PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/145267

Please be advised that this information was generated on 2019-02-19 and may be subject to change.
Fractional quantum Hall effect in tilted magnetic fields

Max-Planck-Institut für Festkörperforschung, Heisenbergrasse 1,
D-7000 Stuttgart 80, Federal Republic of Germany

J. C. Maan
Max-Planck-Institut für Festkörperforschung, Hochfeldmagnetlabor Grenoble,
F-38042 Grenoble, France

G. Weimann
Forschungsinstitut der Deutschen Bundespost beim Fernmeldetechnischen Zentralamt,
D-6100 Darmstadt, Federal Republic of Germany
(Received 15 May 1987)

We have studied the dependence of the fractional quantum Hall effect on a tilted magnetic field. The activation energies for the Landau-level filling factors $v = \frac{1}{2}$ and $v = \frac{1}{3}$ have been measured. By tilting the field we could observe an increase of the activation energy for $v = \frac{1}{6}$, whereas the activation energy for $v = \frac{1}{4}$ decreased slightly. Changes could also be observed for the minima of the filling factors $v = \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$, and $\frac{1}{6}$. The data suggest a different behavior of "electronlike" fractional states and of "holelike" fractional states in a tilted field.

The fractional quantum Hall effect (FQHE) was first observed by Tsui, Störmer, and Gossard in 1982. ¹ The phenomenon is characterized by the formation of plateaus in the Hall resistivity ρ_{xx} and the vanishing of the diagonal resistivity ρ_{xx} and the conductivity σ_{xx} at fractional Landau-level occupancies $v = nh/eB = p/q$, where p is an integer, q an odd integer, and n the two-dimensional carrier density. The present understanding of the effect is that the system forms a new ground state which is a quantum liquid, arising from the strong Coulomb interaction between the electrons. The existence of a finite-energy gap has been shown² separating the ground state and the lowest excited states, which are associated with the excitation of fractionally charged quasiparticles, quasielectrons, and quasiholes. Within this picture the FQHE at a filling factor of $v = \frac{1}{2}$ could be explained. By invoking the so-called electron-hole symmetry the effect at $v = \frac{3}{2}$ was understood.³ In the hierarchical model⁴ other p/q fractional numbers consist of the two hierarchies of continued fractional filling factors derived from $\frac{1}{2}$ and $\frac{1}{3}$. Thus an understanding of the $v = \frac{1}{3}$ and $v = \frac{1}{5}$ states is extremely important for a full understanding of the FQHE.

The temperature dependence of the minima in ρ_{xx} and σ_{xx} at $v = \frac{1}{3}$ and $\frac{1}{5}$ has been extensively studied⁵,⁶ to obtain information on the magnitude of the energy gap. At very low temperatures a behavior was found which could be attributed to a hopping conduction mechanism as in the integral quantum Hall effect. However, the results are neither very consistent nor accurate. At higher temperatures (0.3 K $< T < 1$ K) an activated behavior has been observed. The activation energy deduced should be a measure for the finite energy gap predicted by the theories. Boebinger, Chang, Störmer, and Tsui⁷ found that the states with $v = \frac{1}{3}$ and $\frac{1}{5}$ had the same activation energy when they occurred at the same magnetic field. This is consistent with the picture of an electron-hole symmetry. In contrast, Wakabayashi et al. published values for the activation energies, which are smaller for $v = \frac{1}{3}$ if compared with the $v = \frac{1}{4}$ data.

Here we report on a different experiment. We studied the effect of a tilted magnetic field on the FQHE in detail. One experiment done at a fixed tilt angle of $\theta = 60^\circ$ which indicates an improvement of the resistivity at $v = \frac{1}{2}$ and $v = \frac{1}{3}$ has been published by Nicholas et al.⁷ However, systematic studies were not possible since the device could not be rotated in a magnetic field. In our measurements, a rotating gear enabled a continuous tilting of the specimens relative to the direction of the magnetic field. The samples used in our experiments were made from two GaAs-GaAlAs heterojunctions. The first had an electron density of 1.4×10^{11} 1/cm2, a mobility of 600000 cm2/Vs, and a spacer of 43 nm, the second an electron density of 0.81×10^{11} 1/cm2, a mobility of 450000 cm2/Vs, and a spacer of 75 nm. The majority of the measurements were made with circular Corbino geometry devices (true circular enclosed contact geometry). A Hall-bar sample, although less intensively studied, gave very similar results. The temperature was measured by the 3He pressure and was checked at zero magnetic field with a calibrated germanium resistor. In order to avoid electron heating effects the voltage drop across the Corbino ring, with a source-drain distance of 200 μm, was kept below 100 μV. All the measurements were made with a standard lock-in technique at frequencies of about 10 Hz.

