The Journal of Nuclear Medicine • Vol. 33 • No. 3 • March 1992

The purpose of this study was to evaluate the role of both protein and radionuclide in the accumulation of 111In-labeled human immunoglobulin G (IgG) in infectious foci. In rats with a calf muscle infection, biodistribution was determined 2, 6, 24, and 48 hr after injection of a radiopharmaceutical. For IgG, human serum albumin (HSA) and human immunoglobulin A (IgA), all labeled with 111In, target-to-background (T/B) ratios were similar throughout the study. However, absolute abscess uptake of 111In-IgA was significantly lower. For IgG labeled with 111In, 123I, or 99mTc, similar T/B ratios were found up to 24 hr. After 48 hr, the T/B ratio of 111In-IgG was significantly higher than the T/B ratio of 123I-IgG. The absolute abscess uptake of 111In-IgG was higher than that of 99mTc-IgG at 24 hr and 123I-IgG at 48 hr. In conclusion, the radiopharmaceuticals appear to be major importance in the accumulation of radiolabeled proteins in infectious foci. Protein mainly influences blood clearance and distribution in organs. The Fc-γ receptor is not crucial for accumulation in infectious foci.

Several reports suggest the utility of scintigraphy with 111In-labeled nonspecific polyclonal human immunoglobulin G (111In-IgG) for the detection of various types of focal infection in humans (1-4). However, the mechanism of 111In-IgG accumulation in infectious and noninfectious inflammatory foci is not fully understood. Both specific receptor interaction and nonspecific macromolecular entrapment have been proposed (5-8). To evaluate the role of the type of protein in the mechanism of 111In-IgG accumulation in infectious foci, 111In-IgG was compared to 111In-labeled human serum albumin (HSA), and 111In-labeled human immunoglobulin A (IgA); also 123I-IgG was compared to 131I-HSA. To elucidate the role of the radiopharmaceuticals and corresponding labeling method, IgG was labeled with 111In, 123I and 99mTc and HSA was radiolabeled with 111In and 131I.

MATERIALS AND METHODS
Radiopharmaceuticals

The biodistribution and kinetics of six radiolabeled proteins were studied.

- **Indium-111-IgG**. (IgG: Sandoglobulin, Sandoz AG, Nuernberg, FRG). Diethylenetriaminepentaacetic bicyclic anhydride (bicyclic DTPA) was conjugated to the protein according to Hnatowich and colleagues (9). The number of DTPA ligands, conjugated to one protein molecule was determined by the method described by Hnatowich et al. (9). The purified DTPA-conjugated protein was diluted to 2 mg/ml with 0.15 M acetate (pH = 6.5) and sterilized by membrane filtration. Aliquots of 0.5 ml of the conjugate were radiolabeled with 111In (Indium chloride, Amersham International Ltd., Buckinghamshire, UK) via citrate transchelation. The radiochemical purity of all radiopharmaceuticals was determined by instant thin-layer chromatography (ITLC) on Gelman ITLC-SG strips (Gelman Laboratories, Ann Arbor, MI) with 0.1 M citrate (pH = 5) as solvent. Labeling efficiency was checked batchwise by HPLC on an 125I size exclusion column (Waters-Millipore) with a 0.1 M acetate buffer (pH = 6) as solvent. A dose of 10 µg labeled with 2 MBq 111In, was injected intravenously.

- **Iodine-123-IgG**. (IgG: Sandoglobulin, Sandoz AG, Nuernberg, FRG). IgG was labeled with 123I by means of the Iodo-gen method (Iodo-gen, 28600, Pierce, Rockford, IL) (10). Unbound iodine was removed with Sephadex 25. A dose of 10 µg IgG labeled with 3 MBq 123I was injected intravenously.

