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Abstract

In	social	dilemmas	punishment	costs	resources,	not	just	from	the	one	who	is	punished	but	often	also	from	the	punisher	and	society.	Reciprocity	on	the	other	side	is	known	to	lead	to	cooperation	without	the
costs	of	punishment.	The	questions	at	hand	are	whether	punishment	brings	advantages	besides	its	costs,	and	how	its	negative	side-effects	can	be	reduced	to	a	minimum	in	an	environment	populated	by
agents	adopting	a	form	of	reciprocity.	Various	punishment	mechanisms	have	been	studied	in	the	economic	literature	such	as	unrestricted	punishment,	legitimate	punishment,	cooperative	punishment,	and	the
hired	gun	mechanism.	In	this	study	all	these	mechanisms	are	implemented	in	a	simulation	where	agents	can	share	resources	and	may	decide	to	punish	other	agents	when	the	other	agents	do	not	share.
Through	evolutionary	learning	agents	adapt	their	sharing/punishing	policy.	When	the	availability	of	resources	was	restricted,	punishment	mechanisms	in	general	performed	better	than	no-punishment,	although
unrestricted	punishment	was	performing	worse.	When	resource	availability	was	high,	performance	was	better	in	no-punishment	conditions	with	indirect	reciprocity.	Unrestricted	punishment	was	always	the
worst	performing	mechanism.	Summarized,	this	paper	shows	that,	in	certain	environments,	some	punishment	mechanisms	can	improve	the	efficiency	of	cooperation	even	if	the	cooperating	system	is	already
based	on	indirect	reciprocity.
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Introduction

1.1 	From	an	evolutionary	point	of	view	cooperation	is	a	double-edged	sword.	On	the	one	hand,	it	can	bring	an	evolutionary	advantage	to	a	group,	since	some	tasks	can	only	be	achieved	through	cooperation	or	at
least	in	a	more	efficient	way	through	the	contribution	of	the	group.	On	the	other	hand,	from	an	individual's	perspective	the	most	efficient	choice	seems	to	be	enjoying	the	fruits	of	cooperation,	without	investing	in
it.	This	is	the	typical	free-rider	problem	that	characterizes	social	dilemmas.	Since	selection	in	evolution	takes	place	on	the	level	of	the	individual,	cooperators	should	be	replaced	by	free-riders,	putting	cooperation
to	an	end.	So	why	is	there	cooperation?

1.2 	It	is	trivial	to	see	that	the	classic	mechanism	of	evolution	does	not	directly	select	for	generosity.	However,	indirect	mechanisms	have	been	proposed	to	show	how	cooperating	leads	not	just	to	an	advantage	to	the
individual	but	also	for	the	group.	Henrich	(2004)	catches	this	in	a	formula	in	which	the	chance	for	altruistic	behavior	positively	correlates	with	the	chance	of	others	being	cooperative.	Nowak	(2006)	lists	five	rules
under	which	cooperation	can	evolve.	Each	of	these	rules	itself	is	sufficient	to	lead	to	cooperation	in	an	evolutionary	system.	Only	humans	seem	to	have	used	all	five	during	evolution.	The	one	we	will	focus	on	in
our	paper	is	'indirect	reciprocity'	(IR).	IR	–	more	specifically	'downstream	reciprocity'	(Nowak	&	Roch	2007)	–	implies	that	by	cooperating	an	individual	increases	the	chance	that	someone	else	will	cooperate	with
him.	Nowak	and	Sigmund	(1998)	provide	evidence	that	IR	will	lead	to	cooperation	if	the	chance	of	knowing	how	often	someone	has	shared	before	is	bigger	than	the	ratio	of	'costs	of	sharing'/'benefit	of	sharing'.

1.3 	The	problem	of	the	emergence	of	cooperation	in	social	dilemmas	has	been	widely	studied	by	social	psychologists	(Dawes	&	Messick	2000;	Messick	&	Brewer	1983),	game	theorists	(Rapoport	&	Chammah
1965;	Axelrod	1984;	Fudenberg	&	Levine	1994;	Kandori	2002),	and	political	scientists	(Ostrom	1990).	Experimental	economists	have	studied	the	emergence	of	cooperation	with	special	reference	to	the	problem
of	market	failures	in	the	provision	of	public	goods	(Ledyard	1995;	Chaudhuri	2011).	In	recent	years	behavioral	economists	have	explained	cooperation	in	social	dilemmas	using	the	concepts	of	peer	costly
punishment	(Fehr	&	Gächter	2000;	2002).	Fehr	and	Gächter	studied	a	Public	Goods	Game	where	cooperation	leads	to	a	high	payoff	for	all	if	everyone	cooperates,	but	the	single	player	earns	the	maximum	payoff
when	all	the	others	cooperate	and	he/she	free-rides.	Free-riding	is	hence	the	unique	Nash	equilibrium	of	the	game.	They	compare	a	treatment	without	punishment	opportunities	with	a	treatment	in	which	subjects
can	punish	their	peers.	Punishment	was	costly	for	the	target	because	it	reduced	her	payoff	in	proportion	of	the	punishment	points	received,	but	it	was	costly	also	for	the	punisher,	who	had	to	pay	a	certain
amount	of	money	for	each	punishment	point	assigned.	In	this	type	of	experiments	one	typically	observes	a	significant	and	stable	growth	of	the	level	of	cooperation	as	a	consequence	of	the	introduction	of
punishment.

1.4 	According	to	some	authors	the	willingness	to	punish	non-cooperators,	known	as	altruistic	punishment	(Fehr	&	Gächter	2000;	Fehr	et	al.	2002;	Carpenter	et	al.	2009)	is	widespread,	has	a	key	role	in	promoting
collective	action	and	is	a	fitness	enhancing	device	in	human	evolution	(Boyd	et	al.	2003;	Henrich	et	al.	2006;	Gintis	et	al.	2008;	Gintis	&	Bowles	2011;	Mathew	&	Boyd	2011).

1.5 	Other	authors	are	skeptical	about	the	contribution	of	this	mechanism	to	the	emergence	of	cooperation.	Some	stress	the	fact	that	altruistic	punishment,	implying	a	cost	for	the	punisher,	presents	a	second-order
social	dilemma	problem,	and	show	that	this	problem	can	be	solved	only	under	very	specific	conditions,	like	the	case	in	which	the	participation	to	the	joint	enterprise	is	voluntary	and	not	compulsory	as	in	the
typical	public	goods	production	scenario	(Hauert	et	al.	2007,	2008).	Ye	et	al.	(2011)	found	that	if	a	group	has	the	possibility	to	show	appreciation	for	altruistic	behavior,	this	is	sufficient	for	altruistic	behavior	to
emerge	and	the	group	will	learn	to	cooperate.	In	addition,	when	implemented	in	a	model	of	indirect	reciprocity,	costly	punishment	seems	to	lead	to	an	efficient	equilibrium	only	in	a	small	parameter	region	(Ohtsuki
et	al.	2009).

