Activation of innate immunity during systemic *Candida* infections

Daniela Camelia van ’t Ent - Ifrim
Colofon
The research presented in this thesis was performed at the Department of Internal Medicine, in the Radboud University Medical Center, Nijmegen, The Netherlands.

Financial support for the research reported in this thesis was provided by The European Commission through the grant agreement n° HEALTH-2010-260338 (Fungi in the setting of inflammation, allergy and autoimmune diseases: Translating basic science into clinical practices "ALLFUN").

Cover design and graphical editing by
Gerard van ’t Ent

Cover sketch
Daniela Camelia van ’t Ent - Ifrim

ISBN
......

Printed by
Off Page, Amsterdam
Activation of innate immunity during systemic Candida infections

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen
op gezag van de rector magnificus prof. dr. Th.L.M. Engelen,
volgens besluit van het college van decanen
in het openbaar te verdedigen op dinsdag 20 oktober 2015
om 10.30 uur precies

door

Daniela Camelia van ’t Ent - Ifrim

geboren op 11 maart 1982

te Râmnicu Sărat, Roemenië
Promotoren
Prof. dr. M.G. Netea
Prof. dr. L.A.B. Joosten

Copromotor
Dr. J. Quintin

Manuscriptcommissie
Prof. dr. P.E. Verweij (Voorzitter)
Prof. dr. dr. P.C.M. van de Kerkhof
Prof. dr. A. Brown (University of Aberdeen, Groot-Britannië)
Pentru părinții mei
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>General introduction and outline of the thesis</td>
<td>9</td>
</tr>
<tr>
<td>PART ONE</td>
<td>Innate immune recognition by C-type lectin receptors</td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Candida albicans Primes TLR Cytokine Responses through a Dectin-1/Raf-1–Mediated Pathway</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Journal of Immunology Volume 190, Issue 8, Pp 4129-4135.</td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>The role of Dectin-2 for host defense against disseminated candidiasis</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>In Press.</td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Role of Dectin-2 for Host Defense against Systemic Infection with Candida glabrata</td>
<td>57</td>
</tr>
<tr>
<td>PART TWO</td>
<td>Modulation of innate immune responses after Candida infection: induction of trained immunity</td>
<td></td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Trained immunity or tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Clinical Vaccine Immunology Volume 21, Issue 4, Pp 534-545.</td>
<td></td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Fungal chitin induces trained immunity in human monocytes during cross-talk with Saccharomyces cerevisiae</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>In Press.</td>
<td></td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Defective trained immunity in patients with STAT1-dependent chronic mucocutaneous candidiasis</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Clinical & Experimental Immunology Volume 181, Issue 3, Pp 434-440.</td>
<td></td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Antifungal innate immunity: recognition and inflammatory networks</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Seminars in Immunopathology Volume 37, Issue 2, Pp 107-116.</td>
<td></td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Summary and perspectives</td>
<td>165</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Samenvatting en perspectieven</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Rezumat și perspective</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>List of publications</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Curriculum Vitae</td>
<td>191</td>
</tr>
</tbody>
</table>
General introduction and outline of the thesis
The gastrointestinal tract is colonized by a distinct array of microbes that is specific to each individual (1). Whereas the human body consists of trillions somatic cells, it harbors a larger number of microorganisms in the intestines (2-4). In general, human commensals exhibit beneficial effects for the host; however, gut microorganisms may also be deleterious, as for instance in immunocompromised hosts where they invade the tissues, leading to mucosal and disseminated infection. Hence, the immune system plays a significant role in keeping the pathogens at bay. While some of the fungi are non-harmful commensals, others may cause mild to severe cutaneous infections or even life-threatening systemic infections. Whereas the total number of eukaryotic species on Earth has been estimated at roughly 9 million, with fungi representing approximately 7% of this number (5), only about 600 species of fungi are human pathogens (6). *Candida spp* are the fourth most common cause of hospital-acquired systemic infections in the United States with crude mortality rates of up to 50% (7, 8).

During the course of fungal infection, one of the first steps in mounting effective immune responses is the recognition of the invaders by the host, with Pattern Recognition Receptors (PRRs) as key players in this phenomenon. Numerous studies revealed differential roles of receptors present on/within the immune cells, PRRs that are classified in four families: C-type lectin-like (CLR), Toll-like (TLR), NOD-like (NLR), and RIG-I-like (RLR) receptors. Most known PRRs that bind to *Candida* Pathogen Associated Molecular Patterns (PAMPs) are C-type lectins. Mannan present in the fungal cell wall is mainly recognised by Dectin-2 (9), Mannose Receptor (10), Galectin-3 (11), DC-SIGN (12) and MBL (13), recognition that leads to the induction of protective proinflammatory cytokines. Dectin-1 recognizes β-1,3 and β-1,6-glucan on *Candida* conidia, resulting in the subsequent induction of cytokines and fungus internalisation (14, 15). The majority of CLR's signal via Syk/CARD9 (16, 17), while DC-SIGN activates NF-kB subunit p56 via Raf1 (18). TLR2 and TLR4, which signal through MyD88, bind to peptidoglycan and play a significant role in *Candida* recognition as shown by the experiments conducted with genetically modified mice (19-22). Chitin is a component of the inner cell wall of fungi and induces IL-10 and TNF-α through MR, TLR2 and Dectin-1 mediated signalling pathways, with NOD2 and TLR9 required for its recognition (23, 24). NLRP3 is important in controlling mucosal and disseminated candidiasis by processing pro-IL-1β to IL-1β downstream of Dectin-1 and TLR2, and mice deficient in NLRP3 are more susceptible to *Candida* infection (25-27). Nevertheless, the specific impact of several other PRRs that possibly contribute to antifungal host defense remains unknown, and, especially differences in recognition of various *Candida* species are poorly investigated.

In the first part of the thesis, I will investigate the specific roles of two of the most important C-type lectin receptors, Dectin-1 and Dectin-2, for the recognition of *Candida* and the induction of effective innate immune responses. In Chapter 2 the *in vitro* priming effects of *Candida albicans* in human Peripheral Blood Mononuclear Cells (PBMCs) will be explored. Moreover, cells deficient in Dectin-1 receptor and a number of *Candida* cell wall mutants will be evaluated in order to indentify which *Candida* component and which signaling pathway is responsible for the priming. In Chapter 3 the biological role of Dectin-2 receptor in interaction with *Candida albicans* will be evaluated, whereas Chapter 4 will
General introduction and outline of the thesis
Figure 1: Recognition of *C. albicans*. The pattern recognition receptors present on the immune cells recognize the fungal cell wall components and intracellular DNA and RNA. These signals activate canonical or non-canonical nuclear pathways, with the subsequent induction of the immune responses, such as secretion of cytokines, chemokines, initiation of phagocytosis and/or inflammasome activation. Adaptation from ‘Antifungal innate immunity: recognition and inflammatory networks’ in *Seminars in Immunopathology* by Becker & Ifrim, 2014.

reveal the effects of systemic candidiasis caused by *Candida glabrata* in murine models, and, particularly the contribution of Dectin-2 to antifungal defense.

One of the dogma of immunology is that innate immune responses are only temporarily activated during an infection, after which they return to normal: the innate immune response would thus react identically each time it encounters a pathogen. That would, therefore, by definition exclude the presence of adaptive characteristics, or immunological memory, within the innate immune system. Subsequently, this fact would lead to the conclusion that solely vertebrates have immunological memory, as all other organisms on Earth have only innate host defense. The hypothesis that the innate immune system is incapable of mounting adaptive responses (28) has been however contradicted by studies showing that organisms lacking adaptive immune system, such as plants and insects, have specific memory and are able to mount a response to a secondary infection (29). Furthermore, mice lacking T- and B-cells were

Figure 2: Trained immunity
protected by microbial infections, protection offered by NK cells and monocytes, respectively (30, 31). Therefore, the immune cells such as NK cells and monocytes/macrophages are able to exhibit adaptive characteristics (32), with epigenetic reprogramming of monocytes at the level of histone H3 methylation as the molecular mechanism responsible for long-term memory of innate immunity: this process has been termed ‘trained immunity’ (31, 33, 34).

Subsequently, the initiation of innate immune memory through trained immunity might be responsible on one hand for the nonspecific protective effects of certain vaccines, such as well-known Bacille Calmette-Guerin (BCG) (35), and on the other hand for excessive inflammatory responses in autoinflammatory/autoimmune diseases (36). Therefore, the effects of trained immunity phenomena can be explored at different levels, either by identifying potential therapeutic targets for excessive inflammatory diseases, or by assessing long-term responses of monocytes, macrophages and NK cells to a large spectrum of microbes that confer resistance or tolerance to subsequent infections (34, 37-41).

In the second part of the thesis I will investigate the capacity of Candida to induce innate immune memory after a challenge (or infection). In Chapter 5 the training effect of different ligands, present either at the level of the cell wall or inside the cell of regular commensals of human flora, will be assessed. Their effects on primary monocytes and the impact on our knowledge regarding the complex interactions among the immune cells and different microbes will be described. The immune reactivity of S. cerevisiae at a strain level and its ability to modulate the cytokine responses of human primary cells to bacteria and fungi will be addressed in Chapter 6. In addition, in Chapter 7 we will study the capacity of Candida albicans to train primary cells from Chronic Mucocutaneous Candidiasis (CMC) and Hyperimmunoglobulin E Syndrome (HIES) patients, with an emphasis on NK cells and IFN-γ.

In order to present an up-to-date overview of our knowledge regarding the pattern recognition receptors and inflammatory networks of two very common fungal pathogens, Candida albicans and Aspergillus fumigatus, a bibliographic review will be provided in Chapter 8. Finally, an overall summary of the findings presented in this thesis will be described in Chapter 9. In this chapter I will propose future directions for the increased understanding of the role of C-type lectin receptors in Candida infections and I will point out likely challenging prospects with regard to training the immunity.
References

General introduction and outline of the thesis

PART ONE
Innate immune recognition by C-type lectin receptors
Candida albicans Primes TLR Cytokine Responses through a Dectin-1/Raf-1–Mediated Pathway

Daniela C. Ifrim, Leo A.B. Joosten, Bart-Jan Kullberg, Liesbeth Jacobs, Trees Jansen, David Williams, Neil A.R. Gow, Jos W.M. van der Meer, Mihai G. Netea, and Jessica Quintin

Journal of Immunology Volume 190, Issue 8, Pp 4129-4135.
Abstract

The immune system is essential to maintain homeostasis with resident microbial populations, ensuring that the symbiotic host–microbial relationship is maintained. In parallel, commensal microbes significantly shape mammalian immunity at the host mucosal surface, as well as systemically. *Candida albicans* is an opportunistic pathogen that lives as a commensal on skin and mucosa of healthy individuals. Little is known about its capacity to modulate responses toward other microorganisms, such as colonizing bacteria (e.g., intestinal microorganisms). The aim of this study was to assess the cytokine production of PBMCs induced by commensal bacteria when these cells were primed by *C. albicans*. We show that *C. albicans* and β-1,3-glucan induce priming of human primary mononuclear cells and this leads to enhanced cytokine production upon *in vitro* stimulation with TLR ligands and bacterial commensals. This priming requires the β-1,3-glucan receptor dectin-1 and the noncanonical Raf-1 pathway. In addition, although purified mannans cannot solely mediate the priming, the presence of mannosyl residues in the cell wall of *C. albicans* is nevertheless required. In conclusion, *C. albicans* is able to modify cytokine responses to TLR ligands and colonizing bacteria, which is likely to impact the inflammatory reaction during mucosal diseases.

