Measurement of the branching ratio
\(\Gamma(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0) / \Gamma(\Lambda_b^0 \rightarrow J/\psi\Lambda^0) \) with the ATLAS detector

ATLAS Collaboration*

Abstract

An observation of the \(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0 \) decay and a comparison of its branching fraction with that of the \(\Lambda_b^0 \rightarrow J/\psi\Lambda^0 \) decay has been made with the ATLAS detector in proton–proton collisions at \(\sqrt{s} = 8 \) TeV at the LHC using an integrated luminosity of 20.6 fb\(^{-1}\). The \(\psi(2S) \) and \(\psi(2S) \) mesons are reconstructed in their decays to a muon pair, while the \(\Lambda^0 \rightarrow p\pi^- \) decay is exploited for the \(\Lambda^0 \) baryon reconstruction. The \(\Lambda_b^0 \) baryons are reconstructed with transverse momentum \(p_T > 10 \) GeV and pseudorapidity \(|\eta| < 2.1 \). The measured branching ratio of the \(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0 \) and \(\Lambda_b^0 \rightarrow J/\psi\Lambda^0 \) decays is \(\Gamma(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0) / \Gamma(\Lambda_b^0 \rightarrow J/\psi\Lambda^0) = 0.501 \pm 0.033 \) (stat) \(\pm 0.019 \) (syst), lower than the expectation from the covariant quark model.

© 2015 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

The \(\Lambda_b^0 \) baryon properties have been extensively studied at the Large Hadron Collider (LHC) [1–7]. The decay channel \(\Lambda_b^0 \rightarrow J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-) \) has been primarily used by the LHC experiments in these studies, although a number of other \(\Lambda_b^0 \) decay channels have been exploited by the LHCb experiment. In particular, a measurement of the differential branching fraction and angular analysis of the rare decay \(\Lambda_b^0 \rightarrow \mu^+\mu^-\Lambda^0 \) was performed by LHCb [8,9] following observation of this decay by the CDF experiment [10] at the Tevatron collider. However, no results for the decay mode \(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0 \) have yet been reported, although a measurement of the decay properties would be useful for verification of theoretical predictions [11].

The \(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0 \) branching fraction should be of the same order as that of the decay \(\Lambda_b^0 \rightarrow J/\psi\Lambda^0 \) as suggested by the branching fraction values of the \(B^0, B^+ \) and \(B_c^0 \) meson decays to \(\psi(2S)/J/\psi \) and either a pseudoscalar \((K^0, K^+, \eta)\) or vector \((K^{*0}, K^{*+}, \phi)\) meson. The branching ratios of such B meson decays to \(\psi(2S)X \) and \(J/\psi X \) are within the 0.5–0.8 range [12], and are generally reproduced by factorisation calculations [13]. The only available theoretical calculation of the branching ratio of the \(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0 \) and \(\Lambda_b^0 \rightarrow J/\psi\Lambda^0 \) decays, performed in the framework of the covariant quark model [14], predicts 0.8 with an uncertainty of approximately 0.1 [11].

An observation of the \(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0 \) decay and a measurement of the branching ratio of the \(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0 \) and \(\Lambda_b^0 \rightarrow J/\psi\Lambda^0 \) decays is reported in this Letter. The \(J/\psi \) and \(\psi(2S) \) mesons are reconstructed in their decays to a muon pair, while the \(\Lambda^0 \rightarrow p\pi^- \) decay is exploited for the \(\Lambda^0 \) baryon reconstruction. The \(\Lambda_b^0 \) baryons are reconstructed with transverse momentum \(p_T > 10 \) GeV and pseudorapidity \(|\eta| < 2.1 \).

2. The ATLAS detector, data and Monte Carlo simulation samples

A detailed description of the ATLAS detector can be found elsewhere [15]. A brief outline of the components most relevant to this analysis is given below.