1.6 	Our	main	hypothesis	is	that	punishment	is	more	than	just	a	stopgap	to	achieve	cooperation,	and	that	it	can	play	a	facilitating	role	for	the	emergence	of	cooperation	in	certain	contexts,	even	when	it	is	not
explicitly	needed	to	keep	cooperation	going.	To	test	this	hypothesis	we	implement	an	agent-based	simulation	in	which	we	compare	agent	systems	that	can	punish	and	use	IR,	with	agent	systems	that	only	use
IR.	In	addition	we	compare	the	performance	of	different	punishment	mechanisms	under	a	(small)	variety	of	environmental	conditions,	specifically	the	availability	of	resources	(the	importance	of	which	has	been
suggested	many	times	(Dyken	&	Wade	2012;	Brockhurst	et	al.	2008;	Farjam	et	al.	2012)).

1.7 	The	study	of	alternative	punishment	mechanisms	and	their	interaction	with	reciprocity	through	simulation	is	not	new.	Among	the	most	recent	contributions,	Jaffe	and	Zaballa	(2010)	compare	a	specific
punishment	mechanism	(cooperative	punishment,	see	below)	with	the	punishment	mechanism	used	by	Fehr	and	Gächter	and	find	that	their	mechanism	works	better.	However,	it	is	not	clear	whether	the	increase
in	performance	remains	stable	under	different	parameter	settings.	What	is	new	in	our	study	is	that,	to	the	best	of	our	knowledge,	it	is	the	first	comparing	many	punishment	mechanisms	in	one	simulation.

1.8 	Humans	seem	to	have	a	feeling	for	when	punishment	is	necessary.	Obviously	it	is	important	to	not	punish	too	often,	as	punishment	comes	with	a	cost	and	accepting	a	little	bit	of	free-riding	may	be	acceptable,
but	if	one	does	not	punish	enough	free-riding	becomes	dominant.	In	our	simulation	agents	will	have	their	tendency	to	free-ride	(not	cooperate)	and	their	tendency	to	punish	encoded	in	their	genes.	As	in	other
Public	Goods	Games	agents	try	to	maximize	their	own	earnings.	Through	mutation	and	selection	agents	learn	when	free-riding	is	acceptable	and	when	punishment	is	necessary	for	the	public	good.

1.9 	The	remaining	part	of	the	paper	is	organized	as	follows:	in	section	2	we	present	four	different	punishment	mechanisms:	Unrestricted	punishment,	legitimate	punishment,	cooperative	punishment,	and	the	hired
gun	mechanism.	In	section	3	we	describe	the	implementation	of	the	simulation	and	all	punishment	mechanisms.	The	results	are	presented	in	section	4.	In	section	5	we	present	our	conclusions,	particularly	the
suggestion	that	punishment	can	be	a	facilitator	for	effective	cooperation,	by	bringing	about	additional	coordinative	advantages.

Punishment	mechanisms

2.1 	Fehr	and	Gächter	(2000,	2002)	studied	a	form	of	peer	punishment	that	can	be	defined	as	Unrestricted	Punishment	(UP).	In	their	setting	everyone	can	punish	everyone	else.	This	means	that	it	is	also	possible	for
free-riders	to	punish	cooperators.	This	phenomenon	is	called	antisocial	punishment	and	it	is	undesirable	when	punishment	is	meant	to	be	a	means	to	enforce	cooperation,	because	it	decreases	the	fitness	of
cooperators	(Herrmann	et	al.	2010;	Rand	&	Nowak	2011).

2.2 	Faillo,	Grieco	and	Zarri	(2013)	propose	a	different	punishment	mechanism	that	they	call	Legitimate	Punishment	(LP).	In	LP	an	agent	can	only	punish	another	agent	if	they	contribute	more	than	the	agent	they
want	to	punish.	This	mechanism	prevents	antisocial	punishment.	Faillo	et	al.	found	that	LP	compared	to	UP	saves	resources	to	the	group	ensuring	higher	levels	of	cooperation	among	human	players	of	a	Public
Goods	Game.

2.3 	The	Hired	Gun	Mechanism	(HGM),	as	proposed	by	Andreoni	and	Gee	(2012),	restricts	the	possibility	to	punish	to	prevent	antisocial	punishment.	In	contrast	to	LP	in	HGM	punishment	is	not	carried	out	by	peers,
but	by	an	external	agent	-	the	'hired	gun'-	who	is	in	charge	of	punishing	low	contributors.	In	particular	in	Andreoni	and	Gee	the	hired	gun	always	punished	the	agent	that	has	contributed	the	least.	Hence	agents
have	an	incentive	to	provide	at	least	the	second	lowest	level	of	contribution.

2.4 	The	final	mechanism	that	we	consider	is	based	on	an	agent	based	simulation	from	Jaffe	and	Zaballa	(2010),	called	Co-operative	Punishment	(CP).	In	CP	no	restrictions	are	made	on	who	may	punish	who,
instead	the	costs	of	punishing	are	not	paid	by	the	individual	that	punishes	but	by	the	entire	group.	Punishment	becomes	thereby	a	less	altruistic	action.	Jaffe	and	Zaballa	found	that	CP	was	a	much	stronger
stabilizer	of	cooperation	than	altruistic	punishment.	We	go	one	step	further	than	CP	in	our	simulation.	In	UP,	LP,	and	HGM	punishment	implies	a	cost	both	for	the	punisher	and	for	the	punished.	The	resources
subtracted	to	the	punished	thus	vanish.	In	many	social	situations	this	is	not	true.	If	we	get	a	traffic	ticket,	we	pay	this	amount	to	the	government.	We	do	not	burn	the	money.	Nevertheless	punishment	is	still	costly,
as	the	society	has	to	pay	the	police	officer.	In	the	punishment	mechanism	that	we	call	'Zero	Loss	Punishment'	(ZLP),	the	costs	for	punishment	are,	as	in	CP,	shared	by	all	agents,	but	the	cost	for	the	punished
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will	be	reallocated	to	all	agents.	From	an	agent's	point	of	view	punishment	will	cost	the	'cost	to	punish'/'number	of	agents'	but	will	pay	back	'loss	of	punished'/'number	of	agents'.	This	means	that	punishment	will
lead	to	a	small	increase	of	resources	for	the	punishing	agent	if	the	costs	to	punish	are	less	than	the	payoff	the	punished	loses	(as	it	is	in	our	simulation	and	in	almost	all	Public	Goods	Games).	This	implies	that
punishment	in	this	context	is	different	from	"altruistic"	and	completely	disinterested	punishment	activity	observed	in	UP	and	LP.	Although	in	ZLP	punishment	is	not	costly	from	an	agent's	point	of	view,	it	is	costly
from	a	global	point	of	view,	as	the	cost	to	punish	still	vanishes.	Note	that	antisocial	punishment	is	only	possible	for	punishment	mechanisms	UP	and	ZLP,	where	every	agent	is	free	to	punish	any	other	agent.