Keywords: *Candida*, priming, Dectin-1/Raf-1
Introduction

Immediately after birth, the gastrointestinal tract is colonized by a diverse array of microbes, leading to a stable microbiota that is unique to each individual (1). The human body consists of trillions of somatic cells and harbors about 10 times more microorganisms in the intestines (2). The adult microbiota is composed of permanent members (up to 1000 species), as well as transient colonizers that are acquired from external sources. It consists of many prokaryotic and eukaryotic microbes, but bacterial species dominate. The most common anaerobic bacteria within the gastrointestinal tract are Bacteroides, Bifidobacterium, Eubacterium, Fusobacterium, Clostridium, and Lactobacillus species (3). These organisms are present in extremely high concentrations and have evolved to degrade a variety of dietary substances, simultaneously enhancing the host digestive efficiency, as well as their own nutrient supply (4). In addition to their beneficial effects, gut microorganisms may be deleterious: when host defense is compromised, they may invade host tissues, which leads to mucosal and sometimes subsequent disseminated infection. A role for the gut flora in the pathogenesis of autoinflammatory diseases, such as Crohn’s disease and ulcerative colitis, has also long been suggested (5). Hence, the immune system controls microbial composition; conversely, the gut microflora shapes immunity (6). Commensal microbes influence mucosal and systemic immunity, lymphoid structure development and epithelial function, T cell subsets, and innate lymph cells (6). Candida albicans is primarily a human commensal of the skin and mucous membranes; however, under circumstances of disturbed host defense, it may become a pathogen (7, 8). The dual consequences of C. albicans colonization and/or infection suggest that this fungus might modulate the host immune response against other colonizing microorganisms. It was demonstrated that C. albicans triggers differential immune signaling upon interaction with either inflammatory or tolerogenic dendritic cells (9). The role of C. albicans in experimental colitis is controversial: on one hand it may activate dendritic cells in Peyer’s patches (9), whereas on the other hand it may increase the severity of colitis (10, 11). Nevertheless, all of these studies were performed in mice, and it is not known whether Candida modulates inflammation in human primary cells.

In this study, using human primary cells, we investigated whether C. albicans is able to modulate cytokine responses to secondary stimuli, such as TLR ligands and colonizing microorganisms, by inducing either inflammation or tolerance. We established that C. albicans and, more specifically, β-1,3-glucan (β-glucan) can efficiently prime human immune cell responses to TLRs and bacteria, leading to enhanced cytokine production in vitro. By deciphering the receptor-signaling pathway involved (dectin-1/Raf-1), we also provide a possible novel therapeutic target in autoinflammatory disorders.

Materials and Methods

Blood samples. Blood was collected from healthy volunteers at Sanquin Bloodbank in Nijmegen, The Netherlands, after obtaining informed consent. Human PBMCs were isolated from buffy coats.
Reagents. Ficoll-Paque (GE Healthcare) was used to isolate PBMCs by differential centrifugation. RPMI 1640 Dutch Modification (RPMI) (Sigma-Aldrich), supplemented with 1% gentamicin, 1% L-glutamine, and 1% pyruvate (Life Technologies, Nieuwekerk, The Netherlands) was used as culture medium. *Candida* β-glucan and mannan were isolated and purified as described previously (12, 13). Three sources of *C. albicans* mannan were tested: mannan serotype A, mannan isolated from *Candida* yeast grown in yeast extract/peptone/ dextrose broth at 30°C (pronase treated), and mannan isolated from *Candida* hyphae grown in serum at 37°C (not treated with pronase). Pam3Cys4 (EMC microcollections) and LPS (*Escherichia coli* serotype 055:B5) were purchased from Sigma-Aldrich, with an additional purification step for LPS (14). Human dectin-1/CLEC7A mAb and isotype Ab were purchased from R&D Systems (Abingdon, U.K.).

Microorganisms. *Candida albicans* ATCC MYA-3573 (UC 820), och1Δ, och1Δ/och1Δ/OCH1, pmrΔ, pmr1Δ/pmr1Δ/PMR1, mnn4Δ, mnn4Δ/mnn4Δ/MNN4, and the parental strain *C. albicans* NGY152 were grown overnight to yeast cells in Sabouraud broth at 37°C. Cells were harvested by centrifugation, washed twice with PBS, and resuspended in culture medium (RPMI; ICN Biomedicals, Aurora, OH). *Candida* yeast was heat-killed for 30 min at 95°C. To generate hyphae, yeast cells were grown at 37°C in culture medium adjusted to pH 6.4 using hydrochloric acid. Hyphae were killed by exposure to 95°C for 30 min and resuspended in culture medium to a hyphal inoculum size that originated from 1x10⁶/ml. The *OCH1* gene was disrupted using the ura-blaster method (15), and the reintegrant strain was constructed as previously described (16). Creation of the *mnn4* null mutant and its reintegrant *mnn4Δ/mnn4Δ/MNN4* control strain was performed as described (17). The *PMR1* gene was disrupted and reintroduced in pmr1Δ/pmr1Δ/PMR1 as described (18). Three common colonizing bacteria of the intestines or the skin were chosen: *Escherichia coli* ATCC 35218 was grown overnight in culture medium, washed three times with PBS, and heat-killed for 60 min at 80°C; *Staphylococcus aureus* strain Seattle 1945 (ATCC 25923) was grown overnight in culture medium, washed twice with cold PBS, and heat-killed for 30 min at 100°C; and *Bacteroides fragilis* ATCC 25285 was grown as before but was heat-killed for 30 min at 95°C.

In vitro cytokine production. The PBMC fraction was obtained by density centrifugation of diluted blood (1 part blood:1 part pyrogen-free saline) over Ficoll-Paque (GE Healthcare). PBMCs were washed twice in saline and resuspended in culture medium. Cells were counted with a Beckman Coulter Z1 Particle Counter and adjusted to 5x10⁶ cells/ml. PBMCs (5x10⁶) were added at a volume of 100 µl/well in round-bottom 96-well plates. Cells were incubated with one of the first stimuli for 24 h and reincubated for another 24 or 48 h with one of the second stimuli. As a priming stimulus, we used 50 µl either heat-killed *C. albicans* yeast or hyphae at two concentrations (1x10⁶/ml or 1x10⁷/ml), β-glucan (100 µg/ml), mannan (100 µg/ml), three *C. albicans* mutants and their corresponding reintegrants: heat-killed och1Δ null mutant, pmr1Δ null mutant, mnn4Δ null mutant, och1Δ/och1Δ/OCH1, pmr1Δ/pmr1Δ/PMR1 and mnn4Δ/mnn4Δ/MNN4 revertant strains (1x10⁶/ml), as well as their
Candida albicans Primes TLR Cytokine Responses through a Dectin-1/Raf-1–Mediated Pathway

Parental strain NGY152 (1x10⁴/ml). After 24 h, cells were subjected to a second stimulation with various stimuli, in a volume of 50 µl. The second stimulus was one of the following: LPS (10 ng/ml), Pam3Cys4 (10 µg/ml), heat killed E. coli (1x10⁵/ml), heat-killed S. aureus (1x10⁷/ml), or heat killed B. fragilis (1x10⁷/ml) in a final volume of 200 µl. After 24 or 48 h, supernatants were collected and stored at -80°C until assayed. To determine whether our priming reagents were endotoxin free, we performed a series of experiments in the presence of polymyxin B. Prior to priming, the reagents were incubated for 3 h with polymyxin B (2 µg/ml). To investigate whether priming could be blocked, we preincubated PBMCs for 1 h with dectin-1/CLEC7A Ab (dectin-1 antagonist; 10 µg/ml) or with the isotype control (10 µg/ml), Syk inhibitor (50 nM) or Raf-1 inhibitor (50 nM), before priming with β-glucan. After this, cells were treated with either RPMI or β-glucan (100 µg/ml) and incubated for 24 h, followed by a second stimulation with LPS (10 ng/ml) for an additional 24 h. Cytokines were measured after the second stimulation.

Cytokine assay. The concentrations of TNF-α and IL-1β (R&D Systems) and IL-6 and IL-10 (Sanquin, Amsterdam, The Netherlands) were measured in cell culture supernatants using ELISA, according to the manufacturer’s instructions. Proinflammatory cytokines TNF-α, IL-1β, and IL-6 were measured at 24 h after the second stimulation, whereas the anti-inflammatory cytokine IL-10 was measured at 48 h after the second stimulation.

Statistical analysis. Results from at least two sets of experiments with a minimum four volunteers were pooled and analyzed with SPSS. Data are given as mean ±SEM. The paired Wilcoxon test was used to compare differences between the effect of a particular stimulus and the RPMI medium control. The level of significance was set at p<0.05.

Results

C. albicans primes the cytokine responses of cells restimulated with TLR ligands and colonizing bacteria

To investigate the effect of Candida on the cytokine responses to colonizing bacteria, PBMCs from healthy donors were first exposed to low doses of Candida. After 24 h, cells were restimulated with common colonizing bacteria of the skin or gut or with pure components of the bacterial or fungal cell wall (Fig. 1A). Exposure to either Candida yeast or hyphae enhanced the production of TNF-α, IL-6, and IL-1β (Fig. 1B, 1C) of PBMCs incubated with a second bacterial stimulus, such as E. coli, S. aureus, or B. fragilis. This priming effect was also observed when bacterial cell wall components, such as LPS, found in the outer membrane of Gram-negative bacteria, and the lipopeptide analogs of the N-terminal part of bacterial lipoprotein, Pam3Cys4, were used as a second stimulus. Notably, the increased production of proinflammatory cytokines did not correlate with a decrease in the anti-inflammatory cytokine IL-10 (Fig. 1B, 1C). A 10-fold lower concentration of Candida yeast or hyphae was also able to prime but to a lesser extent (~2-fold less).
Candida albicans Primes TLR Cytokine Responses through a Dectin-1/Raf-1–Mediated Pathway

Fig. 1: C. albicans primes the cytokine responses of cells restimulated with TLR ligands and colonizing bacteria. (A) In vitro priming scheme. PBMCs were incubated with Candida (priming stimulus) for 24 h at 37°C. Thereafter, bacteria found in the human microbiota, as well as their cell wall pure components, were added (second stimuli) for an additional 24 or 48 h. PBMCs were exposed to RPMI or heat-killed C. albicans yeast (B) or hyphae (C) (1x10⁴ cells/ml). After 24 h, PBMCs were exposed to several pure ligands or heat-killed bacteria. Cytokines were measured in supernatants 24 h (TNF-α, IL-1β, and IL-6) and 48 h (IL-10) after the second stimulation (n=6; three independent experiments). Bars indicate mean ±SEM. *p < 0.05 versus RPMI-primed cells, Wilcoxon nonparametric test for two related samples. Bf, B. fragilis; Ec, E. coli; P3C, Pam3Cys4; Sa, S. aureus.
Priming is not due to endotoxin contamination

Prior to priming, all stimuli (RPMI, β-glucan, and mannan) were incubated with cell culture medium (control) or with polymyxin B for 3 h at 37°C. Thereafter, PBMCs were primed for 24 h and then restimulated with LPS, Pam3Cys4 or cell culture medium only (RPMI) for an additional 24 h (Supplemental Fig. 1). Polymyxin B treatment of β-glucan did not affect its ability to prime PBMCs, excluding the effect of endotoxin contamination in the described effect. Mannan was still not able to prime, either with or without polymyxin B. In addition, β-glucan and polymyxin B priming was completely abrogated when PBMCs were restimulated with LPS; this was not the case for the same mix and restimulation with Pam3Cys4.

Mannans do not prime cytokine production by themselves but are essential for potentiation by *Candida*

The outer layer of the cell wall of *Candida* is enriched with mannoproteins, whereas the inner layer is composed of chitin and β-glucan (19). Mannosylated proteins and phospholipomannan of *Candida* are known to induce proinflammatory cytokines (20, 21). Therefore, we assessed the priming effect of pure mannans using the *in vitro* experimental setting depicted in Fig. 1A. We tested three purified preparations of *Candida* mannan as priming stimuli; none produced a priming effect compared with the nonprimed control (Fig. 2). Because mannans may potentiate priming by other cell wall components, we used a genetic complementary approach to investigate the role of specific mannosyl residues. The *Candida och1* null mutant has a defect in N-linked mannosylation (Fig. 3A), resulting in a 77% reduction of cytokine production in direct stimulations (19). In contrast, the *Candida mnn4* mutant, defective in tertiary branch mannosylphosphorylation (Fig. 3A) (17, 22), has no effect on the direct induction of cytokine production. *Candida pmr1* null mutant has a defect in phosphomannosylation, as well as in O- and N-linked glycosylation (18) (Fig. 3A). In our preincubation model, both *Candida och1* and *pmr1* null mutants had a partial defect in priming properties and could not potentiate the production of proinflammatory cytokines to the same extent as the parental strain (Fig. 3B, 3C). Of note, the priming effect

Fig. 2: By themselves, mannans do not prime cytokine production, but they are essential for potentiation by *C. albicans*. PBMCs were exposed to either RPMI or *Candida* mannan isolated from *Candida* hyphae grown in serum at 37°C at a concentration of 100 µg/ml. After 24 h, PBMCs were restimulated with several pure ligands or heat-killed bacteria. Cytokines were measured in supernatants 24 h (TNF-α, IL-1β, and IL-6) and 48 h (IL-10) after the second incubation. Three types of *Candida* mannan were tested, but none of them induced priming compared with the nonprimed control (n=5; two independent experiments). No statistical differences were detected using the Wilcoxon nonparametric test for two related samples. Ec, *E. coli*; P3C, Pam3Cys4; Sa, *S. aureus*.
was restored when cells were exposed to the reconstituted strains, och1Δ/och1Δ/OCH1 and pmr1Δ/pmr1Δ/PMR1 (Fig. 3B, 3C). The mnn4 null mutant was still able to prime cytokine production to the same extent as the parental strain Candida NGY152, and the same was valid for the reconstituted strain mnn4Δ/mnn4Δ/MNN4 (Fig. 3D). Altogether, these results show that, although pure mannans do not prime for the production of proinflammatory cytokines, O- and, especially, N-linked mannosyl proteins at the surface of Candida are nevertheless required for the proper priming.