The ATLAS inner detector (ID) has full coverage in \(\phi \), covers the pseudorapidity range \(|\eta| < 2.5 \) and operates inside an axial magnetic field of 2 T. It consists of a silicon pixel detector (Pixel), a silicon microstrip detector (semiconductor tracker, SCT) and a transition radiation tracker (TRT). The inner-detector barrel (end-cap) parts consist of 3 (2 × 3) Pixel layers, 4 (2 × 9) double-layers of single-sided SCT strips and 73 (2 × 160) layers of TRT straw. The ATLAS muon spectrometer (MS) covers the pseudorapidity range \(|\eta| < 2.7 \). It consists of precision tracking chambers, fast trigger detectors and a large toroidal magnet system generating an aver-

* E-mail address: atlas.publications@cern.ch.

1. Hereafter, charge conjugation is implied, unless explicitly stated otherwise.

2. The ATLAS coordinate system is a Cartesian right-handed system, with the coordinate origin at the nominal interaction point. The anti-clockwise beam direction defines the positive x-axis, with the x-axis pointing to the centre of the LHC ring. Polar (\(\theta \)) and azimuthal (\(\phi \)) angles are measured with respect to this reference system. The pseudorapidity is defined as \(\eta = \ln \tan(\theta/2) \).
age field of 0.5 T in the barrel region ($|\eta| < 1.05$) and 1 T in the end-cap regions ($1.05 < |\eta| < 2.7$).

The ATLAS detector has a three-level trigger system [16]: the hardware-based Level-1 system and the two-stage High Level Trigger (HLT). For this measurement, dimuon triggers are used. At Level-1, the dimuon triggers search for patterns of MS hits corresponding to dimuons passing various p_T thresholds. Since the rate from the low-p_T dimuon triggers was too high, prescale factors were applied to reduce their output rates. The data sample used in this analysis was collected using three dimuon triggers with p_T thresholds of 4 GeV for both muons, 4 GeV and 6 GeV for the two muons, and 6 GeV for both muons. At the HLT, the dimuon triggers used require muons with opposite charges and dimuon mass in the range $2.5 < m(\mu^+\mu^-) < 4.3$ GeV.

This analysis uses 20.6 fb$^{-1}$ of proton–proton collision data with a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012. The uncertainty on the integrated luminosity is ±2.8%. It is derived following the same methodology as that detailed in [17]. The event sample is processed using the standard offline ATLAS detector calibration and event reconstruction code. There are typically a few primary vertex candidates in each event due to multiple collisions per bunch crossing. Only events with at least four reconstructed tracks with $p_T > 0.4$ GeV and at least one reconstructed primary vertex candidate are kept for further analysis.

To model inelastic pp events containing $\Lambda^0 \to J/\psi(\mu^+\mu^-)\Lambda^0$, $\Lambda^0 \to J/\psi(\mu^+\mu^-)\Lambda^0$, $B^0 \to J/\psi(\mu^+\mu^-)K^0_S$ or $B^0 \to J/\psi(\mu^+\mu^-)K^0_S$ decays, three large samples of Monte Carlo (MC) simulated events are prepared using the PYTHIA 8.1 [18] MC generator. The B^0 MC samples are needed to control reflections from B^0 decays to the Λ^0 signal distributions. The generation is based on leading-order matrix elements for all $2 \to 2$ QCD processes. Initial- and final-state parton showering is used to simulate higher-order processes. Generated events with both muons from J/ψ or $\psi(2S)$ decays having transverse momenta above 3.5 GeV and pseudorapidities within ±2.5, and, for Λ^0 MC samples, with the Λ^0 transverse momentum above 1 GeV are passed through a full simulation of the detector using the ATLAS simulation framework [19] based on GEANT4 [20,21] and processed with the same reconstruction program as used for the data. An emulation of the three triggers used for the data collection is applied to the MC samples. The angular decay distributions of the $\Lambda^0 \to J/\psi(\mu^+\mu^-)\Lambda^0(\tau\pi^-)$ decay are modelled using the helicity amplitudes measured by ATLAS [2]. For the $\Lambda^0 \to J/\psi(\mu^+\mu^-)\Lambda^0(\tau\pi^-)$ decay, the helicity amplitudes are set to the predicted values [11].