- **Technetium-99m-IgG**. Kits for labeling IgG with 99mTc (Technescan-HIG) were kindly provided by Mallinkrodt Diagnostica Holland, Petten, The Netherlands. A kit, containing 1 mg of 2-iminothiolane-derivatized IgG (obtained from the Central Laboratory of the Bloodtransfusion Service of the Netherlands Red Cross, Amsterdam, The Netherlands) and stannous chloride, was radiolabeled with 500 MBq 99mTc eluate. In vitro stability was tested by HPLC analysis after in-vitro storage of 99mTc-labeled IgG at 37°C for 24 hr. A dose of 10 µg, labeled with 4 MBq 99mTc, was injected intravenously.

- **Technetium-99m-HSA**. Kits for labeling HSA with 99mTc (Technescan-HIG) were kindly provided by Mallinkrodt Diagnostica Holland, Petten, The Netherlands. A kit, containing 1 mg of 2-iminothiolane-derivatized HSA (obtained from the Central Laboratory of the Bloodtransfusion Service of the Netherlands Red Cross, Amsterdam, The Netherlands) and stannous chloride, was radiolabeled with 500 MBq 99mTc eluate. In vitro stability was tested by HPLC analysis after in-vitro storage of 99mTc-labeled HSA at 37°C for 24 hr. A dose of 10 µg, labeled with 4 MBq 99mTc, was injected intravenously.

- **Iodine-111-HSA**. (Human Albumin 20%, Central Laboratory of the Bloodtransfusion Service of the Netherlands Red Cross, Amsterdam, The Netherlands). DTPA-conjugation and 111In labeling were accomplished as described above. A dose of 10 µg labeled with 2 MBq 111In, was injected intravenously.

- **Indium-111-IgA**. (Human IgA, 11010, Sigma Chemical Company, St. Louis, MO). DTPA-conjugation and 111In labeling were
accomplished as described above. IgA activity was determined before and after conjugation with DTPA by immunoelectrophoresis. Non-IgA bound \(^{111}\)In was removed with Sephadex PD 10. A dose of 10 \(\mu\)g, labeled with 2 MBq \(^{111}\)In, was injected intravenously.

Animals and Study Design

A calf muscle abscess was induced in young, male, randomly bred Wistar rats (weight 200-220 g) after ether anesthesia with approximately \(2 \times 10^8\) colony-forming units of \textit{Staphylococcus aureus} in 0.1 ml 50:50% suspension of autologous blood and normal saline. The animals were randomly divided in groups.

Twenty-four hours after the inoculation of \textit{Staphylococcus aureus} in the muscle, when swelling of the muscle was apparent, the respective radiopharmaceuticals were injected in the tail vein. To collect tissues, rats were killed with 30 mg intraperitoneally injected phenobarbital, followed by cervical dislocation at 2, 6, 24, and 48 hr after injection. For \(^{99m}\)Tc-IgG, tissues were obtained up to 24 hr p.i. Each peptide was evaluated in six animals at each time point. Samples of bone marrow (taken from the right femur), blood, and urine were collected. The infected left calf muscle, the right calf muscle, the liver, the spleen, the kidneys, and the right femur were collected and blotted dry. The activity in the tissues and samples was measured in a shielded well-type gamma counter. The excreted activity in feces and urine of each peptide at each time point between injection of the radiopharmaceutical and killing of the animals was also measured in the well counter.

To correct for radioactive decay and permit calculation of the uptake of the radiopharmaceuticals in each organ as a fraction of the injected dose, aliquots of the respective doses were counted simultaneously. The measured activity in tissues and samples was expressed as percentage of injected dose per gram (%ID/g) and the excreted activity per animal as percentage of total dose administered.

For calculation of background activity, we used a combination of normal muscle activity and blood activity. Since the blood volume of rats approximates 60 ml per kg bodyweight (6%), 94% \(\times\) the activity per gram in muscle plus 6% \(\times\) the activity per gram in blood was adopted as the value for background activity (11). Abscess-to-background ratios were calculated.