β-glucan primes the response to components of human microbiota through dectin-1 and Raf-1

Although β-glucan is a component of the inner layer of the Candida cell wall, it is a potent inducer of cytokines through its interaction with dectin-1 (23). Therefore, we assessed the effect of β-glucan in the priming model. Incubation of PBMCs with purified β-glucan from Candida was able to exert a priming effect similar to that obtained with Candida whole organism (Fig. 4A). The effect was most prominent for TNF-α and IL-1β and less so for IL-6. The β-glucan priming led to a decreased amount of the anti-inflammatory cytokine IL-10 induced by the secondary stimuli (Fig. 4A). When we blocked the dectin-1 receptor with an anti–dectin-1 Ab before priming with β-glucan, the priming effect was reduced considerably, whereas the isotype control had no effect (Fig. 4B). We completed the analysis using PBMCs from two sisters with congenital dectin-1 deficiency (24). In these experiments β-glucan priming was completely abolished, highlighting the importance of the dectin-1 receptor in mediating the β-glucan–dependent priming of cytokine production upon exposure to TLR ligands and colonizing bacteria (Fig. 4C). Dectin-1 signaling is primarily mediated by Syk/CARD9 (25). The inhibition of Syk kinase before β-glucan stimulation did not affect the priming and subsequent enhancement of TNF-α release upon LPS restimulation (Fig. 4D). However, inhibiting the noncanonical serine-threonine Raf-1 kinase (26) significantly decreased the priming effect (Fig. 4E). Altogether, these results show that β-glucan, a major component of the cell wall of Candida, exerts a strong priming effect toward restimulation with TLR ligands and colonizing bacteria and that this effect is mediated through the β-glucan receptor dectin-1 and the noncanonical Raf-1 kinase pathway.

Because live Candida cell walls consist of β-glucan masked by a layer of mannosylated proteins, it is possible that the simultaneous priming of PBMCs with β-glucan and mannan induces the production of proinflammatory cytokines to the same extent as does whole Candida. However, the priming effect of the two major Candida cell wall components, β-glucan and mannan, was not different from that of β-glucan alone (Fig. 5). These results underscore our observation that the priming of Candida is due to β-glucan and not to mannan.
Fig. 3: Mannosylation of fungal cell wall proteins is involved in the potentiation of cytokine production.

(A) Schematic diagram representing the activity of Och1, Pmr1, and Mnn4 enzymes on *C. albicans* cell wall glycosylation. For *N*-mannosylation, the Och1 mannosyltransferase mediates the addition of the first α-1,6-mannose to the core *N*-mannan structure. Two α-1,6-mannose residues form the backbone onto which α-1,2-mannose- and α-1,3-mannose-linked residues are subsequently attached by different enzymes to form the *N*-linked outer chain. Phosphomannan is attached to this outer chain via a phosphodiester bond, which requires Mnn4. Pmr1 is not a glycosyltransferase and does not add any mannans directly but exerts its effects on both *N*-mannosylation and *O*-mannosylation. The arrows represent where truncations in *N*-mannosylation and *O*-mannosylation occur. (B–D) PBMCs were exposed to NGY152, och1Δ, pmr1Δ, mnr4Δ, och1Δ/och1Δ/OCH1, pmr1Δ/pmr1Δ/PMR1, or mnn4Δ/mnn4Δ/MNN4 (10⁴ cells/ml). After 24 h, PBMCs were restimulated with heat-killed bacteria. Cytokines (IL-1β and IL-6) were measured in supernatants 24 h after the second incubation (n=10; four independent experiments). Bars indicate mean ±SEM. All *Candida* strains induced a significant increase in proinflammatory cytokine production compared with nonprimed (RPMI) cells, whereas och1Δ and pmr1Δ null mutants resulted in significantly less priming of cytokine production compared with the parental strain or their corresponding reconstituted strains. *p , 0.05, **p , 0.01, ***p , 0.001, Wilcoxon nonparametric test for two related samples. Ec, *E. coli*; Sa, *S. aureus.*
Fig. 4: β-glucan primes the response to components of human microbiota. (A) PBMCs were incubated with RPMI or β-glucan (100 µg/ml). After 24 h, PBMCs were reincubated with pure ligands or heat-killed bacteria. Cytokines were measured in supernatants 24 h (TNF-α, IL-1β, and IL-6) and 48 h (IL-10) after the second stimulation (n=11; five independent experiments). (C) PBMCs from 16 healthy volunteers and 2 dectin-1–deficient sisters (24) were incubated with RPMI and β-glucan (100 µg/ml) for 24 h, followed by a second stimulation with either TLR ligands or whole bacteria for an additional 24 h. PBMCs were incubated with RPMI, CLEC7A Ab, and the isotype control (10 µg/ml) (B), Syk inhibitor (1 mM) (D), or Raf-1 inhibitor (50 nM) (E). After 1 h of incubation, cells were treated either with RPMI or β-glucan (100 µg/ml) and, after an additional 24 h, restimulated with LPS. For (B), n=7; three independent experiments; for (D) and (E), n=10; five independent experiments. Bars indicate mean ±SEM. *p < 0.05, **p < 0.01 versus RPMI–stimulated cells, Wilcoxon nonparametric test for two related samples. Bf, *B. fragilis*; Ec, *E. coli*; P3C, Pam3Cys4; Sa, *S. aureus*.
Discussion

In the current study, we analyzed the capacity of the human commensal yeast *C. albicans* to modulate the cytokine response of human primary cells to bacteria that usually colonize the skin and mucosal surfaces. *Candida*, either yeast or hyphae, primes the cells for enhanced proinflammatory cytokine production when they are exposed to a secondary bacterial stimulus. This priming activity is dependent on carbohydrate components of the cell wall of *Candida*, with an important role for the recognition of β-glucan by the dectin-1/Raf-1 pathway.

An important aspect is which molecular pattern of *Candida* is responsible for this increased immune activity. Combining purified cell wall components and genetic approaches, we established that fungal mannan itself does not prime PBMCs for the production of cytokines. Surprisingly, however, neither the och1 nor the pmr1 null *Candida* mutant was able to prime the production of proinflammatory cytokines at the same extent as was wild-type *Candida* or parental strain NGY152, whereas the use of a reconstituted strain entirely restored the priming effect. Thus, the presence of O- and N-linked mannosyl proteins at the *Candida* cell surface is required for proper priming, supposedly by aiding cell priming by an additional cell wall component. Of note, although, under aqueous conditions, long chains of purified β-glucan form a right-handed triple helical complex that is required for the proper binding to pattern recognition receptors (27–29), purified mannan might not have the required structure to be recognized by its receptor, offering an alternative explanation for the lack of priming induced by pure mannans. Different biological effects of mannans were reported, including induction of proinflammatory cytokines (19, 30) and of IL-10 (31). It was shown that when *Candida* mannoprotein was administered to mice before or during immunization with viable *Candida*, it downregulated mannan-specific delayed hypersensitivity (32), whereas mannoproteins confer protection to candidiasis and might contain epitopes involved in this protective response (32). In this study, we show that mannans incorporated in *Candida* cell wall have adjuvant activity for the priming effect exerted by this yeast.

In search of the main component of the *Candida* cell wall that induces priming, we demonstrate that β-glucan can mimic the priming effect obtained upon *Candida* preincubation. This effect of β-glucan is in line with previous studies showing that β-glucan...

Fig. 5: Priming with a combination of β-glucans and mannans. PBMCs were incubated simultaneously with β-glucan and mannan (100 µg/ml); after 24 h, cells were stimulated either with TLR ligands or with whole bacteria for an additional 24 h (n=7; three independent experiments). Bars indicate mean ±SEM. *p , 0.05, **p , 0.01 versus RPMI-stimulated cells, Wilcoxon nonparametric test for two related samples. Ec, *E. coli*; P3C, Pam3Cys4; Sa, *S. aureus*.
is an immunostimulant and, moreover, displays antitumor activity (33, 34). The receptor mediating the priming effects of β-glucans is dectin-1, as shown by experiments with cells genetically deficient for this receptor. Downstream signaling occurs via two pathways: the canonical Syk/CARD9 and the noncanonical serine-threonine kinase Raf-1 (25, 26, 35).

We found that inhibition of Syk kinase, prior to exposure to β-glucan, did not influence the priming activity of β-glucan. In contrast, the incubation of PBMCs with a Raf-1 inhibitor prior to first stimulation significantly reduced the effect. This observation distinguishes the direct effect of dectin-1 stimulation (Syk dependent) from the priming effect mediated by dectin-1 (Raf-1 dependent). Indeed, a previous study showed a dual intracellular signaling upon dectin-1 activation, in which the Raf-1 pathway integrates with the Syk pathway at the level of NF-kB (35). Because priming is induced by purified TLR ligands, which are important components of bacteria, we tend to conclude that the priming induced by Candida and β-glucans acts on TLR-dependent-signaling pathways.

Candida is a common commensal of the intestinal tract, and it was reported to increase the severity of intestinal inflammation in murine models of colitis (10, 11). The β-glucan receptor dectin-1 is involved in this effect, and polymorphisms in this receptor have been associated with the severity of ulcerative colitis (11) but not with the susceptibility to ulcerative colitis or Crohn’s disease (36). Little is known about the mechanisms through which Candida may influence autoinflammatory diseases, such as Crohn’s disease. Although simultaneous stimulation of cells with Candida derived polysaccharides and TLR ligands is known to be synergistic for cytokine induction, it is not known whether prestimulation of immune cells with Candida can prime or tolerize (as in the case of TLR stimulation with LPS or Pam3Cys4) the cells for subsequent stimulation with colonizing bacteria. In the current study, we demonstrate that preincubation of human primary cells with Candida primes them for the production of cytokines, and this amplification of inflammation may represent one mechanism for the increased severity of colitis induced by Candida. The priming effect found in this study may be relevant for these observations. Whether this effect of Candida is also relevant for inflammatory bowel disease in humans is not clear. However, because Abs toward C. albicans were shown to be associated specifically with Crohn’s disease, one may speculate that Candida plays a role in this disease (37). It is attractive to hypothesize that this has to do with the priming effect described in this article.

Chronic stimulation of host immune cells by microorganisms may result in an enhanced functional state and, hence, increased resistance to infection or in immunosuppression (or tolerance). The latter may imply protection against tissue damage. Understanding the interplay between these two strategies may allow us to define how fungi adapt to the human immune system. It was proposed that Candida may either promote tolerance (9) or amplify inflammation and contribute to disease activity in Crohn’s disease (11). In the current study, Candida did not induce tolerance, but it promoted the proinflammatory response of human primary cells to colonizing bacteria. Such priming may be related to the epigenetic reprogramming of Candida described in monocytes (38). Thus, the fungal microbiota may actively contribute to the state of host defense at mucosal sites. When leukocytes at the mucosal
sites previously primed by *Candida* encounter potentially pathogenic colonizing bacteria, the enhanced state of the host response may potentiate the defense (e.g., by recruitment and activation of effective immune cells and by induction of diffusion in mucosal sites).