2.5 	In	figure	1	the	four	punishment	mechanisms	are	classified	according	to	two	criteria:	the	presence	of	restrictions	on	punishment	activity	(restricted	or	unrestricted)	and	the	presence	of	a	net	cost	attached	to	the
punishment	activity	(altruistic	or	not	altruistic).

2.6 	In	our	simulation	we	assume	that	cooperation	is	also	costly.	Agents	must	invest	an	extra	amount	x	to	cooperate/share	y	resources.	This	assumption	of	the	model	is	based	on	the	transaction	cost	theory	by
Williamson	(1981)	and	captures	the	fact	that	moving	resources	from	one	actor	to	the	other	consumes	resources	(the	'transaction	costs').	If	the	transaction	costs	needed	to	cooperate	with	another	agent	are	higher
than	the	social	synergy	achieved,	agents	should	not	cooperate.

Figure	1.	Classification	of	punishment	mechanisms	used	in	the	simulation

The	model

3.1 	The	simulation	was	programmed	with	the	open	source	software	Breve	3D	(Klein	2002),	using	the	programming	language	Steve.	No	special	libraries	have	been	used	for	implementation.	In	Appendix	B	we	show
details	of	the	implementation.	The	following	sections	will	describe	the	simulation	on	a	conceptual	level.	The	full	code	can	be	found	on	https://www.openabm.org/model/3848/version/2/view.	Table	1	provides	an
overview	of	crucial	parameters	determining	the	environment	in	which	agents	interact.	Table	2	does	the	same	for	variables	that	differ	per	agent.	Figure	2	shows	the	sequence	of	steps	that	an	agent	executes
during	every	iteration.

Table	1:	Parameters	of	the	environment	(fixed	during	one	simulation)

Name value Description
NumberOfAgents 50 The	number	of	agents.	They	have	a	fixed	random	position	in	the	field.	They	will	not	die.
Share 5 The	amount	that	is	given	to	a	poorer	agent	in	a	sharing	action.
Punishment 5 The	amount	that	is	taken	from	the	punished	agent.
CostOfSharing 1 Cost	of	a	sharing	action	for	the	sharing	agent.
CostOfPunishment 1 Cost	of	a	punishment	action	for	the	punishing	agent.
Conditions NP:

UP:	
LP:
ZLP:
HGM:

sharing,	no	punishment
unrestricted	punishment
legitimate	punishment
zero	loss	punishment
the	hired	gun	mechanism

AvailabilityOfResources 50	(low)	
100	(mid)	
200	(high)

Number	of	resources.	Each	resource	represents	an	energy	value	of	50.

3.2 	At	the	initialization	"availabilityOfResources"	resources	are	placed	randomly	in	the	environment.	During	the	simulation	a	constant	supply	of	availabilityOfResources/25	resources	is	put	into	the	simulation	at
random	positions.	Resources	move	toward	the	agent	that	is	closest	by	and	as	soon	as	they	reach	the	agent	they	are	'eaten'	(the	object	is	destroyed)	and	the	agent's	energy	increases	by	50.	Because	of	the
random	positioning	of	resources,	areas	of	the	simulation	differ	in	the	amount	of	resources	available.	Without	sharing	of	resources	energy	will	be	heterogeneous	among	agents.

Table	2:	Parameters	of	agents	(change	during	simulation)

Name Initially Description Update	rule
toleranceS random

value
in
[0,100]

Tolerance	for	sharing,	always	positive.	If	the	poorest	agent	in	its
neighborhood	has	energy	less	than	self.energy	-	toleranceS,	the	agent	will
share	with	that	agent	with	a	probability	poorest.reputation	/	self.reputation.

When	an	agent	is	the	worst	after	a	period	of	50	iterations,	its
genome	is	replaced	by	a	mutated	version	of	the	best	agent.

toleranceP random
value
in
[0,100]

Tolerance	for	punishment,	always	positive.	If	the	richest	agent	in	its
neighborhood	has	energy	greater	than	self.energy	+	toleranceP,	the	agent
will	punish	that	agent.

When	an	agent	is	the	worst	after	a	period	of	50	iterations,	its
genome	is	replaced	by	a	mutated	version	of	the	best	agent.

energy 100 The	energy	of	the	agent,	always	positive.	When	an	agent's	energy	is	lower
than	20,	it	consume	no	more	energy	and	if	it	has	not	enough	energy	left,	it
will	neither	share	nor	punish	other	agents.The	energy	is	an	agent's	fitness	for
the	evolution.

Each	iteration	an	agent's	energy	consumption	is	quadratically
proportional	to	its	energy.
Whenever	an	agent	consumes	a	resource,	energy+=50.	An	agent's
energy	will	also	change	by	sharing	and	punishment	actions.

reputation 1 The	agent's	reputation. When	an	agent	shares,	then	reputation+=5.	This	increase	is	slowly
forgotten	according	to	Ebbinhaus'	forgetting	curve,	so	that	after	200
iterations	a	sharing	action	does	no	longer	contribute	to	the	agent's
reputation.

3.3 	Agents	are	placed	randomly	in	a	quadratic,	flat	area.	Within	a	neighborhood	agents	can	punish	or	share	with	other	agents.	The	neighborhood	size	is	chosen	such	that	on	average	every	agent	has	five	other
agents	to	interact	with	(the	average	degree	of	the	agent	network	is	5).	This	number	is	comparable	to	the	group-size	in	most	studies	done	on	Public	Goods	Games.	Throughout	a	simulation	an	agent	stays	at	its
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initial	position,	to	avoid	any	effect	of	a	certain	kind	of	random	movement	of	agents	on	cooperation	as	described	by	Smaldino	and	Schank	(2012).	Every	iteration	agents	do	three	things:	(1)	Decide	if	(and	if	yes,
who)	to	punish,	(2)	decide	to	share	and	(3)	consume	energy	(figure	2).	The	way	in	which	punishment	works	depends	on	the	punishment	mechanism	and	is	described	in	the	following	paragraphs.