3. Event and Λ^0 candidate selection

3.1. Charmonium candidate selection

Events are required to contain at least two muons identified by the MS with tracks reconstructed in the ID. The reconstructed muons are required to match the muon candidates identified by the trigger. The muon track parameters are taken from the ID measurement alone, since the MS does not significantly improve the precision in the momentum range relevant for the charmonium measurements presented here. To ensure accurate measurements, each muon track must contain at least six SCT hits and at least one Pixel hit. Muon candidates satisfying these criteria are required to have opposite charges and a successful fit to a common vertex with $\chi^2/N_{\text{dof}} < 10$, where χ^2 is the fit quality with the number of degrees of freedom $N_{\text{dof}} = 1$. Events with $m(\mu^+\mu^-)$ values within ±200 MeV intervals around the J/ψ and $\psi(2S)$ world average masses [12] are used to search for $\Lambda^0 \to p\pi^-\pi^+$ candidates.

3.2. Λ^0 and Λ^0 candidate selection

In all events with J/ψ or $\psi(2S)$ candidates, pairs of tracks from particles with opposite charge are combined to form Λ^0 candidates. Each track is required to have at least one Pixel or SCT hit. Only pairs successfully fitted to a common vertex with $\chi^2/N_{\text{dof}} < 5$ are kept. The track with larger momentum is assigned the proton mass hypothesis since the proton always has a larger momentum than the pion for Λ^0 baryons with momenta larger than 0.3 GeV. To suppress combinatorial background the following requirements are used:

- $p_T(p) > 1.7$ GeV.
- $l_0(p) < 25$ mm, where $l_0(p)$ is the proton longitudinal impact parameter with respect to the dimuon vertex. MC studies show the requirement produces no loss of signal.
- $l_{\text{B}}(\Lambda^0) > 7$ mm, where $l_{\text{B}}(\Lambda^0)$ is the transverse decay length4 of the Λ^0 candidate measured from the beam line.

Events with $m(p\pi^-\pi^+)$ values within an interval of ±20 MeV around the Λ^0 world average mass [12] are kept for further analysis.

3.3. Λ^0 reconstruction

Tracks of the selected charmonium and Λ^0 candidates are simultaneously refitted with the dimuon and dihadron masses constrained to the world average masses of J/ψ ($m_{J/\psi}$) and $\psi(2S)$ ($m_{\psi(2S)}$) and Λ^0 (m_{Λ^0}) [12], respectively. The combined momentum of the refitted Λ^0 track pair is required to point to the dimuon vertex. To control B^0 reflections to the Λ^0 signal distributions, a B^0 decay topology fit is also attempted for each track quadruplet successfully fitted to the Λ^0 topology, i.e. the pion mass is assigned to both hadron tracks and the dihadron mass is constrained to the world average mass of K^0 [12]. To suppress combinatorial and B^0 backgrounds the following requirements are used:

- $\chi^2(\Lambda^0)/N_{\text{dof}} < 3$, where χ^2 is the quality of the fit to the Λ^0 topology with $N_{\text{dof}} = 6$.
- $L_{\text{xy}}(\Lambda^0) > 10$ mm, where $L_{\text{xy}}(\Lambda^0)$ is the transverse decay length of the refitted Λ^0 vertex measured from the Λ^0 (dimuon) vertex.
- $p_T(\Lambda^0) > 2.5$ GeV.
- $p_T(\tau^-) > 0.45$ GeV.
- $\tau(\Lambda^0) > 0.35$ ps, where $\tau(\Lambda^0) = L_{\text{xy}}(\Lambda^0) \cdot m_{\Lambda^0}/p_T(\Lambda^0)$ is the Λ^0 proper decay time, $L_{\text{xy}}(\Lambda^0)$ is the transverse decay length of the Λ^0 vertex measured from the primary vertex and m_{Λ^0} is the Λ^0 world average mass [12]. The primary vertex candidate with at least three tracks and the smallest value of the three-dimensional impact parameter of the Λ^0 candidate is selected as the actual primary vertex.
- $P(\Lambda^0) > P(B^0)$, where $P(\Lambda^0)$ and $P(B^0)$ are the χ^2 probabilities of the quadruplet fits with Λ^0 and B^0 topologies, respectively.

4 The transverse decay length of a particle is the transverse distance between the primary or production vertex and the particle decay vertex projected along the transverse momentum of the particle.