In conclusion, we demonstrate that chronic exposure of primary human immune cells to *C. albicans* primes them for subsequent stimulation with TLR ligands and colonizing microorganisms, a mechanism that could explain the effects of this fungus on inflammatory bowel diseases. By identifying dectin-1/Raf-1 as one of the pathways responsible for these effects, we provide a potential therapeutic target in autoinflammatory diseases, such as Crohn’s disease. Further studies are warranted to assess this hypothesis.

Acknowledgments

D.C.I. was supported by funding from the European Union’s Seventh Framework Programme [FP7/2007-2013] under grant agreement n° HEALTH-2010-260338 (ALLFUN). J.Q. and M.G.N. were supported by a Vici Grant of the Netherlands Organization for Scientific Research (to M.G.N.). This work was supported, in part, by NIHGM53522 to D.L.W. N.G. was supported by the Wellcome Trust.
References

Supplementary Figure 1: β-glucan and mannan purity. Prior to priming, all stimuli (RPMI, β-glucan and mannan) were incubated with cell culture medium (control) or polymyxin B (2 µg/ml) for 3h, at 37°C. Thereafter, PBMCs were primed for 24 h and then restimulated with LPS or Pam3Cys4 (P3C) for an additional 24 h.
The role of Dectin-2 for host defense against disseminated candidiasis

Daniela C. Ifrim, Jessica Quintin, Flavie Courjol, Ineke Verschueren, J. Han van Krieken, Frank Koentgen, Chantal Fradin, Neil A.R. Gow, Leo A.B. Joosten, Jos W.M. van der Meer, Frank van de Veerdonk, and Mihai G. Netea

Submitted for Publication.
The role of Dectin-2 for host defense against disseminated candidiasis

Abstract

Despite the fact that *Candida albicans* is an important human fungal pathogen and Dectin-2 is a major pattern recognition receptor for fungi, our knowledge regarding the role of Dectin-2 for the host defense against disseminated candidiasis is limited. Dectin-2 deficient (Dectin-2−/−) mice were more susceptible to systemic candidiasis, and the susceptibility was mirrored by an elevated fungal load in the kidneys that correlated with the presence of large inflammatory foci. Phagocytosis of *Candida* by peritoneal macrophages lacking the Dectin-2 receptor was moderately decreased, while production of most of the macrophage-derived cytokines from Dectin-2−/− mice with systemic candidiasis was decreased. No striking differences among several *Candida* mutants defective in mannans could be detected between naïve wild-type and Dectin-2−/− mice, apart from the β-mannan-deficient *bmt1Δ/bmt2Δ/bmt5Δ* triple mutant, suggesting that β-mannan may partially mask α-mannan detection, which is the major fungal structure recognized by Dectin-2. Deciphering the mechanisms responsible for host defense against the majority of *C. albicans* strains represents an important step in understanding the pathophysiology of systemic candidiasis, which might lead to the development of novel immunotherapeutic strategies.

Key words: Dectin-2, *Candida albicans*, systemic infection
Introduction

Although Candida albicans is a regular commensal of the skin, mucosal and gut flora, in susceptible individuals it represents the main cause of vaginal, mucocutaneous and systemic candidiasis (1). Moreover, disseminated candidiasis has a very high mortality rate in immunocompromised patients with transplantation, chemotherapy, or extensive ICU stay (2). To maintain C. albicans in its commensal state, the human host defense system should be able to recognize the yeast and activate the immune responses to suppress the uncontrolled outgrowth of the microorganism. This recognition is mediated by pattern recognition receptors (PRRs), which recognize pathogen associated molecular patterns (PAMPs) of the pathogens with subsequent induction of the activation of host defense. Among the four PRR classes, C-type lectin receptors (CLRs) are the most important family of receptors for the recognition of Candida spp, mainly because the fungal cell wall structure is composed predominantly of polysaccharides such as α- and β-mannans (components of mannoproteins), β-glucans and chitin (3).

Dectin-2 is a C-type lectin receptor present mostly on dendritic cells, macrophages and neutrophils that recognizes α-mannan (4, 5), affording protection against systemic infection with C. albicans by inducing Th-17 immune responses (5). It signals through CARD9, resulting in subsequent NF-kB activation (6). Dectin-2 forms heterodimers with Dectin-3, leading to proinflammatory responses during C. albicans infection (7). In addition to C. albicans, Dectin-2 also recognizes C. glabrata, and mice lacking Dectin-2 were less able to secrete Th1 and Th17 cytokines, to produce ROS and to activate pathways involved in phagocytosis during activation with this pathogen (8). Furthermore, Dectin-2 present on alveolar macrophages is involved in triggering airway inflammation mediated by the house dust mite (9), while on dendritic cells it primes the Th2 responses to this microorganism (10).

Despite these reports on the role of Dectin-2 for the recognition of fungal pathogens, only limited information is available regarding the role of Dectin-2 for triggering the innate immune responses (such as inflammation, neutrophil/macrophages phagocytosis and killing, etc) during disseminated candidiasis. In this study, we investigate the role of Dectin-2 as a pattern recognition receptor and an essential trigger of host defense in a murine model of systemic candidiasis. Additionally, we assessed whether mannans are the main fungal PAMP recognized by Dectin-2, by testing a broad panel of Candida cell wall mutants.

Materials and Methods

Generation of Dectin-2-/- mice. Dectin-2-/- mice were generated by Ozgene Pty Ltd, as described previously (11). Eight- to twelve-week-old female Dectin-2-/- (Clec4n-/-) mice on a C57BL/6J background were obtained from a breeding colony at the Central Animal Laboratory, Radboud University Medical Centre and used for the experiments when they were 20-25g. Age-matched C57BL/6J female mice were obtained from Charles River Wiga (Sulzfeld, Germany). The animals were fed standard Laboratory Chow (Hope Farms, Woerden, The Netherlands) and water ad libitum. The experiments were repeated at least
twice with a minimum of four animals per time point. All experiments were approved by the Ethics Committee on Animal Experiments of Radboud University, Nijmegen.

Candida strains, culture media, and growth conditions. *C. albicans* ATCC MYA-3573 (UC 820), a strain described in detail elsewhere (12), was used in all experiments. *Candida* was grown and maintained on Sabouraud dextrose (SD) plates. For inoculum preparation, a single colony was grown in SD broth at 29°C for 24 h, with shaking. Cells were washed twice in sterile phosphate-buffered saline (PBS) and counted using a hemocytometer. Cell density was adjusted with PBS to the desired inoculum level. *Candida* yeast was heat-killed for 30 min at 95°C. To generate hyphae, yeast cells were inoculated and grown overnight at 37°C in culture medium adjusted to pH 6.4 with hydrochloric acid. Hyphae were killed by exposure to 95°C for 30 minutes and resuspended in culture medium to a hyphal inoculum size that originated from 1x10⁶ CFU/ml.

The OCH1 and PMR1 genes were disrupted to generate strains with severe truncations in N- and O-linked mannan that were compared to controls strains in och1Δ/och1Δ/OCH1 and pmr1Δ/pmr1Δ/PMR1 in which a wild type copy of the disrupted gene was reintroduced as described (13-15). The phosphomannan-deficient mnn4Δ serotype B null mutant, the parental and its revertant were constructed as described (16). The bmt1Δ (17), bmt2Δ, bmt5Δ (18) and bmt1Δ/bmt2Δ/bmt5Δ (Courjol et al., unpublished data, (19)), β-mannosyl transferase mutants were constructed as previously described.

C. albicans infection model and fungal burden. Wild-type and Dectin-2−/− mice were injected via the lateral tail vein with *Candida* (2.5x10⁵ CFU per mouse) in a 100 μL volume of sterile pyrogen-free PBS. Mice were monitored daily. For survival studies, groups of 10 mice were followed-up for a period of 28 days. For immunological and histological studies, a non-lethal experimental model of disseminated candidiasis was used, in which animals were injected with 1x10⁵ CFU per mouse via the lateral tail vein. This lower dose of *Candida* was used in order to avoid a bias induced by differential mortality at various time points (20). Subgroups of 4 animals were sacrificed on day 3, 7, 14 or 28 days after infection. Tissues were collected and processed for fungal burden and cytokine analysis. To assess the tissue outgrowth of *Candida*, the liver and kidneys were removed aseptically, weighed, and homogenized in sterile PBS in a tissue grinder. The number of viable *Candida* cells in the tissues was determined by plating serial dilutions on SD agar plates, as described elsewhere (21). The colony-forming units were counted after 24 h of incubation at 29°C and expressed as log colony-forming units per gram of tissue.

Histopathology. Kidney samples from wild-type and infected mice were kept in formaldehyde until processed. Sections were dehydrated with xylene, rehydrated through a graded series of ethanol solutions, and stained with hematoxylin and eosin (H&E) or periodic acid-Schiff (PAS) using conventional staining methods. All individual segments were evaluated for the presence and intensity of inflammation, as well as for the presence of fungi. Tissue sections were analyzed with a VisionTek™ digital microscope (Sakura), using VisionTek Live software.

In-vitro cytokine production. Peritoneal macrophages were isolated from mice by injecting 5 ml of ice-cold sterile PBS (pH 7.4) into the peritoneal cavity. After centrifugation and
washing, cells were resuspended in RPMI-1640 culture medium containing 1 mM pyruvate, 2 mM L-glutamine and 50 mg/L gentamicin. Cells were counted using a Z1 Coulter Particle Counter (Beckman Coulter, Woerden, The Netherlands), adjusted to 1×10^6 cells/ml and cultured in 96-well round-bottom microtiter plates (Costar, Corning, The Netherlands) at 1×10^5 cells/well, in a final volume of 200 µl. After 24 hours of incubation with different stimuli at 37°C and 5% CO₂, the plates were centrifuged at 1400 x g for 8 min, and the supernatants were collected and stored at −80°C until cytokine assays were performed.

Spleen cells were isolated by gently passing spleens through a sterile 200 µm filter chamber. After washing with sterile PBS and centrifugation at 4°C (1200 rpm for 5 min), cells were resuspended in 2 ml RPMI-1640 in the presence of 20% FCS, counted and concentrations were adjusted to 1×10^7 cells/ml. Cells were cultured in 24-wells plates (Greiner, Alphen a/d Rijn, The Netherlands) at 5×10^6 cells/well, and different stimuli were added in a final volume of 1000 µl. Supernatants were collected at two different time points (depending on the cytokine) as following: after 48 h of incubation at 37°C and 5% CO₂, 500 µL supernatant per well were collected and stored at −80°C until cytokine assays were performed; thereafter, the plates were further incubated at 37°C and 5% CO₂ for 3 more days. Ultimately, the plates were centrifuged at 1400 x g for 8 min, and the remaining supernatants were collected and stored at −80°C until cytokine assays were performed. Concentrations of mouse TNF-α, IL-1α and IL-1β were determined by specific radioimmunoassay (RIA). Mouse IL-6, KC, IL-17, IFN-γ, IL-22 and IL-10 concentrations were measured by commercial ELISA kits (BioSource, Camarillo, CA), according to the instructions of the manufacturer.

Leukocyte recruitment. Wild-type and Dectin-2⁻/⁻ mice were injected with 100 µl of 1x10^5 heat-killed Candida per mouse, intraperitoneally. After 4 hours cells were recruited from the peritoneum and 50 µl of cell suspension (1x10^6 cells per ml) was centrifuged in a cytopsin at 500 rpm for 10 minutes. The cells were stained with May-Grünwald Giemsa, observed and counted under the microscope.

Phagocytosis and killing of C. albicans. Peritoneal macrophages were recruited and phagocytosis and killing assays were performed as described elsewhere (8, 22).

Ethics statement. All experiments in this study were carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, the Dutch law on Animal experiments, and FELASA regulations. The protocol was approved by the Ethics Committee on Animal Experiments of the Radboud University Medical Centre. All efforts were made to minimize suffering of the animals.

