Protection from lethal candidal infection by interleukin 1

Jos W. M. Van der Meer, Jan W. Van't Wout, Michael Barza and Charles A. Dinarello

Department of Infectious Diseases, University Hospital Leiden, Leiden and Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts University School of Medicine, New England Medical Center, Boston

1 Introduction

Disseminated infection caused by Candida species is a major infectious complication in the compromised host [1]. Treatment of these infections with antifungal drugs generally yields disappointing results, especially in neutropenic patients [2]. Thus, there is a clear need for other forms of therapy, such as those enhancing natural resistance to infection.

A variety of substances, such as bacterial lipopolysaccharide and its derivatives, BCG, and muramyl peptides have been shown to increase natural resistance mechanisms [3–5]. In systemic candidal infection in experimental animals, these substances were able to improve survival [6–8], but because of their toxicity they have not been appealing as a therapy in humans. These immunomodulatory drugs are able to induce synthesis and secretion of interleukin 1 (IL1), a family of cytokines mediating the acute-phase response [9]. Previous investigations have shown that recombinant IL1 is able to increase survival in mice with a lethal infection caused by Pseudomonas aeruginosa and Klebsiella pneumoniae [10, 11]. The mechanism of this protection is unclear [11], and it is not known whether these findings are limited to an effect on infections due to Gram-negative bacteria. Therefore, we investigated the effect of IL1 on an experimental candidal infection of mice. Efficacy of IL1 in candidal infection could not only offer some insight into the mechanisms of protection against death due to infection, but might also create new modalities for treatment of candidal infections in humans.

2 Materials and methods

2.1 Mice

Female 25 g Swiss Webster mice (Taconic Farms, Germantown, NY) were kept in cages (6 mice per cage) with filter lids, and were fed standard lab chow and water ad libitum.

2.2 IL1

Recombinant human IL1β (kindly supplied by Dr. Alan Shaw, Biogen, Geneva) and recombinant human IL1α (kindly supplied by Dr. Peter Lomedico, Hoffmann-La Roche, Nutley, NJ), which contain less than 20 pg of endotoxin/mg of protein, were used. The IL1 was given as a single i.p. injection in 2% (v/v) heat-inactivated normal mouse serum in 0.1 ml pyrogen-free saline. Control mice received heat-inactivated IL1 (100°C for 20 min) in 2% heat-inactivated normal mouse serum.

2.3 Candida albicans

A strain of C. albicans, termed UC820, maintained on agar slants at 4°C was inoculated into 100 ml of Yeast Mould agar (Difco Laboratories, Detroit, MI) and cultured for 24 h at 37°C. After being washed twice by centrifugation at 1500 × g, the number of yeast cells in the suspension was counted in a...
hemocytometer, and the viability was confirmed by inoculating serial dilutions onto agar plates.

2.4 Infection model

Mice were rendered neutropenic (<0.2 × 10^9 granulocytes/liter) by means of two s.c. injections of cyclophosphamide (Bristol Myers, Syracuse, NY), 150 and 100 mg/kg of body weight, respectively, 4 days and 1 day before the i.v. injection of 3 × 10^5 C. albicans in 200 μl phosphate-buffered saline into the lateral tail vein. The mice in each cage were randomized to receive either IL-1 at different times and in different dosages, or heat-inactivated IL-1. Survival was scored at intervals of 6–8 h over a period of 72 h.

2.5 In vitro antifungal effects of IL-1

We examined the possibility that IL-1 might have a direct antifungal effect. Using an automated spiral plater (Spiral Systems Inc., Cincinnati, OH) we prepared a concentration gradient of IL-1β ranging from 0.15 to 42 ng/ml on the agar surface of Mueller-Hinton plates. Radial streaks of C. albicans from a suspension containing 1 × 10^5 colony forming units (cfu)/ml were made on the plates. After incubation overnight at 37°C the distance from the center to the most central point of growth inhibition was measured.