3 In this Letter, $\psi(2S)$ is referred to as ψ when its decay channel is indicated.
The muon transverse momenta and pseudorapidities are required to be in the ranges with high values of the trigger and reconstruction acceptances:

$$p_T(\mu^\pm) > 4 \text{ GeV}, \ |\eta(\mu^\pm)| < 2.3.$$

The kinematic range of the Λ_b^0 measurement is fixd to

$$p_T(\Lambda_b^0) > 10 \text{ GeV}, \ |\eta(\Lambda_b^0)| < 2.1.$$

The invariant mass distribution $m(J/\psi \Lambda^0)$, calculated using track parameters from the Λ_b^0 topology fits, is shown in Fig. 1 separately for the selected Λ_b^0 and $\bar{\Lambda}_b^0$ candidates. Clear signals with similar size are seen in the two distributions around the world average mass of the Λ_b^0 baryon. Figs. 2 and 3 show the $m(J/\psi \Lambda^0)$ and $m(\psi(2S)\Lambda^0)$ distributions for the combined sample of the Λ_b^0 and $\bar{\Lambda}_b^0$ candidates. The invariant mass distributions $m(J/\psi K^0_S)$ and $m(\psi(2S)K^0_S)$ from the B^0 topology fits are also shown. Clear signals are seen in the $m(J/\psi \Lambda^0)$ and $m(\psi(2S)\Lambda^0)$ distributions around the world average mass of the Λ_b^0 baryon. There are also signals in the $m(J/\psi K^0_S)$ and $m(\psi(2S)K^0_S)$ distributions near the world average mass of the B^0 meson [12]. The B^0 signals are smaller than the Λ_b^0 signals due to the selection requirements.

The $m(J/\psi \Lambda^0)$ and $m(J/\psi K^0_S)$ distributions are simultaneously fitted to sums of signal and two-component background distributions. The signals are described by modified Gaussian functions [22]. The modified Gaussian function is defined as

$$\text{Gauss}^{\text{mod}} \propto \exp\left[-0.5 \cdot x^2 + 11/\left(1 + 0.5 \cdot x^2\right)\right],$$

where $x = |m - m_0|/\sigma$. This functional form, introduced to take into account the non-Gaussian tails of resonant signals, describes both data and MC signals well. The signal position, m_0, and width, σ, as well as the number of the signal events are free parameters of the fit. The non-resonant backgrounds in the distributions are described by independent exponential functions. The mutual B^0 and Λ_b^0 reflections are described by MC templates normalised to the numbers of B^0 and Λ_b^0 hadrons obtained in the fit. The reflection normalisations are corrected for small losses (2–6%) of Λ_b^0 and B^0 hadrons that passed the Λ_b^0 reconstruction but failed the B^0 reconstruction. The corrections are obtained using MC simulation. A similar fit is performed for the $m(\psi(2S)\Lambda^0)$ and $m(\psi(2S)K^0_S)$ distributions. In the analysis of the combined Λ_b^0 and $\bar{\Lambda}_b^0$ samples, the ratio of the MC Λ_b^0 and $\bar{\Lambda}_b^0$ events is set to the data ratio obtained in the separate $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ and $\bar{\Lambda}_b^0 \rightarrow J/\psi \bar{\Lambda}_b^0$ fits (Fig. 1). The Λ_b^0 and $\bar{\Lambda}_b^0$ fitted yields are 3523 ± 89 and 3414 ± 92, respectively, providing the ratio 1.03 ± 0.04 (stat).

The results of the fits for the combined Λ_b^0 and $\bar{\Lambda}_b^0$ samples are summarised in Table 1. The Λ_b^0 mass values obtained from the fits of the $m(J/\psi \Lambda^0)$ and $m(\psi(2S)\Lambda^0)$ distributions agree with

Footnote 5: Studies with MC simulated events show that the fraction of reconstructed $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ decays which can contribute to the reconstructed $\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0$ signal is $\sim 10^{-5}$.

Fig. 1. The invariant mass distributions $m(J/\psi \Lambda^0)$ (left plot) and $m(J/\psi \bar{\Lambda}_b^0)$ (right plot) for selected Λ_b^0 and $\bar{\Lambda}_b^0$ candidates, respectively. The solid histograms represent the fit results (see text). The Λ_b^0 signals (dashed lines) and the B^0 reflections are also shown.

