Immunological effect of co-trimoxazole on platelets

FRANS H J CLAAS, JOS W M VAN DER MEER, JANNEKE LANGERAK

Summary and conclusions

Diminished survival of transfused platelets occurred in two patients given co-trimoxazole, and a third patient taking this drug developed thrombocytopenia. By means of an indirect immunofluorescence assay antibodies against donor platelets coated with co-trimoxazole were found in the sera in all cases. These antibodies were directed against the trimethoprim component of co-trimoxazole and not against sulphonamethoxazole.

Co-trimoxazole is a potent antimicrobial agent and is advocated for treatment and prophylaxis in leukaemia. Hence its adverse effect on platelets is of great importance.

Introduction

Co-trimoxazole (trimethoprim-sulphamethoxazole), a potent antimicrobial drug, is effective in various infections. The antimicrobial activity is due to sequential blockade of the synthesis of folic acid: sulphamethoxazole competes with para-aminobenzoic acid in the synthesis of dihydrofolic acid, and trimethoprim inhibits dihydrofolate reductase, the enzyme that converts dihydrofolic acid to tetrahydrofolate. Reported haematological effects of co-trimoxazole mostly concern megaloblastic transformation, which probably results from the effect of trimethoprim on dihydrofolate reductase. It is not clear, however, whether thrombocytopenia or neutropenia or both in the absence of megaloblastic changes are also due to trimethoprim or caused by the sulphonamide component.

Two patients receiving platelet transfusions showed diminished survival of transfused platelets during treatment with co-trimoxazole, and a third patient taking the drug developed thrombocytopenia and neutropenia. We therefore used an indirect immunofluorescence assay to test sera from these three patients against donor platelets coated with trimethoprim, sulphamethoxazole, and the combined agent.

Subjects and methods

PATIENTS AND CONTROLS

Case 1—A 43-year-old man, suffering a blast crisis of chronic myelogenous leukaemia was treated with aggressive chemotherapy (daunorubicin, cytarabine, thioguanine, and cyclophosphamide) and total body irradiation, and given platelet transfusions because of thrombocytopenia. He then began a nine-day course of co-trimoxazole (2 tablets twice daily) for a bacterial infection. On day 3 of this treatment poor survival of transfused platelets was observed. When the course ended survival of transfused platelets became normal.

Case 2—A 20-year-old man received a bone marrow transplant for severe aplastic anaemia, and because of deep thrombocytopenia he was given platelet transfusions. The platelets survived poorly during two periods of six days in which he received co-trimoxazole (2 tablets twice daily) for a staphylococcal infection. After stopping the drug survival of the donor platelets became normal.

Case 3—A 52-year-old woman was being treated for staphylococcal spondylodiscitis. Because of penicillin allergy (fever and neutropenia) co-trimoxazole 3 tablets twice daily was instituted. On about the 10th day of treatment neutropenia (20 × 10⁹ granulocytes/l) and thrombocytopenia (100 × 10⁹ platelets/l) were found. After withdrawing co-trimoxazole there was a slow recovery.

Controls—Five hospital inpatients with normal platelet counts taking co-trimoxazole for various infections and 10 healthy blood donors served as controls.

METHODS

Platelet survival—Usually preparations from four different donors containing an average of 150 × 10⁹ platelets were transfused. In the absence of immunological destruction this would be expected to increase the circulating platelet count by 20-30 × 10⁹/1 (20 000-30 000/μl) one hour after transfusion (in an adult of about 70 kg). Survival of transfused platelets was regarded as poor when the increase was less than 10 × 10⁹/1.

Isolation of platelets—EDTA blood (1 part 5%; sodium EDTA and 9 parts blood) was centrifuged for five minutes at 150 g. The upper layer of plasma containing the platelets was washed three times with phosphate-buffered saline containing 0-3%, sodium EDTA, and a 1 × 10⁶/ml suspension was made in this same medium.

Indirect immunofluorescence—Sera from the patients and controls were tested against platelets from healthy donors. Two drops of platelet suspension were incubated with two drops of test serum for 60 minutes at room temperature. After washing three times the platelets were incubated with two drops of TRITC-labelled goat-antihuman IgG(Fc) (Nordic Pharmaceuticals, Tilburg) for 30 minutes at room temperature. The platelets were then washed three times and the preparations examined by immunofluorescence microscopy.