Figure	2.	Pseudo	code	showing	the	sequence	of	steps	during	every	iteration

3.4 	Every	agent	is	initialized	with	two	fixed	parameters:	toleranceS	and	toleranceP	(always	positive	doubles).	An	agent	punishes	the	richest	neighbor	once	per	iteration	if	that	neighbor	has	toleranceP	more	energy.
An	agent	decides	to	share	once	per	iteration	with	the	poorest	neighbor	if	that	neighbor	has	toleranceS	energy	less.	Whether	this	decision	really	leads	to	an	action	depends	on	a	chance	that	is	equal	to	'others
reputation'/	'own	reputation'	(if	this	value	exceeds	1	it	is	rounded	to	1).	The	reputation	of	an	agent	is	initially	1	to	prevent	division	by	0.	Whenever	an	agent	has	the	highest	reputation	it	can	be	sure	that	others	will
share	with	it	if	the	agent	is	the	poorest	in	the	neighborhood.	If	its	reputation	is	low	hardly	anyone	shares	with	it.	This	is	the	implementation	of	'downstream	reciprocity'	as	introduced	by	Nowak	and	Roch	(2007).
Whenever	an	agent	shares	with	another,	this	will	increase	its	reputation	by	the	amount	it	has	shared.	After	40	iterations	half	of	the	increase	in	reputation	vanishes.	During	iteration	80,	120	and	160	the	remaining
effect	is	halved	and	in	iteration	200	the	effect	completely	vanishes.	This	process	mimics	Ebbinghaus's	forgetting	curve	(Ebbinghaus	1885).

3.5 	In	simulations	where	UP	is	the	punishment	mechanism	an	agent	has	to	pay	an	incentive	of	one	energy	point	to	punish	another	agent	(distract	five	energy	points	from	the	other).	In	UP	punishment	will	thus
consume	six	energy	points	in	total.	In	simulations	where	LP	is	used	only	agents	with	a	higher	reputation	can	punish	agents	with	a	lower	reputation.	With	ZLP	the	costs	of	the	incentive	for	punishing	is	paid	by	all
agents	collectively	and	the	energy	that	the	agent	who	is	punished	loses	is	re-distributed	to	all	agents.	In	HGM	agents	cannot	punish	each	other.	Instead	nine	'hired	guns'	are	evenly	distributed	in	and	observe	a
part	of	the	area.	Together	they	observe	the	entire	field.	Every	gun	observes	about	six	agents.	This	number	is	similar	to	the	group	size	used	by	Andreoni	and	Gee	(2012).	Furthermore	it	is	the	same	number	of
agents	that	are	in	the	neighborhood	of	agents	in	the	other	conditions.	Once	every	10	iterations	a	gun	punishes	the	agent	in	its	neighborhood	with	the	lowest	reputation.	Cooperation	is	implemented	by	sharing.	In
all	punishment	mechanisms	an	agent	has	to	invest	six	energy	points	in	order	to	share	five	with	another.	Sharing	thus	leads	to	a	loss	of	one	energy	point	to	the	system	of	agents.	A	detailed	description	of	an
agent's	and	all	other	object's	behavior	in	the	simulation	can	be	found	in	Appendix	B.

3.6 	Each	Agent	starts	with	100	energy	units	and	consumes	energy	per	iteration.	If	an	agent	has	6	energy	units	it	cannot	punish	nor	share	and	its	energy	consumption	is	0.	Hence	an	agent's	energy	cannot	drop
below	0.	The	consumption	of	an	agent	grows	quadratic	with	the	energy	an	agent	has	(figure	3).	If	the	total	energy	is	distributed	among	few	agents,	total	consumption	is	much	higher	than	in	the	case	in	which	total
energy	is	distributed	among	a	larger	number	of	agents.	The	extreme	cases	are	those	in	which	one	agent	has	all	the	energy	(maximum	disparity)	and	the	case	in	which	energy	is	evenly	distributed	among	all	the
agents	(minimum	disparity).	This	assumption	of	the	model	is	based	on	the	literature	of	economic	inequality.	It	has	been	found	that	in	societies	where	disparity	is	high	economic	growth	phases	are	more	likely	to
end	than	in	societies	where	disparity	is	low	(Berg	et	al.	2012).	Furthermore	high	disparity	is	linked	to	high	crime	rates	(Fajnzylber	et	al.	2002)	and	bad	health	(Sapolsky	2005)	in	societies.	In	our	model	efficiency
is	therefore	at	its	maximum	when	disparity	is	minimal,	i.e.	when	agents	share.	This	makes	our	interaction	system	similar	to	a	typical	social	dilemma	in	which	the	single	agent	has	the	incentive	to	collect	the
maximum	amount	of	energy	for	itself,	but	the	highest	level	of	energy	for	the	society	is	reached	when	all	the	agents	share	their	energy.

Figure	3.	Total	energy	consumption	of	agents	per	iteration	increases	quadratically	when	total	energy	in	the	simulation	increases.	Red:	one	agent	has	all	energy,	blue:	all	agents	have	equal
energy

3.7 	The	population	of	agents	learns	to	punish	and	share	with	others	with	the	help	of	an	evolutionary	algorithm.	In	evolutionary	algorithms	genes	represent	solutions	to	a	problem	and	these	solutions/genes	increase
their	probability	to	get	reproduced	when	they	increase	the	fitness	of	the	agent	that	reproduces	them	(Bäck	et	al.	1997).	The	evolution	of	the	population	is	implemented	as	follows.	The	fitness	of	an	agent	is	equal
to	its	energy.	The	values	of	toleranceS	and	toleranceP	(the	genes)	represent	possible	punishment/sharing	policies.	Every	50	iterations	a	tournament	selection	is	done,	meaning	that	the	agent	with	the	worst
fitness	takes	over	values	for	toleranceS	and	toleranceP	of	the	fittest	agent	+	Gaussian	noise	with	μ=0	and	σ=5.	Energy	and	reputation	are	not	changed.	Every	agent	faces	the	trade-off	between	keeping	energy
high	to	have	a	high	fitness	and	sharing	to	avoid	punishment.	Sharing	brings	also	an	indirect	advantage	since	it	decreases	the	disparity	in	the	system,	thereby	the	total	energy	consumption	(i.e.	it	reduces	'waste'),
and	hence	there	will	be	more	energy	in	the	future	that	the	agents	can	benefit	from.	Note	that	all	agents	keep	their	initial	position	and	that	the	neighborhoods	do	not	change	during	the	simulation.