Fig. 2. The invariant mass distributions for the combined sample of the selected Λ_b^0 and $\bar{\Lambda}_b^0$ candidates obtained after their fits to the $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ (left plot) and $B^0 \rightarrow J/\psi K^0_S$ (right plot) topologies. The solid histograms represent fit results (see text). The Λ_b^0 and B^0 signals and their mutual reflections are also shown.
The invariant mass distributions for the combined sample of the selected Λ_b^0 and $\bar{\Lambda}_b^0$ candidates obtained after their fits to the $\Lambda_b^0 \to \psi(2S)\Lambda^0$ (left plot) and $B^0 \to \psi(2S)\Lambda_b^0$ (right plot) topologies. The solid histograms represent fit results (see text). The Λ_b^0 and B^0 signals and their mutual reflections are also shown.

Fig. 4 shows the $m(\mu^+\mu^-)$ distributions for the $\Lambda_b^0 \to J/\psi\Lambda^0$ and $\Lambda_b^0 \to \psi(2S)\Lambda^0$ candidates reconstructed with the mass constraint for the dihadron pair and selected within $\pm 3\sigma_{\text{sig}}$ around the world average Λ_b^0 mass. Clear signals from J/ψ and $\psi(2S)$ are seen. The $m(\mu^+\mu^-)$ distributions are fitted to a sum of an exponential function describing the background and a modified Gaussian function describing the signal. The signal yields are found to be $N_{J/\psi} = 9770 \pm 120$ and $N_{\psi(2S)} = 724 \pm 45$. Fig. 5 shows the $m(p\pi^-)$ distributions for the Λ_b^0 candidates reconstructed with the mass constraint for the dimuon pair and selected within $\pm 3\sigma_{\text{sig}}$ around the world average Λ_b^0 mass. Clear signals from Λ^0 are seen. The $m(p\pi^-)$ distributions are fitted to a sum of a threshold function describing the background and a modified Gaussian function describing the signal. The threshold function has the form

$$A \cdot (m - m_p - m_{\pi^-}) \cdot \exp\{C \cdot (m - m_p - m_{\pi^-}) + D \cdot (m - m_p - m_{\pi^-})^2\},$$

where m_p and m_{π^-} are the proton and pion masses, respectively, and A, B, C and D are free parameters. The Λ^0 signal yields are found to be 7710 ± 120 and 702 ± 38 for the $\Lambda_b^0 \to J/\psi\Lambda^0$ and $\Lambda_b^0 \to \psi(2S)\Lambda^0$ candidates, respectively. The numbers of signal chironium and Λ^0 events are larger than the numbers of the corresponding Λ_b^0 signal events because the backgrounds are partly due to genuine chironium and Λ^0 states.

Table 1

<table>
<thead>
<tr>
<th>$\Lambda_b^0 \to J/\psi\Lambda^0$</th>
<th>$B^0 \to J/\psi\Lambda^0$</th>
<th>$\bar{\Lambda}_b^0 \to \psi(2S)\Lambda^0$</th>
<th>$B^0 \to \psi(2S)\Lambda^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{sig}</td>
<td>6840 ± 130</td>
<td>854 ± 84</td>
<td>603 ± 38</td>
</tr>
<tr>
<td>m_{sig} [MeV]</td>
<td>5624.4 ± 0.4</td>
<td>5274.7 ± 2.3</td>
<td>5162.2 ± 1.2</td>
</tr>
<tr>
<td>σ_{sig} [MeV]</td>
<td>19.7 ± 0.5</td>
<td>19.2 ± 2.2</td>
<td>14.3 ± 1.1</td>
</tr>
</tbody>
</table>