Statistical Analysis.

All mean values are given \(\pm\) s.e.m. Statistical analysis was performed using Tukey's analysis of variance. The level of significance was set at 0.05.

RESULTS

Labeling Efficiency and Characterization of Proteins

Conjugation of DTPA to proteins resulted in two to three DTPA ligands per protein molecule. For \(^{111}\)In-IgG, labeling efficiency was 95%. ITLC and HPLC analysis results were similar. In patients, all \(^{111}\)In activity in blood samples was still protein-bound at 48 hr p.i. No cell binding of \(^{111}\)In could be detected.

For \(^{123}\)I-IgG, radiochemical purity was 98% after removing unbound iodine. For \(^{99m}\)Tc-IgG, labeling efficiency was 99%. HPLC analysis showed that approximately 75% of the original \(^{99m}\)Tc activity was still protein-bound after 24 hr in vitro.

For \(^{111}\)In-HSA and \(^{131}\)I-HSA, the protein bound activity was 99% and 96%, respectively.

IgA activity after conjugation with DTPA was 89% of the original activity. Indium-111-IgA labeling efficiency was 96% after purification.

Role of Protein

Comparison of \(^{111}\)In-IgG, \(^{111}\)In-HSA and \(^{111}\)In-IgA. Figure 1 shows that all radiopharmaceuticals had a higher accumulation in the infectious focus than in the contralateral normal muscle at all sampling times. Indium-111-IgG uptake in the abscesses remained at a constant, high level. Although not significant, both \(^{111}\)In-HSA and \(^{111}\)In-IgA showed a tendency to decrease over time. The uptake of \(^{111}\)In-IgG and \(^{111}\)In-HSA in the abscess revealed no significant differences. Indium-111-IgA uptake was significantly lower at all points in time (p < 0.05). However, abscess-to-background ratios of all \(^{111}\)In-labeled proteins (Fig. 2) did not differ significantly.

![FIGURE 1. Activity uptake in abscess and muscle, expressed as %dose/g (error bars indicate s.e.m.).](image-url)
After 6 hr, 111In-IgG cleared significantly slower from the blood than 111In-HSA, p < 0.05 (Fig. 3). The blood concentration of 111In-IgA was significantly lower than that of 111In-IgG and 111In-HSA at each time point (p < 0.05).

Table 1 and Figure 4 show the distribution in various organs. Indium-111-IgA showed marked accumulation in the kidneys, liver and spleen. Indium-111-IgG and 111In-HSA uptake in the liver and the spleen did not differ significantly. However, renal uptake of 111In-IgG was significantly higher compared to 111In-HSA (p < 0.05).

Excretion of 111In-IgG and 111In-HSA were also similar (Fig. 5). Indium-111-IgA excretion was slightly higher.