2.6 Quantitation of C. albicans in blood and organs

Neutropenic mice, treated either with IL-1β or heat-inactivated IL-1β 24 h earlier, received an i.v. injection of 3 × 10^5 cfu of C. albicans. Blood for cultures was taken by cardiac puncture after CO2 asphyxia 15, 30 and 90 s and 3 and 6 min after the i.v. injection. In another series of experiments, mice were killed by CO2 asphyxia 24 h after the C. albicans injection. Immediately after death, blood cultures were taken by cardiac puncture, and the spleen, the left kidney and the liver were removed aseptically, weighed and homogenized in sterile saline in a tissue grinder. Blood and suspensions of tissue were plated on Sabouraud's dextrose agar. After overnight incubation at 37°C, the number of cfu's was counted.

2.7 Serum for passive transfer

Twenty-four hours after an i.p. injection of either 80 ng IL-1β or pyrogen-free saline in 2% (v/v) normal mouse serum, mice were exsanguinated by cardiac puncture after CO2 asphyxiation. The blood was pooled and allowed to clot, and the serum, separated by centrifugation, was either used immediately or stored at −70°C.

2.8 Statistical analysis

Survival curves were analyzed using the Kaplan Meier/log rank test [12]. Student's t-test was used for the results of the microbiological studies.

3 Results

3.1 Survival of mice

Recombinant human IL-1β was given 24 h before infection as a single i.p. injection in dosages of 800 ng, 80 ng or 8 ng. IL-1 induced a dose-dependent enhancement of survival in infected mice (Fig. 1a). The differences in survival between mice treated with IL-1β and control animals receiving heat-inactivated IL-1β became most prominent between 36 and 72 h after the injection of C. albicans. If the survival curves are considered together, the survival differences compared to control animals were significant for the 800 ng dose (χ^2 = 15.6,
p < 0.001) and for 80 ng (χ² = 9.2, p < 0.01), but not for the
8 ng dose (χ² = 2.3). To investigate the efficacy of IL-1 given at
different time points in relation to the infection, the relatively
low dose of 80 ng (3.0 µg/kg, which equals 1.2 mg/m²) was
used. The protective effect of this dose of IL-1 was similar
whether it was given 24 h before, shortly before (x
2
used. The protective effect of this dose of IL-1 was similar
in different time points in relation to the infection, the relatively
8
2
p < 0.001) and for 80 ng (x
2
= 5.3, p < 0.02 compared to
controls) (Fig. 1b). IL-1α given at a dose of 80 ng/mouse 24 h
before infection appeared to have the same protective effect as
80 ng IL-1β (Fig. 1c).

3.2 In vitro assessment of antimicrobial activity

No direct antifungal effect of IL-1 could be demonstrated when
C. albicans were incubated in vitro with concentrations of
IL-1β up to 42 ng/ml.

3.3 Effect of IL-1 on the number of C. albicans in vivo

The number of C. albicans in the bloodstream of neutropenic
mice up to 6 min after i.v. injection of 3 × 10⁵ cfu was similar
in mice pretreated with 80 ng of IL-1β 24 h earlier and those
that had received heat-inactivated IL-1 (data not shown). We
infer from these data that the rates of clearance of organisms
from the bloodstream were the same in the two treatment
groups. Using the same experimental conditions, no differ­
ences were found in the number of Candida cultured from
blood, liver, spleen, or kidney of IL-1-treated and control ani­
mals 24 h after infection (Fig. 2). When the data were ex­
pressed as number of microorganisms per organ rather than
per gram of tissue, the data from two groups also did not
differ.

3.4 Passive transfer of serum

To investigate whether a humoral factor was responsible for
the protective effect, neutropenic mice were injected i.p. with
0.5 ml of serum obtained from mice pretreated 24 h earlier
with either 800 ng IL-1β or saline containing 2% normal mouse
serum. When the transfer was performed either at time of the

Figure 2. Counts of colonies of C. albicans in the blood and organs of
granulocytopenic mice 24 h after an i.v. injection of 3 × 10⁵ cfu of C.
albicans. Mice received either 80 ng human recombinant IL-1β (light
bars) or heat-inactivated IL-1β (dark bars) 24 h before injection. Each
bar represents the mean ± SD of log cfu/g tissue in 6 mice.