Direct immunofluorescence—Platelets from case 2 were tested by direct immunofluorescence. Two drops of platelet suspension were incubated with two drops of TRITC-labelled goat-antihuman IgG(Fc) for 30 minutes at room temperature.

Incubation of platelets with antimicrobial agent—Platelets were incubated for 15 minutes at room temperature with 0-1 ml co-trimoxazole (16 mg trimethoprim and 80 mg sulphamethoxazole/ml), Wellcome-Nederland BV, Amsterdam), 0-1 ml trimethoprim (20 mg/ml, Wellcome-Nederland BV, Amsterdam), and 0-1 ml sulphamethoxazole (80 mg/ml, Hoffmann La Roche, pijndrecht). After washing, the platelets were incubated with the test sera as described for the untreated platelets. The reactions of platelets incubated with each agent were compared with untreated platelets from the same donor.

Results

In the indirect immunofluorescence tests sera from all three patients were found to contain antibodies against platelets incubated with co-trimoxazole. These antibodies were directed against the trimethoprim component only (table).

During co-trimoxazole treatment in case 2 the patient’s platelets were tested by direct and indirect immunofluorescence with his own serum; both tests were positive regardless of whether the platelets had been incubated with co-trimoxazole. Four weeks after stopping co-trimoxazole direct immunofluorescence on the platelets was negative with and without co-trimoxazole incubation. Nevertheless, when the platelets were incubated with co-trimoxazole the indirect immunofluorescence test became positive, indicating that the antibody was still present in his serum.
Indirect immunofluorescence on donor platelets

<table>
<thead>
<tr>
<th>Serum donor</th>
<th>Donor platelets incubated with:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co-trimoxazole</td>
</tr>
<tr>
<td>Case 1</td>
<td>+</td>
</tr>
<tr>
<td>Case 2</td>
<td>+</td>
</tr>
<tr>
<td>Case 3</td>
<td>+</td>
</tr>
<tr>
<td>Healthy donors</td>
<td>+</td>
</tr>
</tbody>
</table>

Treated with co-trimoxazole without thrombocytopenia.

Discussion

Two of our patients showed decreased survival of transfused platelets during co-trimoxazole treatment. Since co-trimoxazole is advocated for treatment and prophylaxis in leukaemia, awareness of this side effect is of great importance. Antibodies against platelets incubated with co-trimoxazole were detected in sera from these patients and in the serum of a patient who developed thrombocytopenia while taking co-trimoxazole. We think that the thrombocytopenia in case 3 and the poor survival of donor platelets in the other patients were probably caused by these antibodies, since after stopping the drug the survival of donor platelets became normal and the thrombocytopenia disappeared.

In vitro experiments showed that the antibodies reacted against the trimethoprim component of co-trimoxazole, suggesting that in our patients trimethoprim was responsible for the effect on platelets and not the sulphamamide component. The positive direct immunofluorescence test in case 2 during treatment with co-trimoxazole suggests that the binding of trimethoprim and antibody to the platelets also occurs in vivo. After treatment was stopped and trimethoprim was no longer present in the circulation, the test became negative. The indirect immunofluorescence test, however, remained positive after incubation of the platelets with co-trimoxazole, showing that the antibody was still present and that the patient would still be at risk if the drug was readministered. These observations suggest that platelets coated with trimethoprim serve as a neoantigen leading to antibody production.

Drug-induced immune thrombocytopenia has been shown for several other drugs. The best known examples are quinine and quinidine, but allylisopropylacarbamide; sulphaphenazole, diphenyl and phenytoin; and rifampicin have also been implicated. Why some patients develop these antibodies and others do not remains a subject for further study.

We thank Dr H L Haak and Dr J Nauta for their co-operation, Dr J S Thompson and Professor Dr R van Furth for critically reading the manuscript, and Ms Jeanne van Nassau for preparing the manuscript.

This study was in part supported by the National Institutes of Health (contract NO1-A1-82553), the Dutch Organisation for Health Research (FNGO), the Dutch Foundation for Medical Research (FUNGO), which is subsidised by the Dutch Organisation for the Advancement of Pure Research (ZW0); and the J A Cohen Institute for Radiophysics and Radiation Protection.

References

(Accepted 7 August 1978)