3.8 	All	simulations	end	after	30,000	iterations	and	per	simulation	there	are	50	agents.	The	amount	of	resources	set	into	the	simulations	varies	and	is	implemented	via	a	variable	called	availabilityOfResources.
Possible	initial	values	are	50	(low),	100	(mid)	and	200	(high)	with	an	addition	of	resources	of	respectively	2,	4	and	8	per	iteration.	AvailabilityOfResources	is	in	some	way	similar	to	the	'marginal	per	capita	return'
(MPCR)	in	standard	Public	Goods	Games.	Figure	3	shows	that	with	more	resources.	in	the	system	the	difference	between	the	blue	and	the	red	function	increases.	When	the	availabilityOfResources	increases
agents	will	lose	more	and	more	resources	when	their	disparity	is	high.	Cooperation	thus	becomes	more	important.	This	connects	it	to	the	MPCR:	When	high,	cooperation	is	rewarded	more	than	when	it	is	low.

3.9 	Punishment	mechanism	and	the	availability	of	resources	are	treated	as	the	independent	variables.	Per	simulation	only	one	punishment	mechanism	is	used,	so	there	are	5	types	of	simulations:	no	punishment
but	only	sharing	(NP),	UP,	LP,	HGM	and	ZLP.	The	dependent	variable	will	be	the	performance	of	the	system	of	agents	(operationalized	as	the	average	energy	of	all	agents	during	the	last	10,000	iterations).
Furthermore	we	will	look	at	the	change	of	agent	behavior	during	simulations	and	interactions	between	the	independent	variables.
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Results

4.1 	We	performed	100	simulations	for	each	possible	combination	of	the	two	independent	variables	(availabilityOfresources	and	punishment	mechanism),	leading	to	3	(availabilityOfResources)	×	5	(punishment
mechanism)	×	100	=	1500	simulations.	For	a	better	understanding	table	3	defines	terms	used	in	this	section.

Table	3:	Operationalization	of	variables.	In	the	analysis	only	the	last	10,000	iterations	were	taken	into	account

average	energy average	energy	of	all	agents	during	simulation
disparity average	absolute	deviation	of	energy	during	simulation
sharing	actions average	number	of	sharing	actions	per	agent	and	iteration
(antisocial)	punishments average	number	of	punishments	per	iteration	per	agent
coefficient	of	variation disparity	/	average	energy

4.2 	Average	energy	of	all	simulations	is	reported	in	figure	4,	while	figure	5	(left)	shows	the	distribution	of	average	energy	per	condition	during	the	last	10,000	iterations	(kurtosis	and	skewness	always	between	-1.3
and	1.0).	A	detailed	analysis	of	the	relative	performance	of	the	punishment	mechanisms	can	be	found	in	the	regression	models	reported	in	Appendix	A.	Independently	of	the	level	of	availabilityOfResources
unrestricted	punishment	(UP)	performs	worse	in	terms	of	average	energy	than	all	other	punishment	mechanisms	(see	Appendix	A,	column	2	in	Tables	A1,	A2,	and	A3).	Figure	4	shows	that	for	all	values	of
availabilityOfResources	UP	has	the	greatest	variability	of	average	energy	compared	to	other	punishment	mechanisms.	In	other	words,	how	well	the	system	of	agents	learns	to	share	resources	is	least	predictable
in	UP.	Also,	figure	4	shows	that	generally	with	increasing	availability	of	resources	the	distribution	of	average	energy	during	simulation	becomes	more	homogenous.

Figure	4.	Distribution	of	average	energy	of	all	100	simulations	per	condition

4.3 	Figure	5	(left)	shows	the	performance	of	the	various	punishment	mechanisms	in	terms	of	average	energy.	When	the	availabilityOfResources	is	medium	('mid')	or	high,	NP	is	the	best	performing	mechanism
(Tables	A2	and	A3,	column	1).	When	the	availabilityOfResources	is	'low',	legitimate	punishment	(LP),	zero	loss	punishment	(ZLP),	and	the	hired	gun	mechanism	(HGM)	perform	significantly	better	than	no
punishment	(NP)	(Table	A1,	column	1).	These	punishment	mechanisms	thus	increase	the	performance	of	agents	that	have	to	share	when	the	availability	of	resources	is	low.	No	significant	difference	was	found
between	LP,	ZLP,	and	HGM	with	a	low	availabilityOfResources	(Table	A1,	columns	3	and	4).	ZLP	and	HGM	perform	significantly	better	than	LP	when	availabilityOfResources	is	mid	or	high	(Tables	A2	and	A3,
column	3).	We	can	observe	that	LP,	ZLP	and	HGM	are	always	performing	better	than	UP.

Figure	5.	Average	energy	in	various	simulations	(left).	Bars	indicate	the	95	%	confidence	interval.	Development	of	the	average	number	of	sharing	actions	of	all	agents	(right)	in	a	simulation	per
iteration

4.4 	Summarizing	these	results	from	the	perspective	of	the	availability	of	resources,	the	following	can	be	said.	It	is	only	in	the	case	of	low	availabilityOfResources	that	punishment	mechanisms,	with	the	exception	of
UP,	become	effective	compared	to	NP,	without	significant	differences	amongst	themselves.	Yet,	they	do	not	perform	equally	bad	amongst	themselves	under	conditions	of	'relative	luxury'	(when
availabilityOfResources	was	mid	or	high).	There	UP	performs	worst,	LP	medium,	and	ZLP	and	HGM	best.	We	suggest	that	one	way	of	formulating	this	set	of	findings	is	that	LP	and	especially	ZLP	and	HGM	are
most	effective	in	establishing	the	sharing	of	resources	even	in	cases	where	environmental	pressures	to	do	so	are	relatively	low	(due	to	the	absence	of	scarcity).

4.5 	Figure	5	(right)	shows	that	independently	of	the	punishment	mechanism	that	was	used	agents	increased	their	number	of	sharing	actions	over	time.	For	the	figure	only	simulations	with	low
availabilityOfResources	were	used,	but	the	increase	was	similar	for	all	conditions.	The	difference	between	NP	and	the	punishment	mechanisms	regarding	sharing	actions	was	not	significant.	However,	there	was
a	significant	difference	in	average	energy	(Figure	5,	left)	between	NP	and	UP	on	the	one	hand,	and	LP,	ZLP	and	HGM	on	the	other	hand.	Since	reallocation	of	resources,	through	sharing,	was	the	only	possibility
for	agents	to	save	energy,	the	difference	in	average	energy	must	be	due	to	a	more	effective	use	of	the	same	number	of	sharing	actions.	It	seems	that	LP,	ZLP	and	HGM	were	helping	agents	to	increase	the
number	of	sharing	actions	in	a	cost-efficient	way.	While	NP	and	UP	may	lead	to	"blindly	sharing",	more	advanced	punishment	mechanism	like	LP,	ZLP	and	HGM	helped	the	agents	identify	situations	in	which
sharing	was	more	efficient	(e.g.	when	their	own	energy	level	is	not	too	low).	As	described	earlier	punishment	is	costly	not	only	from	the	point	of	view	of	the	individual	but	also	for	the	system	of	agents.	When	the
availabilityOfResources	was	low	the	costs	of	punishment	actions	turn	out	to	be	relatively	lower	than	the	advantage	that	agents	produce	in	terms	of	effective	sharing	by	means	of	the	LP,	ZLP	and	HGM
punishment	mechanisms.