Comparison of 123I-IgG and 131I-HSA. At 24 and 48 hr, both 123I-IgG and 131I-HSA revealed significant washout from the abscess, p < 0.05 (Fig. 1). The absolute abscess uptake of 123I-IgG was significantly higher than the corresponding uptake of 131I-HSA at 24 and 48 hr, since the washout of 123I-IgG was slower than that of 131I-HSA (p < 0.05). This also applied for the absolute muscle uptake. For this reason, abscess-to-background ratios of the two iodinated proteins did not differ (Fig. 2).
TABLE 1
Biodistribution, Expressed as Percentage of Administered Dose per Gram (Mean Values ± s.e.m.)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Time</th>
<th>111In-IgG</th>
<th>123I-IgG</th>
<th>99mTc-IgG</th>
<th>111In-HSA</th>
<th>131I-HSA</th>
<th>111In-IgA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>2</td>
<td>1.14 ± 0.03</td>
<td>0.92 ± 0.11</td>
<td>0.88 ± 0.03</td>
<td>1.07 ± 0.16</td>
<td>0.54 ± 0.04</td>
<td>6.25 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.32 ± 0.07</td>
<td>0.66 ± 0.10</td>
<td>0.77 ± 0.07</td>
<td>1.39 ± 0.19</td>
<td>0.42 ± 0.02</td>
<td>6.94 ± 0.34</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.37 ± 0.09</td>
<td>0.26 ± 0.02</td>
<td>0.38 ± 0.08</td>
<td>1.29 ± 0.19</td>
<td>0.12 ± 0.00</td>
<td>5.94 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>1.49 ± 0.04</td>
<td>0.29 ± 0.03</td>
<td>-</td>
<td>1.47 ± 0.21</td>
<td>0.05 ± 0.01</td>
<td>4.85 ± 0.33</td>
</tr>
<tr>
<td>Spleen</td>
<td>2</td>
<td>1.09 ± 0.04</td>
<td>0.90 ± 0.10</td>
<td>0.88 ± 0.08</td>
<td>1.12 ± 0.13</td>
<td>0.58 ± 0.05</td>
<td>4.77 ± 0.59</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.43 ± 0.10</td>
<td>0.72 ± 0.08</td>
<td>0.77 ± 0.08</td>
<td>1.68 ± 0.15</td>
<td>0.44 ± 0.03</td>
<td>3.70 ± 0.36</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.61 ± 0.09</td>
<td>0.36 ± 0.02</td>
<td>0.40 ± 0.02</td>
<td>1.90 ± 0.31</td>
<td>0.12 ± 0.01</td>
<td>4.41 ± 0.60</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>1.81 ± 0.10</td>
<td>0.28 ± 0.02</td>
<td>-</td>
<td>2.14 ± 0.19</td>
<td>0.05 ± 0.00</td>
<td>3.15 ± 0.48</td>
</tr>
<tr>
<td>Kidneys</td>
<td>2</td>
<td>4.18 ± 0.22</td>
<td>1.47 ± 0.14</td>
<td>9.41 ± 0.84</td>
<td>1.57 ± 0.17</td>
<td>0.93 ± 0.09</td>
<td>7.64 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.45 ± 0.49</td>
<td>1.15 ± 0.08</td>
<td>11.10 ± 0.96</td>
<td>1.62 ± 0.15</td>
<td>0.70 ± 0.03</td>
<td>7.88 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.38 ± 0.46</td>
<td>0.56 ± 0.03</td>
<td>10.15 ± 0.81</td>
<td>1.74 ± 0.18</td>
<td>0.21 ± 0.01</td>
<td>8.27 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>5.36 ± 0.61</td>
<td>0.45 ± 0.03</td>
<td>-</td>
<td>2.50 ± 0.31</td>
<td>0.09 ± 0.01</td>
<td>7.81 ± 0.25</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>2</td>
<td>1.01 ± 0.10</td>
<td>1.30 ± 0.10</td>
<td>1.27 ± 0.28</td>
<td>1.19 ± 0.07</td>
<td>0.90 ± 0.17</td>
<td>1.14 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.45 ± 0.08</td>
<td>0.99 ± 0.11</td>
<td>0.78 ± 0.09</td>
<td>1.13 ± 0.18</td>
<td>0.68 ± 0.05</td>
<td>0.99 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.40 ± 0.08</td>
<td>0.40 ± 0.03</td>
<td>0.27 ± 0.01</td>
<td>1.24 ± 0.02</td>
<td>0.20 ± 0.05</td>
<td>0.89 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>1.40 ± 0.08</td>
<td>0.39 ± 0.02</td>
<td>-</td>
<td>1.07 ± 0.10</td>
<td>0.06 ± 0.01</td>
<td>0.79 ± 0.09</td>
</tr>
<tr>
<td>Bone</td>
<td>2</td>
<td>0.25 ± 0.02</td>
<td>0.27 ± 0.02</td>
<td>0.22 ± 0.03</td>
<td>0.28 ± 0.04</td>
<td>0.24 ± 0.02</td>
<td>0.18 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.23 ± 0.02</td>
<td>0.23 ± 0.02</td>
<td>0.16 ± 0.01</td>
<td>0.37 ± 0.04</td>
<td>0.18 ± 0.03</td>
<td>0.14 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.28 ± 0.02</td>
<td>0.11 ± 0.01</td>
<td>0.08 ± 0.00</td>
<td>0.39 ± 0.05</td>
<td>0.10 ± 0.01</td>
<td>0.16 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>0.34 ± 0.05</td>
<td>0.10 ± 0.01</td>
<td>-</td>
<td>0.47 ± 0.09</td>
<td>0.08 ± 0.00</td>
<td>0.11 ± 0.01</td>
</tr>
</tbody>
</table>