Figure 1 shows σ_{xx} for three different temperatures. The lower half of the figure has the sample perpendicular to the magnetic field direction, and in the upper half the sample is tilted by an angle of 48.2°. The magnetic field axes are scaled in such a way that the Shubnikov-de Haas minima related to integer filling factors appear at the same positions. One sees very clearly that the minimum at a filling factor of $v = \frac{1}{3}$ is deeper in the case of the tilt-
FRACTIONAL QUANTUM HALL EFFECT IN TILTED…

FIG. 1. Conductivity \(\sigma_{xx} \) as a function of the magnetic field for three different temperatures \(T \) and for two tilt angles \(\theta \). The carrier density and the mobility of the sample at \(T = 4 \) K are \(n_c = 1.4 \times 10^{11} \) cm\(^{-2} \) and \(\mu = 600000 \) cm\(^2\) V\(^{-1}\) s\(^{-1}\).

FIG. 2. Examples of temperature dependences of the \(\sigma_{xx} \) minimum at \(v = \frac{4}{3} \) for the sample of Fig. 1 for three different tilt angles \(\theta \). The straight lines representing fits with \(\sigma_{xx} = \sigma_0 \exp(-W/T) \) are used for the determination of the activation energy \(W \).

The tilted sample from \(W = 1.67 \) K at \(\theta = 0^\circ \) to \(W = 1.52 \) K at \(\theta = 63.7^\circ \).

In order to study the behavior at higher fractional filling factors the electron densities and mobilities were increased by illumination with a red light-emitting diode. Minima at filling factors \(v = \frac{2}{3}, \frac{2}{3}, \) and \(\frac{2}{3} \) could then be observed. Only small changes occurred on tilting the samples. The minima at \(v = \frac{4}{3} \) and \(\frac{4}{3} \) became slightly deeper in the case of a tilted sample, whereas the minimum at \(v = \frac{2}{3} \) was less pronounced. This observation is consistent

FIG. 3. Activation energies \(W \) for \(v = \frac{2}{3} \) vs total magnetic field. The measure energy for the lowest magnetic field corresponds to a tilt angle of \(\theta = 0^\circ \), whereas for the highest magnetic field value the tilt angle was 67.9°.
It will alter both the magnitude of the electron-electron interactions, and the interaction with scattering centers. Variational calculations suggest\(^8\) that a parallel field component of 20 T will almost halve the \(z\) extension of the wave function in the samples studied here. The calculations of Yoshioka\(^9\) and Zhang and Das Sarma\(^10\) then show that this should increase the gap energy of the fractional state by about 20\%, starting from a value of 0.5 for the parameter \(\beta\), by which the three dimensionality of the system is taken into account. Yoshioka\(^9\) shows that this increase should be similar for the fractional states at filling factors \(v = \frac{1}{3}\) and \(v = \frac{2}{3}\). We observed a much bigger increase than expected for the activation energy at the filling factor of \(v = \frac{1}{3}\), whereas at \(v = \frac{2}{3}\) no increase could be seen. Thus, following the calculations of Yoshioka\(^9\) and Zhang and Das Sarma\(^10\) the observed effects cannot be explained by the change of the \(z\) extension of the wave function. The change in the influence of the scattering centers will also lead to a change in the effective disorder present. Changes in the asymmetry of the conductivity, which are thought to be due to an asymmetric density of states, have been observed in the integer quantum Hall regime\(^11\) when the \(z\) wave function is altered by a back gate voltage. The present asymmetry between the electronlike and holelike fractions may then be a similar effect, determined by the relative importance of attractive and repulsive scattering centers, which is changed by the change in the mean position of the wave function relative to the interface. The development of asymmetries has also been seen when the carrier concentration is increased with light,\(^7\) where it has been found that \(\frac{1}{3}\) can dominate over \(\frac{2}{3}\). This has also been observed in the samples studied here.

Perhaps the broken symmetry of the tilted field configuration is itself enough to introduce the asymmetric behavior of the electronlike and holelike quasiparticles. This question remains to be answered by theory.

In conclusion, a large increase in the activation energy of the fractional state \(v = \frac{1}{3}\) is observed by tilting the magnetic field, and a slight decrease for \(v = \frac{2}{3}\). The minimum for \(v = \frac{1}{3}\) was less pronounced with increasing tilt angle. Small changes could be seen also for \(v = \frac{1}{3}, \frac{2}{3}, \frac{1}{2}\) in the illuminated samples. We conclude that the excitation energies of the holelike fractional states increase with increasing magnetic field component parallel to the two-dimensional electron gas, whereas the excitation energies of the electronlike states decrease. This behavior appears to demonstrate the destruction of electron-hole symmetry in the FQHE by a tilted magnetic field.