4.6 	Figure	6	(left)	shows	how	many	punishments	were	performed	per	iteration	during	the	simulations	when	availabilityOfResources	was	'low'.	Note	that	there	are	much	less	punishment	actions	than	there	are
sharing	actions	(figure	5,	right).	For	instance,	at	iteration	point	30,000	(end	of	the	simulation),	with	the	LP	mechanism	there	are	about	1.7	punishments	(figure	6,	left)	and	∼7.5	sharingActions	(figure	5,	right).
Figure	6	(right)	shows	how	much	of	this	punishment	was	antisocial	punishment.	As	indicated	in	the	introduction,	antisocial	punishment	means	that	free-riders	can	punish	cooperators,	which	is	only	possible	for
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punishment	mechanisms	UP	and	ZLP.	Antisocial	punishment	decreases	the	fitness	of	cooperators	and,	since	in	our	model	punishment	was	meant	to	facilitate	cooperation,	it	can	be	considered	as	a	misusage	of
punishment.	In	the	simulations	with	UP	more	than	half	of	all	punishment	was	antisocial	punishment.	The	difference	between	UP	and	ZLP	reflects	the	fact	that	ZLP	is	more	effective	in	boosting	the	number	of
sharing	actions	while	reducing	the	number	of	antisocial	punishments.	Apparently	spreading	the	costs	of	punishment	the	punisher	has	to	pay	across	all	agents,	as	well	as	the	reallocation	of	the	cost	for	the
punished	to	all	agents	in	ZLP	has	a	positive	effect.	For	figure	6	only	data	from	the	simulations	where	availabilityOfResources	was	'low'	is	used	(the	ratio	of	punishment/antisocial	punishment	for	'mid'	and	'high'	is
similar	to	that	of	'low').

4.7 	Interestingly	the	ratio	between	punishment	actions	in	general	and	antisocial	punishment	is	almost	exactly	the	same	in	ZLP	as	in	UP.	In	the	LP	simulations	the	system	used	much	less	punishments	compared	to
all	other	mechanisms	to	keep	cooperation	going.	Nevertheless,	as	discussed	in	the	previous	sections,	ZLP	is	performing	as	well	as	LP	in	terms	of	average	energy	(figure	5,	left,	low	energy).	A	combination	of	LP
(avoiding	antisocial	punishment)	and	ZLP	(minimizing	the	costs	of	punishment	for	individuals	and	the	group)	will	probably	lead	to	a	punishment	mechanism	which	is	more	effective	than	ZLP	and	LP	alone.

4.8 	Simulations	with	duration	of	100,000	iterations	show	that	after	25,000	iterations	the	amount	of	punishment	actions	stabilized	in	all	conditions.	Punishing	others	(though	it	was	altruistic	punishment	in	case	of	UP
and	LP)	must	have	brought	an	(indirect)	evolutionary	advantage	to	the	individual	to	remain	encoded	in	the	agents'	genes.

Figure	6.	Development	of	average	number	of	punishment	actions	(left)	and	antisocial	punishments	of	all	agents	(right)	during	simulations	per	iteration.	For	reasons	of	clarity	every	data	point	represents	the
average	of	500	iterations

4.9 	Figure	7	(left)	shows	three	clusters	of	simulations	(representing	different	availabilityOfResources)	and	suggests	that	average	energy	and	the	disparity	(variation	of	energy	level	of	agents)	during	a	simulation	are
negatively	correlated.	The	correlations	per	condition	were	between	-.679	and	-.966	(p	<	.001	for	all	conditions).	In	figure	7	(right)	we	see	that	ZLP	was	always	the	mechanism	leading	to	the	lowest	disparity.	In	the
figure	we	use	the	coefficient	of	variation	(definition	in	table	1)	to	correct	for	different	average	energy	in	the	conditions.	As	we	already	saw	in	figure	 5	(left)	ZLP	was	not	always	the	best	performing	mechanism	in
terms	of	average	energy	of	agents.	Keeping	the	disparity	low	among	agents	seemed	to	be	more	effective	with	regard	to	average	energy	when	the	availability	of	resources	was	low,	than	when	it	was	high.

Figure	7.	Left,	Every	dot	represents	the	average	of	one	simulation.	Right,	Coefficient	of	variation	of	agent's	energy	during	the	last	10,000	iterations

Discussion

5.1 	With	the	help	of	an	agent	based	simulation	we	showed	that	punishment	can	be	a	facilitator	for	effective	cooperation.	Punishment	is	not	just	a	stopgap	for	cooperation	when	agents	lack	information	about	each
other	but	can	bring	an	additional	coordinative	advantage.	In	our	simulation	selection	took	place	on	the	agent	level.	Since	punishment	was	constant	during	evolution	(figure	5)	we	showed	that	(altruistic)
punishment	is	effective	not	just	on	a	group	level,	but	also	for	individuals,	even	when	it	is	not	explicitly	needed	to	keep	cooperation	going.	However,	when	which	punishment	mechanism	works	best	and	if	it	can
play	a	facilitating	role	for	maximizing	the	efficiency	of	cooperation	depends	on	the	environment	in	which	agents	interact.

5.2 	Our	simulations	show	that	punishment	mechanisms	can	be	a	facilitator	of	the	effectiveness	of	cooperation	if	the	availability	of	resources	is	low.	Because	of	the	energy	consume	function	of	agents	this
corresponds	to	Public	Goods	Games	where	the	marginal	per	capita	return	(MPCR)	is	low.	The	MPCR	works	as	a	motivator	for	cooperation	in	Public	Goods	Games	and	the	lower	the	return	the	lower	the
willingness	of	subjects	to	cooperate	(Kim	&	Walker	1984).	In	our	simulation	we	reach	a	first	important	result:	as	shown	by	Ohtsuki	et	al.	(2009),	indirect	reciprocity	is	enough	to	induce	cooperation	and
punishment	does	not	give	a	significant	contribution	to	the	growth	of	cooperation	rate	(Ohtsuki	et	al.	2009).	However,	this	is	only	true	when	resources	are	abundant.	It	seems	that	mechanisms	like	indirect
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reciprocity,	giving	all	responsibility	for	cooperation	to	the	individual,	work	not	strong	enough	as	a	facilitator	to	ensure	cooperation	in	these	situations.	It	seems	to	be	necessary	and	effective	to	give	the	group	the
possibility	to	steer	cooperation	through	punishment	when	MPCR	is	low.

