WA, Federspiel CF, Miller WO. Improving
antibiotic prescribing in office practice: a controlled trial of
three educational methods. JAMA 1983;250:1728-1732.
7. Echols RM, Kowalsky SF. The use of an antibiotic order form
for antibiotic utilization review: influence on physicians' pre­