Statistical analysis. Differences in phagocytosis, intracellular killing, and cytokine production were analyzed using the Mann-Whitney U-test. Survival data were analyzed using the Kaplan-Meyer log rank test. Differences were considered significant at \(P < 0.05 \). The experiments were performed at least twice. At least 4 mice per group per time point were used for the outgrowth, phagocytosis, killing, and cytokine synthesis. 10 mice/group entered the survival experiment, which was repeated two more times. Data are presented as means ±SEM.
Results

Dectin-2−/− mice are more susceptible to systemic infection with *C. albicans*

A lethal dose of *Candida* was intravenously injected in wild-type and Dectin-2−/− mice, which were thereafter monitored for 28 days. Dectin-2−/− mice had significantly lower survival than wild-type mice (Fig. 1). On day 3, 7 and 14 post infection, organs of infected mice were isolated and CFU were counted. Interestingly, slightly fewer colonies were isolated from the livers of Dectin-2−/− mice than of the wild-type mice at the early time points; however, both groups of mice were able to reduce the fungal burden in the liver (Fig. 2A). On the other hand, an increase of 100-fold *Candida* colonies were found in the kidneys of Dectin-2−/− mice compared with the wild-type mice at late time points post-infection (Fig. 2B), which most likely is the cause of the increased mortality in the deficient mice.

This observation was further underlined by histological examination of the kidneys of Dectin-2−/− mice, which developed inflammatory foci that were significantly larger than in wild-type mice (Fig. 2C-E, 2H). The foci consist mainly of lymphocytes with sporadic neutrophils (Fig. 2F and G), suggesting chronic inflammation, similar to systemic infection caused by *C. glabrata* (8). These results indicate that Dectin-2 is very important in the clearance of *Candida* predominantly from the kidneys, the target organ of disseminated candidiasis in mice.

The impact of Dectin-2 deficiency on cytokine production capacity

To obtain a greater understanding of immunological responses during systemic candidiasis in Dectin-2−/− mice, we analyzed the cytokine production capacity during the course of infection with *C. albicans*. Interestingly, on day 3 and day 7 the production of proinflammatory cytokines (TNF-α, IL-6, IL-1α and IL-1β) by macrophages of Dectin-2−/− mice were significantly lower than in wild-type mice (Fig. 3A), which may represent an important cause of decreased resistance to the pathogen. On the contrary, on days 14 and 28 the production of

![Figure 1](image-url)
The role of Dectin-2 for host defense against disseminated candidiasis

Figure 2: Candida outgrowth in the liver and kidneys of mice during systemic infection. Candida CFUs from liver (A) and kidneys (B) from wild-type and Dectin-2^-/- mice at day 3, 7 and 14 post-infection. Wild-type and Dectin-2^-/- mice received 1*10^5 CFU live C. albicans per animal intravenously. Results are presented as means ± SEM (n=9-12 mice per group from 3 independent experiments). Significance was determined with Mann-Whitney U-test. Statistically different groups are indicated as *, P < 0.05; **, P < 0.01; ***, P < 0.001. Histopathological assessment of kidneys on day 14 in uninfected Dectin-2^-/- (C), infected wild-type (D), infected Dectin-2^-/- (E) (hematoxylin and eosin stained sections) and infected Dectin-2^-/- (F and G) mice (periodic acid–Schiff stained sections). Representative localized lesions and C. albicans colonies are shown in the kidneys of Dectin-2^-/- mice (D and E). The dimension of inflammatory foci is represented in Figure H. A minimum of 20 foci were measured in at least 7 different kidneys. Results are means ± SEM (n=4 mice per group) from 2 independent experiments. Significance was determined with Mann-Whitney U-test. Statistically different groups are indicated as ***, P < 0.001.
proinflammatory cytokines in the knockout mice recovered, but this is most likely due to the increase of fungal burdens at these late time points (Fig. 3A).

We next analyzed the splenocyte-derived cytokines from mice with systemic candidiasis. Surprisingly, the production of TNF-α, IL-17, and IL-22 were moderately elevated from the splenocytes of knockout mice, particularly at day 3 post-infection (Fig. 3B), while mostly leveling up during the late course of infection (Fig. 3B). Interestingly, the production of the anti-inflammatory cytokine IL-10 was significantly decreased at day 28 after infection (Fig. 3B).

The role of mannans for \(C. albicans\) recognition by Dectin-2

In order to assess whether mannans are the ligands for Dectin-2, as previously suggested in the literature (4, 5), we screened several α- and β-mannan mutants for their ability to stimulate cytokine production by peritoneal macrophages and splenocytes from Dectin-2 -/- mice and wild-type controls. The macrophages from wild-type mice responded with normal production of TNF-α, IL-6, KC, IL-1α and IL-1β when stimulated with the majority of the \(C. albicans\) mutants (Fig. 4A). Interestingly, the triple mutant lacking β-mannan, \(bmt1\Delta/bmt2\Delta/bmt5\Delta\), induced significantly higher amounts of IL-6 and KC than its parental strain \(C. albicans\) CAI4-CIP10, implying that α-mannan ligands are better accessible for recognition by cellular receptors on macrophages, as the triple mutant only lacks β-mannosides at the terminal end of α-mannosides, and phosphomannose on mannans and on phospholipomannan. Therefore, the lack of β-mannosides at the terminal end of α-mannosides suggests that α-mannans are still present on \(Candida\) triple mutant and, furthermore, are more exposed on \(Candida\) cells as they are no more hidden by β-mannosides. \(Candida\) hyphae and \(och1\Delta\) mutant induced sizable amounts of IL-1α and IL-1β in macrophages (Fig. 4A). Likewise, all mutants induced TNF-α, IL-17 and IL-22 in splenocytes from wild-type mice, while IFN-γ and IL-10 production was low (Fig. 4B).

Peritoneal macrophages from naïve Dectin-2 -/- mice stimulated with \(C. albicans\) mutants produced lower amounts of cytokines than wild-type mice (Fig. 5A). Moreover, the triple mutant \(bmt1\Delta/bmt2\Delta/bmt5\Delta\) did not induce more cytokines (in particular IL-6 and KC) than other mutants (Fig. 5A), suggesting that exposed α-mannan putative ligands interact with Dectin-2.

Decreased neutrophil recruitment at the site of infection in Dectin-2 -/- mice

Since neutrophils and monocytes are essential during fungal invasion, we investigated leukocyte recruitment after \(Candida\) injection into the peritoneal cavity of both Dectin-2 -/- and wild-type mice. The recruitment of neutrophils was clearly inhibited in knockout mice (Fig. 6A), while no differences in the recruitment of other leukocyte populations were observed. This observation, in combination with our finding of an increased level of the neutrophil chemokine KC in Dectin-2 knockout macrophages, suggests that Dectin-2 is important for the neutrophil response to KC.

Phagocytosis and killing of \(Candida\) by Dectin-2 -/- macrophages

Since a number of C-type lectin receptors are involved in the engulfment and phagocytosis of fungi, we investigated the phagocytic capacity of peritoneal macrophages from Dectin-2 knockout
A: macrophages

Figure 3: Cytokine profile during systemic infection with *C. albicans*. Wild-type or Dectin-2−/− mice received 1×10⁵ CFU heat-killed *C. albicans* per mouse, intravenously. After 3, 7, 14 and 28 days, peritoneal macrophages (A) were restimulated *ex vivo* with heat-killed *C. albicans* hyphae (Ca) for 24 h. TNF-α, IL-6 and KC accumulation in the supernatants and IL-1α and IL-1β accumulation inside the cells was measured by ELISA. Results are means ± SEM (n=8 mice per group) from 2 independent experiments. Significance was determined with Mann-Whitney U-test. Statistically different groups are indicated as *, P < 0.001; **, P < 0.01. Wild-type or Dectin-2−/− mice received 1×10⁵ CFU live *C. albicans* per mouse, intravenously. After 3, 7, 14 and 28 days, splenocytes (B) were restimulated *ex vivo* with heat-killed *C. albicans* hyphae (Ca) for 48 h and 5 days. TNF-α, IL-10, IFNγ (48 h), IL-17 and IL-22 (5 days) accumulation in the supernatants was measured by ELISA. Results are means ± SEM (n=8 mice per group) from 2 independent experiments. Significance was determined with Mann-Whitney U-test. Statistically different groups are indicated as *, P < 0.05.
A: macrophages from wild-type naïve mice

B: splenocytes from wild-type naïve mice
Figure 4: Stimulation of cells isolated from wild-type mice with C. albicans mutants. C. albicans mutants lacking O- and N-linked, α- and β-mannan were screened for their capacity to induce cytokines in wild-type peritoneal macrophages (A) and splenocytes (B) from naïve mice. Values represent means ± SEM (n=4 mice per group, 2 independent experiments). Significance was determined with Mann-Whitney U-test. Statistically different groups are indicated as *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$. Ca y: C. albicans yeast heat-killed; Ca hy; C. albicans hyphae heat-killed. The control strain NGY152, was derived from CAI-4, which is the parental Ura-auxotrophic strain of all mutants analysed, and was created by reintegration of a copy of URA3 gene at the RPS1 locus.

mice. We consistently found a slightly reduced phagocytosis of Candida by the macrophages from Dectin-2−/− compared to the wild-type macrophages (Fig. 6B), suggesting a role of Dectin-2 in engulfment of the pathogen. The killing capacity, corrected for the decrease in phagocytosis, was not significantly decreased in macrophages of the knockout animals (Fig. 6B).

Discussion

Our results demonstrate that mice lacking Dectin-2 are more susceptible to systemic C. albicans infection and we describe the altered host defense mechanisms that are responsible for this effect. The knockout mice exhibit diminished neutrophil recruitment into the peritoneal cavity, slightly decreased phagocytosis of Candida and larger inflammatory foci mostly devoid of neutrophils due to a higher fungal burden in the infected kidneys. We found that the macrophages production was lower for the majority of proinflammatory cytokines (with the exception of KC), which may represent the cause of these effects.

Our findings regarding an increased susceptibility of Dectin-2−/− mice to C. albicans corroborate with those of Saijo et al (5), who demonstrated similar survival curves of Dectin-2 knockout mice challenged with C. albicans. In addition, these findings are in line with the increased susceptibility of Dectin-2−/− mice to C. glabrata (8). Macrophage-derived proinflammatory cytokines such as TNF-α, IL-1, KC or IL-6 activate the recruitment, phagocytosis and killing of fungi, and mice deficient in these cytokines are more susceptible to systemic candidiasis (23, 24). Interestingly, with the exception of KC, significant defects in the production of these cytokines were observed in cells isolated from Candida-challenged Dectin-2−/− mice in our study. Saijo et al previously reported a much more dramatic decrease in cytokine production compared to the data reported here, i.e. non detectable IL-6, TNF-α, IL-1β and IL-10 after exposure of mononuclear phagocytes to Candida yeasts and very low production after exposure of Dectin-2−/− cells to hyphae. Our data show more moderate effects, which is in line with the well-known redundancy in the various pattern recognition receptors responsible for the recognition of Candida spp (25). Even a greater disparity with the findings of Saijo et al (5) was found with regard to cytokine production by splenocytes. At day 14 of infection, a significant amount of IL-17 was produced by splenocytes of Dectin-2−/− mice, demonstrating that the Th17 differentiation in these mice is functional. The increased production of cytokines by splenocytes of Dectin-2−/− mice at certain time points after infection is most likely due to the higher antigen burden in the organs of the knockout mice. This is also discrepant with the findings of Saijo et al., and the cause of these differences
The role of Dectin-2 for host defense against disseminated candidiasis

A: macrophages from Dectin-2−/− naïve mice

B: splenocytes from Dectin-2−/− naïve mice
The role of Dectin-2 for host defense against disseminated candidiasis

Figure 5: Stimulation of cells isolated from Dectin-2-/- mice with *C. albicans* mutants. *C. albicans* mutants lacking O- and N-linked, α- and β-mannan were screened for their capacity to induce cytokines in Dectin-2-/- peritoneal macrophages (A) and splenocytes (B) from Dectin-2-/- mice. Values represent means ± SEM (n=4 mice per group, 2 independent experiments). Significance was determined with Mann-Whitney U-test. Statistically different groups are indicated as *, P < 0.05; **, P < 0.01; ***, P < 0.001. Ca y: *Candida albicans* yeast heat-killed; Ca hy; *Candida albicans* hyphae heat-killed.

remains to be investigated. One likely explanation may be represented by differences between various *C. albicans* strains: such differences have been earlier reported to cause differential effects of various strains for the recognition of TLR4 (26, 27) and Dectin-1 (27).