The blood clearance and excretion rate of 123I-IgG were significantly slower than the clearance and excretion rate of 131I-HSA, $p < 0.05$ (Fig. 3 and 5). The accumulation in organs was significantly lower for 131I-HSA than for 123I-IgG, $p < 0.05$ (Table 1 and Fig. 4).

Role of Radionuclide

Comparison of mIn-IgG, 123I-IgG, and 99mTc-IgG. As shown in Figure 1, absolute abscess uptake over time showed different patterns for these labels: 111In-IgG was relatively high and constant from 6 hr p.i. onwards; 123I-IgG was also high at 6 hr p.i., but decreased afterwards; 99mTc-IgG was relatively low and decreased between 6 and 24 hr p.i. The uptake of 111In-IgG in the abscess was significantly higher than that of 99mTc-IgG at 24 hr ($p < 0.05$). Also, at 48 hr there was more 111In-IgG than 123I-IgG activity in the abscess ($p < 0.05$). Abscess uptake of 123I-IgG was initially significantly higher than that of 99mTc-IgG ($p < 0.05$), but did not differ significantly at 24 hr p.i. With regard to the abscess-to-background ratios (Fig. 2), only the higher ratio at 48 hr p.i. of 111In-IgG compared to the ratio of 123I-IgG reached a level of significance ($p < 0.05$).

As shown in Figure 3, significant differences could be noted in blood clearance: 99mTc-IgG showed the fastest clearance ($p < 0.05$) and 123I-IgG the slowest ($p < 0.05$).
The accumulation of the three IgG preparations in the kidneys varied significantly: 123I-IgG had the lowest ($p < 0.05$) and 99mTc-IgG had the highest uptake ($p < 0.05$) (Table 1 and Figure 4). In liver, spleen, bone and bone marrow, 111In-IgG uptake significantly exceeded 123I-IgG and 99mTc-IgG uptake ($p < 0.05$). Indium-111-IgG showed stable or increasing activity over time in liver, spleen, kidneys, bone marrow and bone. Iodine-123-IgG activity decreased in these organs, while 99mTc-IgG activity also decreased in these organs with the exception of the kidneys, whose activity remained relatively stable. Typically, the bone marrow uptake exceeded the bone uptake by a factor four to five for all preparations.

As shown in Figure 5, approximately 20% of the administered 111In-IgG was excreted in faeces and urine within 48 hr, excretion of 123I-IgG was higher (approximately 30%). After administration of 99mTc-IgG approximately 60% of the radiopharmaceutical was excreted within 24 hr.

Comparison of 111In-HSA and 131I-HSA. Similar differences as noted between 111In-IgG and 123I-IgG were found between 111In-HSA and 131I-HSA: retention in the abscess, constant abscess to background ratios over time, significant accumulation in organs, and low excretion rate of 111In-HSA versus washout from the abscess, over time decreasing abscess-to-background ratios, low organ uptake, and high excretion rate of 131I-HSA.