Each entry is the world average Λ_b^0 mass value [12]. The signal widths are different, reflecting the difference in chironium masses in the two decay channels, in agreement with the MC expectations. The quality, χ^2/N_{df}, of the $\Lambda_b^0 \to J/\psi\Lambda^0$ and $\bar{\Lambda}_b^0 \to \psi(2S)\Lambda^0$ signal fits are 1.0 and 1.1, respectively. To verify that the observed Λ_b^0 signals correspond to the $\Lambda_b^0 \to J/\psi\Lambda^0$ and $\Lambda_b^0 \to \psi(2S)\Lambda^0$ decays, the signal reconstruction is repeated with only one mass constraint for either the dimuon or the dihadron track pair in the cascade fit and the Λ_b^0 mass is calculated using the mass-difference method. In the case that the dihadron mass is fixed to the Λ^0 mass, the Λ_b^0 mass is calculated as $m(\mu^+\mu^-) - m(J/\psi\Lambda^0) - m(\mu^+\mu^-) + m(\psi(2S))$ for $m(\mu^+\mu^-) < 3.4$ GeV ($m(\mu^+\mu^-) > 3.4$ GeV). When the dihadron mass is fixed to the $\psi(2S)$ mass, the Λ_b^0 mass is calculated as $m(J/\psi\pi^-\pi^-) - m(p\pi^-) + m_{\Lambda_b^0} (m(p\psi(2S)\pi^-\pi^-) - m(p\pi^-) + m_{\Lambda_b^0})$. In both cases, clean Λ_b^0 signals are reconstructed with numbers of signal events compatible with those in Table 1.
4. Measurement of the Λ^0_b branching ratio

$\Gamma(\Lambda^0_b \to J/\psi \Lambda^0) / \Gamma(\Lambda^0_b \to J/\psi \Lambda^0)$

The numbers of Λ^0_b signal events in the two decay modes, reported in Table 1, are corrected for detector effects and selection efficiencies as $N_{\text{corr}} = N_{\text{sig}} / A$, where N_{corr} is the corrected number and A is the MC acceptance. The MC events with the $\psi(2S)/J/\psi$ muons having transverse momenta above 3.5 GeV and pseudorapidities within ± 2.5, and Λ^0 transverse momentum above 1 GeV, passed through the detector simulation and event reconstruction, are used to correct the numbers of signal events in the fiducial range, defined as follows:

$$p_T(\Lambda^0_b) > 10 \text{ GeV}, \quad \left| \eta(\Lambda^0_b) \right| < 2.1,$$

$$p_T(\mu^\pm) > 4 \text{ GeV}, \quad \left| \eta(\mu^\pm) \right| < 2.3,$$

$$p_T(\Lambda^0) > 2.5 \text{ GeV}.$$

The acceptances are calculated as the ratio of the number of reconstructed Λ^0_b signal events passing all selection requirements in the above fiducial range to the number of Λ^0_b baryons in the same decay mode and fiducial range at the MC generator level. These acceptances are 4.16 ± 0.02(stat)$\%$ and 4.30 ± 0.03(stat)$\%$ for the $\Lambda^0_b \to J/\psi \Lambda^0$ and $\Lambda^0_b \to \psi(2S) \Lambda^0$ decays, respectively. In the fiducial range, the ratio of the corrected numbers of Λ^0_b signal events in the two decay modes is 0.0841 ± 0.0055(stat).

Then the numbers are corrected, using generator-level MC samples with no requirements on the μ^\pm and Λ^0 selection, from the above fiducial range to the kinematic range of the Λ^0_b measurement

$$p_T(\Lambda^0_b) > 10 \text{ GeV}, \quad \left| \eta(\Lambda^0_b) \right| < 2.1.$$

The acceptances of the latter corrections are 7.57 ± 0.06(stat)$\%$ and 9.61 ± 0.07(stat)$\%$ for the $\Lambda^0_b \to J/\psi \Lambda^0$ and $\Lambda^0_b \to \psi(2S) \Lambda^0$ decays, respectively. Finally, the branching ratio of the two Λ^0_b decays is calculated as

$$\Gamma(\Lambda^0_b \to \psi(2S) \Lambda^0) / \Gamma(\Lambda^0_b \to J/\psi \Lambda^0) = \frac{N_{\text{corr}}(\Lambda^0_b \to \psi(2S) \Lambda^0)}{N_{\text{corr}}(\Lambda^0_b \to J/\psi (\mu^+\mu^-) \Lambda^0)} \frac{B(J/\psi \to \ell^+\ell^-)}{B(\psi(2S) \to \ell^+\ell^-)},$$

where B is the branching fraction of the corresponding charmonium decay to a lepton pair. In the case of J/ψ, the branching fraction $B(J/\psi \to \mu^+\mu^-) = 0.05961 \pm 0.00033$ [12] is used. For $B(\psi(2S) \to \ell^+\ell^-)$, the branching fraction $B(\psi(2S) \to e^+e^-) = 0.00789 \pm 0.00017$ is used, assuming lepton universality, because it is measured with better precision than in the muon channel, $B(\psi(2S) \to \mu^+\mu^-) = 0.0079 \pm 0.0009$ [12].