Figure 3. Passive transfer of serum. Serum from mice that received
800 ng IL-1β or saline 24 h before was injected i.p. into recipient mice
that were infected with 3 × 10⁵ cfu of C. albicans. The mice were
injected with the serum either shortly before the infection (■; n = 10)
or 24 h after infection (▲; n = 10). The survival of these mice does not
differ from the controls (□; n = 20).

4 Discussion

In these studies, we report the efficacy of a single injection of a
low dosage of either IL-1β or IL-1α in prolonging survival in
neutropenic mice with disseminated C. albicans infection. These
results extend those we have obtained for Pseudomonas aeruginosa
in a previous study [11]. In contrast with this Gram-
negative infection, protection against a candidal infection was
obtained not only when IL-1β was given 24 h before, but also
when it was given simultaneously with or 6 h after the injec­
tion of C. albicans. This lack of a so-called “negative phase”
(i.e. a period in which no protection can be induced [6]) may
be due to the fact that the course of the candidal infection in
these mice was somewhat more protracted than that of the
Gram-negative bacterial infection, thus allowing more time for
a possible beneficial effect of IL-1 to be established. Alterna­
atively, there might be differences between the mechanisms of
protection to death from bacterial and fungal infections. It is
of interest that Kimball et al. [6] demonstrated a negative
phase for protection by bacterial endotoxin in a C. albicans
infection. The accelerated death rate observed in their studies
might be due to the combined adverse effect of the infection
and the endotoxin.

The protection against candidal infection obtained by prior
administration of bacterial endotoxin has been attributed to
enhancement of the clearance of C. albicans from the blood­
stream and inhibition of the outgrowth in the kidney [7]. We
found no differences in the rate of clearance of fungi from the
bloodstream (shortly after injection and 24 h later) and their
outgrowth in the tissues between IL-1-treated and control ani­
mals. Since all our experiments were performed in severely
neutropenic mice, it seems unlikely that the beneficial effect
was mediated by neutrophils. In a previous study of lethal infection caused by *P. aeruginosa* we excluded the possibility that the protective effect of IL-1 was directly related to the induction of fever, the clearance of micro-organisms from the bloodstream by activation of macrophages, or by a direct antimicrobial effect [11]. A possible explanation for the beneficial influence of IL-1 in Gram-negative infections could be through a humoral mechanism, for example via acute-phase proteins, such as an endotoxin-binding protein [13, 14]. Because *C. albicans* does not contain endotoxin, mechanisms other than endotoxin-binding protein must be involved. Evidence for a humoral mechanism was provided by Kimball et al. who found that mouse serum, obtained 24 h after an endotoxin injection, could transfer protection against a lethal candidal infection [6]. Whether in their studies the protective factor was IL-1 or an acute-phase protein is unclear. In the present study, we were unable to protect mice by passive transfer of serum obtained 24 h after an injection with 800 ng IL-1. In the *Pseudomonas* infection we were also unable to transfer protection with serum obtained after the administration of IL-1 (unpublished data).

Thus, the present study indicates that the beneficial effect of IL-1 is not mediated through a transferable factor and cannot be explained by an endotoxin-antagonizing effect. It has been suggested that cytokines like IL-1 and tumor necrosis factor (TNF) contribute to death from infection [15–17]. How early treatment with IL-1 could reduce the lethal effects of these cytokines is not yet known. One could speculate that this could be effected by occupation of cytokine receptors on cells or by an inhibition of endogenous cytokine production. Further studies are needed to elucidate these possibilities. Whichever the mechanism is, the protective effect could have important implications for the future treatment of serious candidal infections in neutropenic patients.

The help of Ray Cody and Ineke Linde and the comments of Prof. Ralph Van Furth are gratefully acknowledged.

Received April 28, 1988.

5 References