DISCUSSION

The similar abscess uptake and abscess to background ratios of 111In-IgG and 111In-HSA at various time points indicate that specific receptor binding of labeled IgG in an infectious focus, if at all present, is not the major factor in accumulation of labeled IgG in such a focus, since HSA lacks this receptor affinity. These findings are in concert with the autoradiographic studies by Morrel et al. and our own experience in neutropenic patients (7,8).

IgA is an immunoglobulin without Fc-γ receptor affinity. On inflammatory cells few Fc-α receptors are present (12). However, target-to-background ratios of 111In-IgA in infections in extremities do not differ from those after 111In-IgG injection, thus confirming that Fc-γ receptor interaction is not a major factor in the accumulation of 111In-IgG in infectious foci. The different uptake in liver, spleen and kidney of 111In-IgG and 111In-IgA revealed that protein is also a major factor in biodistribution. Since hepatocytes of rats are equipped with IgA receptors, the high liver uptake of 111In-IgA in our experiment is not surprising (13). The initially high and persistent organ uptake of 111In-IgA is in accordance with fast clearance from the blood to the organs. Hepatic, renal and splenic uptake of 111In-IgA are so high, that, at least in rats, this agent is not suited for imaging infectious foci in these areas. The differences observed between 111In-IgG and 111In-IgA confirm the results of Fischman et al., who noted that physical chemical differences between 111In-labeled Fab and Fc fragments of IgG might account for differences in abscess localization and biodistribution (14).

More striking differences were observed with regard to the biological behavior of IgG when it was labeled to either 111In, 123I or 99mTc. Indium-111-IgG was retained in the abscess, while 123I-IgG and 99mTc-IgG showed washout. The physiological uptake in organs of 111In-IgG, the radiopharmaceutical thus far most frequently used in patient studies, is relatively high for most organs, compared to 123I-IgG and, except for kidney uptake, 99mTc-IgG.

The relatively slow blood clearance of 123I-IgG might appear disadvantageous in detection of infectious foci, because of persistingly high background activity. The most probable explanation for this persisting blood activity is
dehalogenation of the protein in organs and subsequent washin of iodine and iodinated fragments into the circulation. A labeling procedure with more stable halogenation could overcome both this problem as well as washout of iodinated IgG from the infectious focus over time. The low physiological uptake in organs of 123I-IgG could be useful for the evaluation of infectious foci in parenchymatous organs. Clinical studies with 111In-IgG showed disappointing results for the detection of infectious foci in these organs (4,8). Additional advantages of 123I are its physical properties: a half-life of 13 hr which permits imaging up to 48 hr after administration, a relatively low radiation burden per unit activity compared to 111In, thus allowing a higher dose to administer leading to high quality imaging with reasonable imaging times. A somatic dose equivalent of 15 mSv after injection of 75 MBq 111In-IgG necessitates reluctance in the use of this radiopharmaceutical in pediatric patients (15). The more favorable distribution of 123I-IgG in this animal study compared to 111In-IgG might bring IgG scintigraphy in scope for imaging of infection in children. Major drawbacks for widespread use of 123I-IgG are of course its limited availability and high cost.

Technetium-99m-IgG performs well up to 6 hr p.i. Although the abscess-to-background ratio remained at the same high level after 24 hr p.i., a rapid decrease of abscess activity was apparent. This decrease in combination with a physical half-life of 6 hr is a major impediment to obtaining good quality images after 24 hr. One might wonder whether or not this decrease makes 99mTc-IgG scintigraphy less suited for the detection of subacute and low-grade infections in humans, in whom 48-hr images could overcome both this problem as well as washout of 123I-IgG from the abscess was slower than that of 131I-HSA, both iodinated proteins showed similar trends with regard to uptake and retention in the abscess and the organs and the abscess-to-background ratios and distribution. In contrast, Calame et al. observed lower abscess-to-background ratios for 99mTc-HSA than for HSA-IgG (19). However, their experimental model differed from ours with regard to the animal, the strain of bacteria and amount of bacteria injected.