Five groups of systematic uncertainty sources are considered. The effect of each group on the measured ratio, obtained by adding in quadrature the effects of independent sources, is shown in parentheses:

- Dependence on the Λ^0_b production model (±0.1%). The uncertainty is obtained by:
 - varying the MC $p_T(\Lambda^0_b)$ and $|\eta(\Lambda^0_b)|$ distributions while preserving agreement with the data distributions,
 - varying the MC ratio of Λ^0_b and $\bar{\Lambda}^0_b$ baryons in the range allowed by the separate data fits (Section 3),
 - varying the lifetimes of the Λ^0 and $\bar{\Lambda}^0$ baryons in the ranges of their uncertainties [12].

- Dependence on the Λ^0_b polarisation model (±1.1%). The uncertainty is obtained by varying the MC $\Lambda^0_b \to J/\psi (\mu^+\mu^-) \Lambda^0(p\tau^-)$ helicity amplitudes in the range of their uncertainties [2], and by changing the MC $\Lambda^0_b \to J/\psi (\mu^+\mu^-) \Lambda^0(p\tau^-)$ helicity amplitudes to those measured by ATLAS for the $\Lambda^0_b \to J/\psi (\mu^+\mu^-) \Lambda^0(p\tau^-)$ decay [2].

- The uncertainty of the signal extraction procedures (±2.8%). The uncertainty is determined by changing the background parameterisations to second order polynomials and by reducing the ranges used for the signal fits by 20 MeV from either left or right side, independently for the two Λ^0_b signals. In addition, the corrections of the reflection normalisations, obtained from MC simulation, are varied by half of their values. This uncertainty is affected by statistical fluctuations.

- The uncertainty originating from the MC statistical uncertainty (±1.3%).

- The uncertainty of the charmonium branching fractions $B(J/\psi \to \mu^+\mu^-)$ and $B(\psi(2S) \to e^+e^-)$ (±2.2%).

The measured branching ratio of the two Λ^0_b decays is

$$\Gamma(\Lambda^0_b \to \psi(2S) \Lambda^0) / \Gamma(\Lambda^0_b \to J/\psi \Lambda^0) = 0.501 \pm 0.033$(stat)$ \pm 0.016$(syst) ± 0.011(l),

where the contributions from the first four groups of systematic uncertainty are added in quadrature. The uncertainty due to the uncertainties of the charmonium branching fractions B is quoted separately. The luminosity uncertainty, uncertainties of the muon and hadron track reconstruction and the vertexing uncertainties
cancel out in the ratio. The bias in the measured ratio due to contributions from the rare decay $\Lambda^0_b \rightarrow \mu^+\mu^-\Lambda^0$ is estimated using the LHCb measurement [9] of the rare decay’s differential branching fraction to be below 0.5% and thus neglected. Consistent ratio values are found when calculated in bins of $p_T(\Lambda^0)$ or separately for Λ^0_b and Λ^0_b baryons.

The measured ratio lies in the range 0.5–0.8 found for the branching ratios of analogous B meson decays [12]. The only available calculation for the branching ratio of the two Λ^0_b decays (0.8 ± 0.1 [11]) exceeds the measured value.

5. Summary

The $\Lambda^0_b \rightarrow \psi(2S)\Lambda^0$ decay has been observed with the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV at the LHC using an integrated luminosity of 20.6 fb$^{-1}$. The branching ratio of the $\Lambda^0_b \rightarrow \psi(2S)\Lambda^0$ and $\Lambda^0_b \rightarrow J/\psi\Lambda^0$ decays has been measured to be $\mathcal{B}(\Lambda^0_b \rightarrow \psi(2S)\Lambda^0)/\mathcal{B}(\Lambda^0_b

References

[12] The uncertainty of the branching fraction ratio $\Gamma(\Lambda^0_{b0} \rightarrow \psi(2S)\Lambda^0)/\Gamma(\Lambda^0_{b0} \rightarrow J/\psi\Lambda^0)$ has been provided privately by the authors.