5.3 	The	second	important	result	is	that	when	resources	are	low,	punishment	is	useful	but	only	if	it	is	restricted.	The	simulations	show	that	the	negative	effects	of	antisocial	and	counter	punishment	can	be	effectively
cut	back	through	legitimate	punishment.	LP	was	always	performing	better	than	unrestricted	punishment	and	this	confirms	the	results	of	Faillo	et	al.	(2013).	We	assume	that	a	combination	of	LP	and	ZLP
(minimizing	the	costs	of	a	punishment	action	for	group	and	individual)	will	lead	to	an	even	better	outcome.	Therefore,	comparing	indirect	reciprocity	only	with	unrestricted	punishment	(Ohtsuki	et	al.	2009)	could
lead	to	partial	conclusions	about	the	effectiveness	of	the	two	cooperation-enhancing	mechanisms.

5.4 	The	results	for	the	hired	gun	mechanism	have	to	be	interpreted	with	care.	The	effectiveness	of	HGM	may	depend	on	variables	like	punishment	frequency	and	group	size.	By	fine-tuning	them	performance	of
HGM	may	increase	significantly.	However	we	saw	that	HGM	can	outperform	other	punishment	mechanism	even	without	fine-tuning	when	the	availability	of	resources	was	high.

5.5 	Research	in	social	dilemmas	has	focused	on	the	extent	to	which	punishment	and	reciprocity	lead	to	cooperation,	but	cooperation	should	not	be	a	goal	in	itself.	In	the	simulations	presented	cooperation	also
consumes	resources,	leading	to	the	necessity	for	agents	to	find	a	balance	between	benefits	of	cooperating	and	not	cooperating.	This	is	a	fact	ignored	within	the	framework	of	Public	Goods	Games	and	our	results
show	that	it	can	be	a	crucial	aspect	when	judging	the	effectiveness	of	resource	management.

5.6 	In	our	simulations	all	agents	were	learning	(through	evolution)	the	actions	that	were	best	for	their	fitness.	Despite	this	egocentric	point	of	view,	agents	did	neither	stop	punishing	nor	sharing,	although	those	did
not	bring	a	direct	advantage	to	them.	We	confirm	the	findings	of	Ye	et	al.	(2011)	that	through	the	incorporation	of	reciprocity	in	our	evolutionary	model	the	first-	(why	should	we	share?)	and	second-order	social
dilemmas	(why	should	we	altruistically	punish?)	resolve	themselves.	Contrary	to	Ye	et	al.	'altruistic'	behavior	was	not	rewarded	directly	by	the	group	but	indirectly	through	a	higher	chance	that	others	will
cooperate.	We	did	not	make	any	specific	cognitive	assumptions	about	the	types	of	agents,	but	made	them	as	simple	as	possible	(i.e.	no	rational	or	deliberative	capacities)	and	then	let	them	evolve.

5.7 	The	environments	investigated	in	the	simulations	only	differ	in	one	parameter:	the	availability	of	resources.	Many	more	parameters	such	as	a	changing	availability	of	resources	during	simulation,	or	a	changing
number	of	agents	are	possible	and	should	be	taken	into	account	in	order	to	increase	the	external	validity	of	our	results.	Furthermore	all	agents	were	equal	in	their	energy	consumption	and	only	differed	with
respect	to	toleranceS	and	toleranceP.	Humans	are	far	more	diverse	and	research	is	needed	to	understand	how	well	various	punishment	mechanisms	can	deal	with	this	diversity.

5.8 	Because	of	the	simulation	methodology	and	the	evolutionary	learning	algorithm	underlying	our	simulations,	this	research	has	a	strong	computational	flavor.	It	is	not	often	fully	realized	that	social	simulation
cannot	only	help	to	validate	theories	in	economics	and	social	science,	but	the	findings	can	also	be	used	to	create	or	improve	artificial	social	intelligence.	The	results	point	towards	solutions	for	problems	in	e.g.
decentralized	power	grids	or	wherever	software	agents	have	to	autonomously	share	resources.	In	order	to	keep	e.g.	a	power	grid	stable	very	quick	decisions	have	to	be	made	about	when	energy	producers	are
allowed	to	feed	electricity	into	the	grid	or	when	e.g.	extra	energy	has	to	be	bought	from	foreign	countries.	Instead	of	centrally	steering	this	network,	one	could	decide	to	give	agents	(energy	producers)	local
control	about	the	energy	grid.	This	would	avoid	an	exploding	computational	complexity	of	decisions	to	be	made	in	such	networks	and	help	to	increase	the	speed	and	flexibility	with	which	the	system	can	react.
The	objectives	would	be	similar	to	those	in	the	simulation:	Maximize	own	energy	feed-in,	while	sharing	and	punishing	others	on	rights	to	feed	energy.	Given	the	increasing	size,	flexibility,	and	demands	on	such
systems,	we	assume	that	more	social	intelligence	is	needed	for	agents	within	these	networks.

Appendix	A

This	appendix	contains	the	tables	with	the	results	of	the	regression	analyses	as	referred	to	in	the	results	section.	The	average	level	of	energy	of	each	condition	is	compared	with	the	average	level	of	energy	of
the	benchmark	condition.	The	analysis	is	replicated	for	each	of	the	three	levels	of	resources	available	to	the	agents.

Table	A1:	Average	Energy	across	treatments	(Resources=50)

Average	
Energy

Benchmark=NP
(1)

Benchmark=UP
(2)

Benchmark=LP
(3)

Benchmark=ZLP
(4)

NP 7.29**
(3.33)

-10.64
(3.33)

-15.70**
(3.33)

UP
-7.29**
(3.33)

-17.94**
(3.33)

-23.00**
(3.33)

LP
10.60**
(3.33)

17.94**
(3.33)

-5.06
(3.33)

ZLP
15.70**
(3.33)

23.00**
(3.33)

5.06
(3.33)

HGM
11.55**
(3.33)

18.85**
(3.33)

0.91
(3.33)

-4.15
(3.33)

CONST.
137.76**
(2.36)

130.56**
(2.36)

148.51**
(2.36)

153.57**
(2.36)

OLS	estimation.	
Regressors	are	all	dummy	variables.
NP	=	1	in	case	of	no	punishment	and	0	otherwise;	UP	=1	in	case	of	unrestricted	punishment	and	0	otherwise;	LP	=1	in	case	of	legitimate	punishment	and	0	otherwise;
ZLP=1	in	case	of	zero	loss	punishment	and	0	otherwise;	HGM=	1	in	case	of	hired	gun	punishment	mechanism	and	0	otherwise;
N=500	(100	simulations	x	5	treatments)
F(4,	495)=16.13**
Root	MSE=23.60
R-squared=0.11
Standard	error	in	parentheses
**	significant	at	1%;	*	significant	at	5%