In conclusion, both the radionuclide and the protein are important in the biodistribution and kinetics of radiolabeled proteins used for detection of infectious foci. For accumulation in infectious foci, the radionuclide appears to be the major determinant. Specific Fc-γ receptor binding is probably of minor, if any, importance in the uptake of radiolabeled proteins in infectious foci. Most probably accumulation in these areas is caused by increased vascular permeability initially and retention with time by macromolecular entrapment. The protein defines the blood clearance and the distribution in organs of radiolabeled proteins, thus determining the amount of labeled protein that is available for delivery to an infectious focus.

Given the similarity of 111In-IgG and 111In-HSA in this animal model, further studies in humans with 111In-HSA would be useful. Despite economic and logistic disadvantages, 123I-IgG also merits further investigation. The present study warrants further studies to develop a radiolabeled protein with persistingly high abscess uptake, low background activity, fast blood clearance and low physiological organ uptake (20).

ACKNOWLEDGMENTS

The authors express their gratitude to: Mr. W. Tax, PhD (University Hospital Nijmegen, Department of Internal Medicine, Division of Nephrology) for his advice; Mr. G. Borm, PhD (University of Nijmegen, Department of Medical Statistics) for performing the statistical analysis; Mr. Gerrie Grutters and Mr. Henkie Eijkholt (University of Nijmegen, Central Animal Laboratory) and Mr. Emile Koenders and Mrs. Marjo van de Ven (University Hospital Nijmegen, Department of Nuclear Medicine) for technical assistance.

REFERENCES

Targeted Proteins for Diagnostic Imaging: Does Chemistry Make a Difference?

The imaging of occult infection is an important area of nuclear medicine. Vehicles for abscess localization have ranged from 67Ga-citrate to radiolabeled leukocytes to radiolabeled immunoglobulin G (IgG) of current interest. Although 111In-labeled polyclonal IgG is probably the most widely cited protein being evaluated for focal infection scintigraphy (1-4), the mechanism of radiolabel distribution and their associated chemistries in imaging experimental infectious foci in a rat model

In the first part of the study, the authors compared radiolabeled IgG with immunoglobulin A (IgA) and human serum albumin (HSA) controls since these proteins lack specificity for abscess. In each case 111In labeling via a bifunctional chelate served as the standard radiolabel so that localization differences could be ascribed to individual protein distribution properties. Layered upon the targeting properties of the protein was the contribution of the radiolabels and their chemistries. In the second part of the study, the authors compared various radiolabels with IgG serving as the standard protein vehicle.

This study was well-conceived and designed to determine the role of protein carrier and radiolabel. However, an accurate interpretation of the role of the protein assumes the radiolabel serves as a radiotracer. Furthermore, an interpretation of the role of the radiolabel requires an analysis of its chemistry and an appreciation for the pharmacokinetics of its radioactive metabolites. Since these properties direct the biodistribution of radioactivity, it is instructive to briefly review relevant factors such as attachment stability, metabolic fate, and route of excretion characteristic of radioisotopes, 111In and 99mTc as used in this study.

IODINE AS RADIOTRACER

Radioiodine isotopes continue to be the most widely used protein radio-labels: 123I for imaging, and 125I and 131I for preclinical studies with their convenient longer half-lives and ready availability. The "easy" direct radioiodination approach in which the radioiodine is added to the activated ortho position of tyrosine is most often used, as was done in the Oyen et al. study (9). Label stability is usually sufficient to follow proteins in circulation or bound to cell surfaces. Once internalized by cells, however, catabolism releases peptide fragments or free amino acids with further metabolic processing ultimately releasing radioiodide (10). Deiodination may occur rapidly as in the example of the T-101 antibody in which imaging of cutaneous T-cell lymphoma is virtually precluded by rapid loss of radioactivity from tumor cells (11). Metabolically stabilized ligand chemistry has been developed which substan-