ATLAS Collaboration

G. Aad 85, B. Abbott 113, J. Abdallah 151, O. Abdirabio 11, R. Aben 107, M. Abolins 90, O.S. Abouzeid 158, H. Abramowicz 153, H. Abreu 152, R. Abreu 16, Y. Abulaiti 146a, 146b, B.S. Acharya 146a, 146b,a

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, United States
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a) Department of Physics, University of Alberta, Edmonton, AB, Canada
5 Istanbul Aydin University, Istanbul, Turkey
6 (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Anneye-in-Vieux, France
8 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
9 Department of Physics, University of Arizona, Tucson, AZ, United States
10 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
11 Physics Department, University of Athens, Athens, Greece
12 Physics Department, National Technical University of Athens, Zografou, Greece
13 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
14 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
15 Institute of Physics, University of Belgrade, Belgrade, Serbia
16 Department for Physics and Technology, University of Bergen, Bergen, Norway
17 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
18 Department of Physics, Humboldt University, Berlin, Germany
19 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
20 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
21 (a) Department of Physics, Bogazici University, Istanbul, Turkey
22 (b) Department of Physics, Gazi University, Gaziantepe, Turkey
23 (c) Department of Physics, Dogus University, Istanbul, Turkey
24 (d) INFN Sezione di Bologna, Italy
25 (e) Departamento de Física e Astronomia, Universidade de Bologna, Bologna, Italy
26 (f) Physikalisches Institut, University of Bonn, Bonn, Germany
27 (g) Department of Physics, Boston University, Boston, MA, United States
28 (h) Department of Physics, Brandeis University, Waltham, MA, United States
29 (i) Universidade Federal do Rio de Janeiro CPGE/EE/IF, Rio de Janeiro, Brazil
30 (j) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
31 (k) Federal University of Sao Joao do Rio (UFSJ), Sao Joao do Rio, Brazil
32 (l) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
33 (m) Physics Department, Brookhaven National Laboratory, Upton, NY, United States
34 (n) National Institute of Physics and Nuclear Engineering, Bucharest, Romania
35 (o) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
36 (p) University Politehnica Bucharest, Bucharest, Romania
37 (q) West University in Timisoara, Timisoara, Romania
38 (r) Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
39 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
40 Department of Physics, Carleton University, Ottawa, ON, Canada
41 CERN, Geneva, Switzerland
42 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
43 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
44 (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
45 (c) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
46 (d) Department of Modern Physics, University of Science and Technology of China, Hefei, China
47 (e) Department of Physics, Nanjing University, Jiangsu, China
48 (f) School of Physics, Shandong University, Shandong, China
49 (g) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China
50 Physics Department, Tsinghua University, Beijing 100084, China
51 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
52 Nevis Laboratory, Columbia University, Irvington, NY, United States
53 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
54 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
55 (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
56 (c) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
57 (d) University of Szczecin, Szczecin, Poland
58 (e) Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
59 (f) Physics Department, Southern Methodist University, Dallas, TX, United States
60 (g) Physics Department, University of Texas at Dallas, Richardson, TX, United States
61 DESY, Hamburg and Zeuthen, Germany
62 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
63 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at Louisiana Tech University, Ruston, LA, United States of America.

Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.

Also at Graduate School of Science, Osaka University, Osaka, Japan.

Also at Department of Physics, National Tsing Hua University, Taiwan.

Also at Department of Physics, The University of Texas at Austin, Austin, TX, United States.

Also at Institute of Theoretical Physics, Iliia State University, Tbilisi, Georgia.

Also at CERN, Geneva, Switzerland.

Also at Georgian Technical University (GTU), Tbilisi, Georgia.

Also at Manhattan College, New York, NY, United States.

Also at Hellenic Open University, Patras, Greece.

Also at Institute of Physics, Academy Sinica, Taipei, Taiwan.

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at School of Physics, Shandong University, Shandong, China.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at International School for Advanced Studies (SISSA), Trieste, Italy.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.

Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Department of Physics, Stanford University, Stanford, CA, United States.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

* Deceased.