Table	A2:	Average	Energy	across	treatments	(Resources=100)

Average	
Energy

Benchmark=NP
(1)

Benchmark=UP
(2)

Benchmark=LP
(3)

Benchmark=ZLP
(4)

NP 37.49**
(2.83)

11.00**
(2.83)

4.43
(2.83)

UP
-37.49**
(2.83)

-26.49**
(2.83)

-33.05**
(2.83)

LP
-11.60**
(2.83)

26.49**
(2.83)

-6.56**
(3.33)

ZLP
-4.43
(2.83)

33.05**
(2.83)

6.56**
(2.83)

HGM
-4.49
(2.83)

33.04**
(2.83)

6.51**
(2.83)

-0.05
(2.83)

CONST.
203.58**
(2.00)

166.09**
(2.00)

192.58**
(2.00)

199.14**
(2.20)

OLS	estimation.	
Regressors	are	all	dummy	variables.
NP	=	1	in	case	of	no	punishment	and	0	otherwise;	UP	=1	in	case	of	unrestricted	punishment	and	0	otherwise;	LP	=1	in	case	of	legitimate	punishment	and	0	otherwise;
ZLP=1	in	case	of	zero	loss	punishment	and	0	otherwise;	HGM=	1	in	case	of	hired	gun	punishment	mechanism	and	0	otherwise;

N=500	(100	simulations	×	5	treatments)
F(4,	495)=56.49**
Root	MSE=20.038
R-squared=0.31
Standard	error	in	parentheses
**	significant	at	1%;	*	significant	at	5%

Table	A3:	Average	Energy	across	treatments	(Resources=200)
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Average	
Energy

Benchmark=NP
(1)

Benchmark=UP
(2)

Benchmark=LP
(3)

Benchmark=ZLP
(4)

NP 53.84**
(1.93)

11.81**
(1.93)

6.97**
(1.93)

UP
-53.84**
(1.93)

-42.03**
(1.93)

-46.87**
(1.93)

LP
-11.81**
(1.93)

42.03**
(1.93)

-4.84**
(1.93)

ZLP
-6.97**
(1.93)

46.87**
(1.93)

4.84**
(1.93)

HGM
-4.30**
(1.93)

49.54**
(1.93)

7.51**
(1.93)

2.67
(1.93)

CONST.
270.25**
(1.36)

216.41**
(1.36)

258.44**
(1.36)

263.28**
(1.36)

OLS	estimation.	
Regressors	are	all	dummy	variables.
NP	=	1	in	case	of	no	punishment	and	0	otherwise;	UP	=1	in	case	of	unrestricted	punishment	and	0	otherwise;	LP	=1	in	case	of	legitimate	punishment	and	0	otherwise;
ZLP=1	in	case	of	zero	loss	punishment	and	0	otherwise;	HGM=	1	in	case	of	hired	gun	punishment	mechanism	and	0	otherwise;

N=500	(100	simulations	×	5	treatments)
F(4,	495)=257.29**
Root	MSE=13.66
R-squared=0.67

Standard	error	in	parentheses
**	significant	at	1%;	*	significant	at	5%

Appendix	B

In	the	following,	a	semi-formal	description	will	be	presented	of	objects	active	during	the	simulation.	Objects	contain	a	list	of	variables,	the	Init-method	(executed	when	the	object	is	created),	an	Iterate-method
(executed	every	iteration,	beginning	one	iteration	after	creation),	and	if	needed	a	set	of	extra	functions.	The	Controller	is	created	as	soon	as	the	simulation	starts	and	creates	and	coordinates	all	other	objects.
Variables	are	written	in	italics,	the	name	of	the	object	bold.
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Appendix	C

The	following	figures	show	the	results	of	a	parameter	sensitivity	analysis.	Additionally	to	the	independent	variable	availabilityOfResources	that	we	present	in	the	main	part	of	the	paper	we	also	manipulated	the
variables	numberOfAgents	(35,	50,	and	65),	ratio	between	costOfPunishment,	and	punishment	(0.2	or	0.5)	and	the	forgetting	curve	of	reputation	(Ebbinghaus	or	sudden	forgetting).	Summarized,	those	variables
changed	the	absolute	performance	of	agents	during	the	simulation,	but	none	changed	the	ranking	of	the	punishment	mechanisms	and	they	were	thus	not	included	in	the	main	part	of	the	paper.	For	each	of	the
levels	of	the	parameters	(numberOfAgents,	costOfPunishment	and	forgetting)	we	ran	10	simulations	per	punishment	mechanism.	For	numberOfAgents	3×5×10=150	simulations	were	done	and	for
costOfPunishment	and	forgetting	2×5×10	simulations.

Figure	A1.	AverageEnergy	during	simulations	with	different	numberOfAgents.	Bars	indicate	the	95	%	confidence	interval

Figures	A1	and	A2	show	that	neither	numberOfAgents	nor	ratio	costOfPunishment/punishment	changed	the	ranking	of	the	punishment	mechanism	with	regard	to	the	averageEnergy.	Since	the	numberOfAgents
and	the	punishment	ratio	were	tested	in	a	pilot	study	fewer	simulations	were	done	with	values	for	this	variables	differing	from	those	in	table	1	in	the	main	part	of	the	paper.	For	those	variables	only	10	simulations
were	run	per	condition	and	the	shown	confidence	intervals	are	therefore	larger.

Figure	A2.	AverageEnergy	during	simulations	with	different	ratios	of	costOfPunishment/punishment.	Bars	indicate	the	95	%	confidence	interval

Figure	A3	compares	the	results	of	an	earlier	version	of	the	model	(left)	and	the	actual	version	of	the	model	(right).	In	the	old	version	agents	increased	their	reputation	by	200	whenever	they	shared	and	after	200
iterations	this	effect	on	the	reputation	was	gone.	In	the	new	version	agents	did	not	"forget"	this	reputation	suddenly	after	200	iterations	but	in	a	way	that	mimics	the	Ebbinghaus'	forgetting	curve	(as	discussed	in
the	main	paper).	The	different	forgetting	curves	do	not	make	a	big	difference.	However	sudden	forgetting	(figure	A3,	left)	seemed	to	make	UP	more	effective.	In	that	case,	when	the	availabilityOfResources	is	low
UP	performs	better	than	NP.
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Figure	A3.	AverageEnergy	during	simulations	with	different	forgetting	of	reputation.	Bars	indicate	the	95	%	confidence	interval
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