The coordinated induction of proinflammatory cytokines is important for activating multiple host defense mechanisms against fungi, including leukocyte recruitment at the site of infection, phagocytosis and killing of the pathogen. The influx of neutrophils was decreased in the knockout mice, despite normal concentrations of the chemoattractant cytokine KC, pointing to a role of Dectin-2 in the chemotactic response of neutrophils. In addition, we observed that peritoneal macrophages lacking Dectin-2 were slightly less able to ingest the pathogen, while the killing of *Candida* was not affected. Phagocytosis is the main mechanism through which immune cells engulf and clear pathogens or cell debris. The latter observation of normal *Candida* killing by Dectin-2-/- cells is remarkable, since we have previously shown that Dectin-2-/- neutrophils produce less reactive oxygen species (ROS) upon stimulation (8), and ROS plays a significant role in *Candida* killing (28). Drewniak et al showed that human CARD9 deficiency resulted in selective defect in the host defense against invasive fungal infection caused by an impaired phagocyte killing (28); this suggest that CARD9-dependent C-type lectin receptors other than Dectin-2 are also important for *Candida* killing.

The increased susceptibility of Dectin-2-/- mice to *C. albicans* strain UC820 is suggested to be due to their incapacity to eliminate the fungus from the kidneys, the target organ of...
disseminated candidiasis (29). The fact that the animals were able to eradicate Candida from the liver but not kidney confirms previous data related to organ-specific Candida infection and immune responses mediated primarily by neutrophils and monocytes (30-32). The ultimate pathways responsible for the increased susceptibility of Dectin-2-/- mice to systemic candidiasis is most likely due to the combination of defective cytokine production, reduced neutrophil recruitment and impaired phagocytosis of the fungus.

α-mannans have been previously suggested to be the main fungal PAMP recognized by Dectin-2 (5). Furthermore, Dectin-2 binds to the terminal mannose of N-linked glycan (4), and recognizes mycobacterial mannose-capped lipoarabinomannan (33), and O-linked mannobiose-rich glycoproteins (α-1,2-linked mannose) from Malassezia (34). Considering these studies, we were surprised to observe that mutant C. albicans strains with defects in α-mannans induced largely intact cytokine amounts. Moreover, the mannan-defective strains induced less cytokines in macrophages from Dectin-2-/- mice compared with the wild-type animals. In accord with this, och1Δ and pmr1Δ, induced lower Th-derived cytokines in splenocytes of wild-type and Dectin-2-/- mice previously infected with Candida, compared to the other strains of the fungus. Finally, the triple mutant lacking β-mannan and therefore exposing α-mannan, bmt1Δ/bmt2Δ/bmt5Δ, induced significantly higher amounts of IL-6 and KC than its parental strain C. albicans CAI4-CIP10, confirming that, indeed, C. albicans α-mannan ligands are better accessible for recognition by cellular receptors on macrophages. Moreover, bmt1Δ/bmt2Δ/bmt5Δ did not induce more cytokines than other mutants in the Dectin-2-/- cells, suggesting that these exposed α-mannan ligands interact with Dectin-2.

In conclusion, we demonstrate that Dectin-2 is an important component of the anti-Candida host immune responses. However, the extent of immune responses triggered by Dectin-2 during systemic candidiasis may vary depending not only on Candida species, but also on the strain of Candida. Deciphering the precise mechanisms responsible for host defense against the different C. albicans strains represents an important step in understanding of the pathophysiology of systemic candidiasis. Furthermore, revealing the exact Dectin-2 ligand(s) important for induction of antifungal host defense mechanisms could lead to the development of novel immunotherapeutic strategies and possible vaccine development.

Funding

This work was supported by European Union ALLFUN (FP7/2007 2013, HEALTH-2010-260338) (Fungi in the setting of inflammation, allergy and autoimmune diseases: Translating basic science into clinical practices “ALLFUN”) to D.C.I. M.G.N., and N.G. M.G.N and J.Q. were supported by a Vici grant of the Netherlands Organization of Scientific Research (to M.G.N.). M.G.N. was supported by an ERC Consolidator Grant (nr. 310372). N.G. was also supported by the Wellcome Trust (086827, 075470, 097377 & 101873).

Conflicts of interest

The authors declare no conflict of interest.
References

The role of Dectin-2 for host defense against disseminated candidiasis

Role of Dectin-2 for Host Defense against Systemic Infection with *Candida glabrata*

Daniela C. Ifrim, Judith M. Bain, Delyth M. Reid, Marije Oosting, Ineke Verschueren, Neil A. R. Gow, J. Han van Krieken, Gordon D. Brown, Bart-Jan Kullberg, Leo A. B. Joosten, Jos W. M. van der Meer, Frank Koentgen, Lars P. Erwig, Jessica Quintin, Mihai G. Netea

Abstract

Although Candida glabrata is an important pathogenic Candida species, relatively little is known about its innate immune recognition. Here, we explore the potential role of Dectin-2 for host defense against C. glabrata. Dectin-2-deficient (Dectin-2⁻/⁻) mice were found to be more susceptible to C. glabrata infections, showing a defective fungal clearance in kidneys but not in the liver. The increased susceptibility to infection was accompanied by lower production of T helper 1 (Th1) and Th17-derived cytokines by splenocytes of Dectin-2⁻/⁻ mice, while macrophage-derived cytokines were less affected. These defects were associated with a moderate yet significant decrease in phagocytosis of the fungus by the Dectin-2⁻/⁻ macrophages and neutrophils. Neutrophils of Dectin-2⁻/⁻ mice also displayed lower production of reactive oxygen species (ROS) upon challenge with opsonized C. glabrata or C. albicans. This study suggests that Dectin-2 is important in host defense against C. glabrata and provides new insights into the host defense mechanisms against this important fungal pathogen.

Keywords: Candida glabrata, Dectin-2, Th-derived cytokines, ROS
Role of Dectin-2 for Host Defense against Systemic Infection with Candida glabrata

Introduction

The opportunistic fungal pathogen Candida glabrata is the second most frequent cause of candidiasis after Candida albicans, accounting for approximately 15 to 25% of Candida infections (1, 2). Similar to other Candida species, C. glabrata resides as a commensal within the normal microbial flora of humans, but it may also cause serious infections in immunocompromised patients. In the last 3 decades, the number of infections due to non-albicans Candida species has increased significantly (3, 4). The current rise in the incidence of invasive C. glabrata infections is largely the result of the combinational increase in immunosuppressive infections and modern prolonged invasive medical interventions (5). Moreover, C. glabrata is of added concern due to the fact that a fraction of clinical isolates have been proven to be resistant to antifungal agents, such as azoles (6). The mortality rate associated with bloodstream infection with C. glabrata is approximately 50% in cancer patients and is even higher in bone marrow transplant patients (7, 8). However, compared to the literature on C. albicans, few studies have investigated the pathophysiology of C. glabrata infections, despite its high morbidity and mortality burden.

Pattern recognition of fungal components and activation of innate immunity are essential steps in the host defense against Candida species (9). The Candida cell wall is mainly composed of multiple layers of carbohydrates, such as mannan, β-glucan, and chitin, which are collectively recognized by C-type lectins, including macrophage mannose receptor (MR), SIGNR-1, Galectin-3, Mincle, Dectin-1, Dectin-2, and the Toll-like receptors. This recognition leads to activation of the host innate immune system. MR recognizes the N-linked mannans of fungal cell walls, SIGNR-1 recognizes branched α-mannans, and Galectin-3 recognizes β-(1,2)-mannans (9–11). It has recently been reported that Dectin-1 (Clec7a) and Dectin-2 (Clec4n) are specific receptors for β-glucans (12) and C. albicans-derived α-mannans (13), respectively. Dectin-2 is a C-type lectin receptor primarily expressed by macrophages, dendritic cells and neutrophils, with specificity for structures rich in mannose (14, 15). Dectin-2 uses the FcRy chain to signal via Syk- and caspase recruitment domain family member 9 (Card9)-dependent pathways (16–18). It represents an important receptor for the generation of the Th17-like adaptive immune response, coordinating the Th1-like responses together with Dectin-1 (17). Human Dectin-2 has a mannose recognition EPN motif (15, 19), strengthening the likelihood that Dectin-2 plays an important role in antifungal immunity. Additionally, Saijo et al. have reported that Dectin-2 is the functional receptor for α-mannans and that Dectin-2−/− mice are more susceptible to C. albicans (13). However, little is known regarding the specific role of Dectin-2 for the host defense against C. glabrata.

In this study, we have explored the contribution of Dectin-2 in the pathophysiology of murine C. glabrata systemic infection. We show that the burden of C. glabrata was significantly increased in kidneys of Dectin-2−/− mice, which was correlated with a decreased phagocytosis and killing of the fungus by the innate immune macrophages (as shown by live-cell video microscopy phagocytosis assays) and neutrophils (as shown by the ex vivo phagocytosis and killing assays). Moreover, the adaptive T helper-derived cytokine responses were also considerably affected in Dectin-2−/− mice. In conclusion, our data
demonstrate an important role of Dectin-2 for innate immune responses and its significant contribution to the adaptive immune responses against *C. glabrata*.

Materials and Methods

Generation of Dectin-2−/− mice. Dectin-2−/− mice were constructed by Ozgene Pty Ltd., Australia, as described previously (20). Briefly, a targeting vector was designed to introduce a conditional mutation into the mouse *Clec4n* gene (Ensembl version no. http://www.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000023349;r=6:123229843-123247021). The strategy utilizes mutant *loxP* sites (*lox66* and *lox71*) to enable an inversion of the flanked sequence in response to the expression of Cre recombinase. The recombination event inactivated the gene by switching the position and direction of the transcriptional termination (STOP) signal with *Clec4n* exon 2. The *lox66* site was inserted upstream from *Clec4n* exon 2, and a neomycin selection cassette (PGK-Neo) was targeted into the intron between exon 2 and exon 3. The selection cassette was flanked with FLP recombination target (FRT) sites to enable removal by FlpE-mediated recombination. An inverted STOP element and a *lox71* site were placed downstream from the selection marker. The 5' and 3' homology arms of the vector were approximately 6.1 kb and 5.9 kb, respectively. The targeting vector was linearized with Pmel and electroporated into the C57BL/6 embryonal stem (ES) cell line Bruce4. Neomycin-resistant clones were selected and screened by Southern blotting to identify homologous recombinants. Correctly targeted clones were microinjected into BALB/cJ blastocysts, which were transferred into pseudopregnant CBB6F1 foster females. Chimeric mice were obtained and outcrossed to C57BL/6J females to generate ES cell-derived targeted mutant progeny.

Eight- to 12-week-old female Dectin-2−/− (*Clec4n−/−*) mice on a C57BL/6J background were obtained from a breeding colony at the Central Animal Laboratory, Radboud University Nijmegen Medical Centre. Age-matched C57BL/6J male mice were obtained from Charles River Wiga (Sulzfeld, Germany). All mice weighed between 20 and 25 g. The animals were fed standard laboratory chow (Hope Farms, Woerden, The Netherlands) and water *ad libitum*. Most of the experiments were repeated at least twice with a minimum of five animals per time point. All experimentation conformed to the terms and conditions of the Ethics Committee on Animal Experiments of Radboud University, Nijmegen. Key experiments, such as for fungal outgrowth and phagocytosis and killing of *C. glabrata*, were repeated using Dectin-2−/− mice generated independently, kindly provided by Y. Iwakura (13). These validation studies were performed at the animal facility of the University of Aberdeen. Live-cell video microscopy was conducted in Aberdeen; C57BL/6 and Dectin-2−/− (provided by Y. Iwakura) mice were obtained from breeding colonies. All mice were used at 8 to 16 weeks of age. Animals were kept and handled in accordance with institutional guidelines.

Candida strains, culture media, and growth conditions. *C. glabrata* CBS138 (ATCC 2001), a strain described elsewhere (21), was used in all experiments. *C. glabrata* was routinely grown and maintained on Sabouraud dextrose plates. For inoculum preparation, a single colony was grown in Sabouraud dextrose broth at 29°C for 24 h, with shaking. Cells were washed...
Role of Dectin-2 for Host Defense against Systemic Infection with *Candida glabrata*

twice in sterile phosphate-buffered saline (PBS) and counted using a hemocytometer. Cell density was adjusted with PBS to the desired inoculum level. *C. glabrata* was heat killed for 30 min at 95°C. *Candida albicans* ATCC MYA-3573 (UC 820) was grown overnight to generate yeast cells in Sabouraud dextrose broth at 29°C, with shaking. Cells were harvested by centrifugation, washed twice with PBS, and resuspended in culture medium (RPMI 1640 Dutch modification). *C. albicans* yeast was heat killed for 30 min at 95°C. To generate hyphae, yeast cells were inoculated and grown overnight at 37°C in culture medium adjusted to pH 6.4 with hydrochloric acid. Hyphae were killed by exposure to 95°C for 30 min and resuspended in culture medium to a hyphal inoculum size that originated from 1x10⁸ CFU/ml.

C. glabrata infection model and fungal burden. A nonlethal experimental model of disseminated candidiasis was used, in which wild-type and Dectin-2⁻/⁻ mice were injected intravenously, via the lateral tail vein, with *C. glabrata* (1x10⁷ CFU/mouse) in a 100 µl volume of sterile pyrogen-free PBS. Mice were monitored daily. For survival studies, groups of 10 mice were followed-up for a period of 28 days. For immunological and histological studies, subgroups of 5 animals were killed on day 3, 7, or 14 postinfection. Tissues were collected and processed for fungal burden and cytokine analysis. To assess the tissue outgrowth of *C. glabrata* on these days, the liver and kidneys were removed aseptically, weighed, and homogenized in sterile PBS in a tissue grinder. The number of viable *Candida* cells in the tissues was determined by plating serial dilutions on Sabouraud dextrose agar plates, as described elsewhere (22). The CFU were counted after 24 h of incubation at 29°C and expressed as log CFU per gram of tissue.

Histopathology. Kidney samples from infected mice were kept in formalin until processed. Sections were dehydrated with xylene, rehydrated through a graded series of ethanol solutions, and stained with hematoxylin and eosin (H&E) or periodic acid-Schiff (PAS) using conventional staining methods. All individual segments were evaluated for the presence and intensity of inflammation, as well as for the presence of fungi. Tissue sections were analyzed with a VisionTek digital microscope (Sakura), using VisionTek Live software.

In vitro cytokine production. Peritoneal macrophages were isolated from mice by injecting 5 ml of ice-cold sterile PBS (pH 7.4) into the peritoneal cavity. After centrifugation and washing, cells were resuspended in RPMI 1640 culture medium containing 1 mM pyruvate, 2 mM L-glutamine, and 50 mg/liter gentamicin. Cells were counted using a Z1 Coulter particle counter (Beckman Coulter; Woerden, The Netherlands), adjusted to 1x10⁶ cells/ml, and cultured in 96-well round-bottom microtiter plates (Costar, Corning, The Netherlands) at 1x10⁵ cells/well in a final volume of 200 µl. After 24 h of incubation with different stimuli at 37°C and 5% were centrifuged at 1,400 x g for 8 min, and the supernatants were collected and stored at -80°C until cytokine assays were performed.

Spleen cells were isolated by gently passing spleens through a sterile 200 µm filter chamber. After washing with sterile PBS and centrifugation at 4°C (1,200 rpm for 5 min), cells were resuspended in 2 ml RPMI 1640 in the presence of 20% fetal calf serum and counted, and concentrations were adjusted to 1x10⁶ cells/ml. Cells were cultured in 24-well plates (Greiner, Alphen a/d Rijn, The Netherlands) at 5x10⁶ cells/well, and different stimuli were
added in a final volume of 1,000 µl. Supernatants were collected at two different time points (depending on the cytokine) as follows. After 48 h of incubation at 37°C and 5% CO₂, 500 µl of supernatant per well was collected and stored at -80°C until cytokine assays were performed; thereafter, the plates were further incubated at 37°C and 5% CO₂ for an additional 3 days. The plates were centrifuged at 1,400 x g for 8 min, and the remaining supernatants were collected and stored at -80°C until cytokine assays were performed. The concentrations of mouse tumor necrosis factor alpha (TNF-α), interleukin-1α (IL-1α), and IL-1β were determined by specific radioimmunoassay (RIA). Mouse IL-6, KC, IL-17, gamma interferon (IFN-γ), IL-22, and IL-10 concentrations were measured by commercial enzyme-linked immunosorbent assay (ELISA) kits (Biosource, Camarillo, CA) according to the instructions of the manufacturer.

Phagocytosis and killing of C. glabrata. Peritoneal macrophages and neutrophils were recruited and phagocytosis and killing assays were performed according to a modification of a method described elsewhere (23). *C. glabrata/macrophage or C. glabrata/neutrophil ratios of 10:1 were used in the phagocytosis and killing studies. Peritoneal macrophages or neutrophils from groups of 5 C57BL/6J (control) and 5 Dectin-2⁻/⁻ mice were elicited by an intraperitoneal (i.p.) injection of heat-killed *C. glabrata*. Cells were collected in separate sterile tubes either 3 days (macrophages) or 4 h (neutrophils) after *C. glabrata* infection by washing the peritoneal cavity with 5 ml of ice-cold PBS. Phagocytes were centrifuged (for 10 min at 2,250 x g), counted in a Bürker counting chamber, and resuspended in RPMI 1640 Dutch modification (with 20 mM HEPES and without L-glutamine; ICN Biomedicals) supplemented with 5% heat-inactivated fetal calf serum, 1% gentamicin, 1% L-glutamine, and 1% pyruvate. The processes of phagocytosis and intracellular killing were studied in an adherent monolayer of phagocytes. To create a monolayer of phagocytes, 5x10⁵ cells in 100 µl of RPMI 1640 were dispensed into the wells of a 96-well flat-bottom plate (Costar) and incubated at 37°C and 5% CO₂. Macrophages were allowed to adhere for up to 2 h, but neutrophils for only 30 min before the monolayers were gently washed with culture medium to remove nonadherent cells. The percentage of adherence was calculated as follows: (1-[number of nonadherent cells/5x10⁵])x100. Subsequently, the cells were incubated with 1x10⁴ CFU *C. glabrata*, which were opsonized for 30 min at 24°C in modified Eagle's medium (MEM; Gibco Life Technologies) that contained 2.5% fresh mouse serum (effector/target ratio, 40:1). After 15 min, supernatants were aspirated, and monolayers were gently washed with MEM to remove noningested *C. glabrata*. The supernatant and well washings that contained the non-ingested *Candida* were combined and plated in serial dilutions on Sabouraud agar plates. The percentage of phagocytosed microorganisms was defined as follows: [1-(number of uningested CFU/CFU at the start of incubation)]x100.

The killing of *C. glabrata* by phagocytes was assessed in the same monolayers. After removal of the nonphagocytized *Candida*, 200 µl of culture medium, consisting of Sabouraud in MEM (50%, vol/vol), was added to the monolayers. After 3 h of incubation at 37°C and 5% CO₂, the wells were gently detached with a cell scraper and washed with 200 µl distilled H₂O to achieve lysis of phagocytes. This procedure was repeated 3 times, after which the pooled washes were adjusted to a final volume of 1 ml with distilled water. Microscopic examination of the culture plates showed that there was an almost complete removal of phagocytes. To quantify the viable
intracellular Candida, 10-fold dilutions of each sample were spread on Sabouraud agar plates and incubated at 37°C for 24 h. The percentage of yeast killed by the phagocytes was determined as follows: \[1 - \frac{\text{CFU after incubation}}{\text{number of phagocytized CFU}}\] x 100. Phagocyte-free incubations of blastoconidia were included as a control for yeast viability.

Live-cell video microscopy phagocytosis assays. Standard phagocytosis assays were performed as previously described (24). Briefly, 6x10^5 live C. glabrata yeasts were added to 2x10^5 macrophages in µ-Slide 8-well chambers (ibidi GmbH, Germany) immediately prior to imaging. Video microscopy experiments were performed using an Ultra View VoX live-cell imaging system (PerkinElmer) with the environmental control chamber set at 37°C. Images were captured at 1-min intervals for 3 h using an electron-multiplying charge-coupled device (EMCCD) camera. At least two independent experiments were conducted for each mouse strain, and two movies for each mouse were analyzed (n=7 wild-type mice, and n=8 Dectin-2 mice). Velocity 6.2.1 imaging analysis software was used to track macrophage migration at 1-min intervals for the first 60 min of the phagocytosis assay. The software enabled high-throughput analysis of macrophage migration, providing detailed information on the distances traveled and the directionality and velocity of hundreds of individual macrophages. The data were subsequently displayed in tracking diagrams and used to calculate the mean track velocity and track length of macrophages cultured with C. glabrata. The movies generated for migration analyses were also analyzed to determine phagocytic uptake at the 30-min, 60-min, and 180-min time points (25). For each mouse, 20 macrophages were analyzed for the percentage of uptake of live C. glabrata yeasts (calculated by determining the number of macrophages per 100 that had ingested at least one yeast). The phagocytic index was calculated by counting the total number of yeasts engulfed per hundred macrophages at each time point.

Reactive oxygen species (ROS) assay. The spontaneous and stimulus induced oxygen radical production levels of isolated neutrophils were evaluated using luminol-enhanced chemiluminescence and determined in an automated LB96V Microlumat plus luminometer (EG & G Berthold, Bald Wilberg, Germany) as previously described (26). In this study, neutrophils (2x10^5 per well) were seeded into 96-well plates and incubated in medium containing either RPMI, phorbol 12-myristate 13-acetate (PMA; 5 µg/ml), live opsonized C. albicans (10^5 CFU/ml) or live opsonized C. glabrata (10^7 CFU/ml). Luminol was added to each well in order to start the chemiluminescence reaction. Each measurement was carried out in at least duplicate repetitions. Chemiluminescence was determined every 145 s at 37°C for 1 h. Luminescence was expressed as relative light units (RLU) per second. Data were analyzed with Winglow software (EG & Berthold).

Ethics statement. All experiments in this study were carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, the Dutch law on Animal Experiments, and FELASA regulations. The protocol was approved by the Ethics Committee on Animal Experiments of the Radboud University Nijmegen Medical Centre. All efforts were made to minimize suffering of the animals. All experiments performed in Aberdeen conformed to the terms
and conditions of United Kingdom Home Office licenses for research on animals and the guidelines of the University of Aberdeen ethical review committee.

Statistical analysis. Differences in phagocytosis, postphagocytic killing, and concentrations of cytokines were analyzed using the Mann-Whitney U test. Survival data were analyzed using the Kaplan-Meyer log rank test. Differences were considered significant at a P value of 0.05. The majority of the experiments was performed at least twice, and at least 5 mice/group/time point were used for the outgrowth, phagocytosis, killing, ROS, and cytokine synthesis experiments. A total of 10 mice/group were used for survival experiments. Data are presented as means ± standard errors of the means (SEM).

Results

Increased susceptibility to *C. glabrata* systemic infection in Dectin-2-/- mice

To determine the role of Dectin-2 in the host defense against *C. glabrata*, we first compared the susceptibility to infection of Dectin-2-/- and wild-type control mice. Following infection with *C. glabrata*, both groups of mice were able to effectively control and eradicate the fungus from the liver within 2 weeks (Fig. 1A). In contrast, while wild-type animals restrained the infection in their kidneys, significantly higher *C. glabrata* loads were observed in Dectin-2-/- mice (Fig. 1B). Similar increases in the fungal burdens were observed in the kidneys of the Dectin-2-/- mice provided by Y. Iwakura (Fig. 1C). Nonetheless, Dectin-2-/- mice were less susceptible to *C. glabrata* than has been reported for *C. albicans*, with no mortality recorded in any of the mouse strains during the 28 days following intravenous infection (data not shown).

![Fig. 1: Greater *C. glabrata* loads in the kidneys of mice during systemic infection.](image)

(A and B). Quantification of *Candida* colonies from liver (A) and kidneys (B) of wild-type and Dectin-2-/- mice at day 3, 7 and 14 postinfection is shown. Wild-type and Dectin-2-/- received 10^7 CFU of *C. glabrata* per mouse intravenously. After 3, 7 and 14 days, organs were collected and serial dilutions were plated on Sabouraud solid media. Results are means ± SEM (n=10-14 mice per group from 3 independent experiments). Significance was determined with Mann-Whitney U-test. Statistically different groups are indicated as *, P < 0.05; ***, P < 0.001. (C) Fungal burdens in the kidneys of wild-type and Dectin-2-/- mice provided by Prof. Iwakura. Wild-type or Dectin-2-/- mice received 10^7 CFU of *C. glabrata* per mouse intravenously. After 7 days, kidneys were collected and serial dilutions were plated on Sabouraud agar media. Data are represented as means ± SEM (n=12 mice per group from two independent experiments). Significance was determined with Mann-Whitney U-test, ** P < 0.01.
Compared with the results for noninfected mice (Fig. 2A), histopathological analysis identified zones with lymphocytic infiltration suggestive of chronic inflammation in both wild-type control (Fig. 2B) and Dectin-2^{-/-} (Fig. 2C) mice. Sporadic neutrophilic granulocytes could be detected (Fig. 2D and E). At day 7 and day 14 postinfection, the kidneys of Dectin-2^{-/-} mice displayed significantly increased numbers of inflammatory foci compared with the kidneys of wild-type mice. Interestingly, fungi were only partially associated with inflammation and were often present in the lumina of tubuli, not in the tissue itself (Fig. 2D and E). Therefore, the foci of chronic, lymphocytic inflammation were

Fig. 2: Dectin-2 deficiency affects kidney histopathology during systemic infection with C. glabrata. Histopathological assessment of kidneys in uninfected Dectin-2^{-/-} (A), infected wild-type (B), infected Dectin-2^{-/-} (C) (hematoxylin and eosin stained sections) and infected Dectin-2^{-/-} (D and E) mice (periodic acid–Schiff stained sections). Representative localized lesions and C. glabrata colonies in the kidneys of Dectin-2^{-/-} mice are shown (C, D and E). All observations in infected kidneys were performed at day 14 after intravenous injection with C. glabrata.
not associated with the presence of fungi. In conclusion, Dectin-2 appears to be an essential pattern recognition receptor for the adequate control of *C. glabrata* renal infection.

Defective Th-associated cytokine production in Dectin-2−/− mice

To further characterize the role of Dectin-2 for the recognition of *C. glabrata*, the *ex vivo* cytokine profile was assessed in peritoneal macrophages of naive wild-type and knockout mice. Interestingly, the innate response levels from uninfected Dectin-2−/− macrophages were slightly higher than the response levels of the macrophages isolated from the wild-type animals (TNF-α, IL-6, IL-1α, and IL-1β) (Fig. 3A). Only the IL-6 and KC production levels from Dectin-2−/− macrophages upon stimulation with *C. albicans* heat-killed hyphae were lower than those from wild-type macrophages, although the difference reached statistical significance only for KC (Fig. 3A). Regarding the T cell-derived cytokines (IL-10, IFN-γ, and IL-17) produced by the splenocytes of uninfected mice, no differences could be detected between the two groups of mice (Fig. 3B). The IL-17 production levels in the splenocytes from Dectin-2−/− mice were highly variable.

In a subsequent set of experiments, we studied the *ex vivo* cytokine responses of peritoneal macrophages and splenocytes isolated from mice infected with *C. glabrata*. No differences were detectable between the two groups of mice in most of the macrophage-derived cytokines assayed (intracellular/extracellular IL-1α and IL-1β and extracellular production of IL-6 and KC; data not shown), with the exception of TNF-α at day 14 postinfection (Fig. 4A). Similar to the results for peritoneal macrophages, *ex vivo* stimulation of splenocytes from *C. glabrata*-infected mice resulted in significantly lower levels of TNF-α production by Dectin-2-deficient cells upon stimulation with either *C. glabrata* (Fig. 4B) or *C. albicans* (Fig. 4C), although dissimilarities were detectable earlier in the course of the infection. No significant differences could be detected in the amounts of the anti-inflammatory cytokine IL-10 produced by either strain. In addition to the responses of the innate cytokines, Th1 and Th17 responses at 7 days postinfection were also significantly reduced in Dectin-2−/− splenocytes, as mirrored by the low production of IFN-γ and IL-17 (Fig. 4B). The levels of IL-22 were moderately reduced at day 14 postinfection (Fig. 4B). A similar pattern with more pronounced differences was observed when splenocytes from infected mice were restimulated with *C. albicans* yeast (Fig. 4C). As such, Dectin-2 deficiency results in decreased production of protective T helper-derived cytokines.

Dectin-2−/− peritoneal macrophages are less efficient in the uptake and killing of *C. glabrata* ex vivo

The phagocytic clearance of microorganisms, including yeasts, by professional phagocytes is mediated by receptor activation that drives the engulfment and internalization of the pathogen. We therefore assessed the ability of Dectin-2−/− peritoneal macrophages to recognize, phagocytose, and kill live opsonized *C. glabrata*. Using a classical *ex vivo* phagocytosis and killing assay (23), wild-type peritoneal macrophages were found to be slightly more efficient in
Role of Dectin-2 for Host Defense against Systemic Infection with Candida glabrata

Fig. 3: Cytokine profile from naïve mice. Cells from naïve mice were stimulated for 24 h (peritoneal macrophages) (A) or for 48 h and 5 days (splenocytes) (B) with heat-killed (HK) or live C. glabrata (Cg), heat-killed C. albicans yeast (CaY) or hyphae (Cah) and live C. albicans (Ca). Levels of TNF-α, IL-6, KC, IL-1α, IL-1β, IL-10, IFN-γ and IL-17 accumulation were measured by ELISA. Data are represented as means ± SEM (n=8 mice per group). Significance was determined with Mann-Whitney U-test. Statistically different groups are indicated as *, P < 0.05 and **, P < 0.01.

the phagocytosis and subsequent killing of C. glabrata than Dectin-2–/– macrophages (Fig. 5A).

We further investigated the migration of peritoneal macrophages toward C. glabrata by live-cell video microscopy using a phagocytosis assay described previously (25). Dynamic analysis of individual macrophages, achieved by tracking cells to determine their directionality, distance, and velocity for the first hour of the assay, demonstrated no major differences in migration dynamics between macrophages harvested from wild-type or Dectin-2–/– animals (Fig. 5B). However, in the same experiment, a complementary analysis revealed a significant difference between the two types of macrophages in terms of the uptake and phagocytosis of live C. glabrata. Following 30 min of coincubation with live C. glabrata, 51% of the wild-type macrophages had ingested at least one yeast, whereas Dectin-2–/– macrophages showed a significantly reduced uptake of 34% (Fig. 5C). This significantly reduced uptake capacity was noticeable early during the phagocytosis assay (30 min and 60 min) but not at a later time point (180 min) (Fig. 5C). Additionally, the total numbers of fungal cells phagocytosed by macrophages from Dectin-2–/– mice were also significantly lower than the numbers phagocytosed by wild-type macrophages.
Role of Dectin-2 for Host Defense against Systemic Infection with Candida glabrata

Fig. 4: Dectin-2 is required during systemic C. glabrata infection for subsequent splenocyte recall responses. Wild-type or Dectin-2-/- mice received 10^7 CFU of C. glabrata per mouse intravenously. After 3, 7 and 14 days, peritoneal macrophages (A) were restimulated ex vivo with either heat-killed C. glabrata (Cg), heat-killed C. albicans yeast (Ca) or hyphae (Cah) for 24 h. Levels of TNF-α accumulation in the supernatants was measured by ELISA. Results are means ± SEM (n=9-10 mice per group) from 2 independent experiments. Significance was determined with Mann-Whitney U-test. Statistically different groups are indicated as *, P < 0.05 (A).

Wild-type or Dectin-2-/- mice received 10^7 CFU of C. glabrata per mouse intravenously. After 3, 7 and 14 days, splenocytes (B, C) were restimulated ex vivo with either heat-killed C. glabrata (Cg) (B) or heat-killed C. albicans yeast (Ca) (C) for 48 h and 5 days. Levels of TNF-α, IL-10, IFN-γ (48 h), IL-17 and IL-22 (5 days) accumulation in the supernatants were measured by ELISA. Data are represented as means ± SEM (n=14-15 mice per group) from 3 independent experiments. Significance was determined with Mann-Whitney U-test. Statistically different groups are indicated as *, P < 0.05; **, P < 0.01 and ***, P < 0.001.
at 30 min and 60 min of coinoculation (Fig. 5D). Altogether, these results highlight a partial, yet significant role of Dectin-2 in mediating the uptake and engulfment of *C. glabrata* by macrophages. In addition, partial effects on fungal killing may also be envisioned, although more studies should be performed to establish that definitively.

Fig. 5: Impact of Dectin-2 deficiency on phagocytosis and killing of *C. glabrata* by peritoneal macrophages. (A) Phagocytosis and killing of *C. glabrata* cells by murine peritoneal macrophages. The results are represented as percentage of phagocytosis (the percentage of fungal cells engulfed by macrophages present in the well) and percentage of killing (the percentage of killed fungal cells among the phagocytosed yeast). The *C. glabrata*/macrophage ratio was 10:1. Data are represented as means ± SEM (n=5 mice per group). (B) Migration of peritoneal macrophages using live-cell video microscopy. Tracking diagrams illustrating the distances travelled, directionality and velocity of macrophages exposed to *C. glabrata* at a ratio of 3:1 fungal particles:macrophage. Due to the large number of macrophages tracked per video, the data were filtered to show only macrophages whose tracks lasted up until 30 min to 60 min, as previous work has shown that migration activity is greater early on [25]. Tracks represent the movement of individual macrophages relative to their starting position, symbols indicate the location of macrophages at 1 min intervals and arrows represent directionality. (n=7 control mice, and n=8 Dectin-2-/- mice for 4 independent experiments). Percentage of uptake (C) and phagocytic index (D) using live-cell video microscopy. The percentage of macrophages that have ingested at least one *C. glabrata* yeast and the number of *C. glabrata* yeasts per 100 macrophages are depicted. *, P < 0.05.
Dectin-2−/− neutrophils are less efficient in phagocytosing and killing *C. glabrata* ex vivo

We next assessed the recognition and killing of *C. glabrata* by neutrophils, pivotal players in the clearance of invading fungal cells from tissues. Neutrophils were harvested from the peritoneal cavity of both wild-type and Dectin-2−/− mice and further subjected to an *ex vivo* phagocytosis and killing assay (23). The phagocytosis of *C. glabrata* by the Dectin-2−/− neutrophils was considerably less effective than the phagocytosis of *C. glabrata* by neutrophils of wild-type mice (Fig. 6A). The killing of *C. glabrata* by the Dectin-2−/− neutrophils was slightly diminished compared with the killing by control neutrophils (Fig. 6A). Importantly, neutrophils from Dectin-2−/− mice showed a defect in secretion of ROS upon interaction with either live opsonized *C. glabrata* or *C. albicans* compared with the ROS secretion of wild-type neutrophils (Fig. 6B). Interestingly, the defect was specific for fungi, as no differences in ROS production were observed when cells were stimulated with PMA (Fig. 6B). Thus, Dectin-2 is important in both the uptake of *C. glabrata* by neutrophils and the subsequent ROS production and killing of the yeast.

Discussion

Dectin-2 is one of the main pattern recognition receptors for fungal mannans, with recent studies demonstrating an important role for this receptor in host defense against *C. albicans* (13). In the present study, we show that Dectin-2 is also an important component of the host defense against *C. glabrata*. The increased susceptibility of Dectin-2−/− mice to a systemic infection with *C. glabrata* suggests a role for this receptor in the control of systemic *C. glabrata* infection.
Role of Dectin-2 for Host Defense against Systemic Infection with Candida glabrata

infection with C. glabrata is associated with a combination of decreased production of protective T helper-derived cytokines and defective phagocytosis and killing of the yeast by both neutrophils and macrophages.

Little is known of the role of the C-type lectin receptor, Dectin-2. A recent study reported that Dectin-2−/− mice are highly susceptible to a systemic infection with C. albicans (13). Moreover, it has been shown that Dectin-2 plays an important role in the induction of protective Th17 responses (17) and that, together with Dectin-3, it forms a heterodimeric pattern recognition receptor for host defense against C. albicans (27). The intracellular signaling induced by Dectin-2 involves activation of CARD9 (28), phospholipase C-γ (29), and protein kinase C-σ (30). Our study demonstrates that Dectin-2 has a nonredundant role for host defense against C. glabrata. This is an important observation not only for our improved understanding of C. glabrata infection but also for Dectin-2 biology: while Dectin-2 has been suggested to recognize mainly C. albicans hyphae (13), its importance for recognition of a Candida species that does not usually develop hyphae is a broadening of the biological importance of Dectin-2. The increased susceptibility to C. glabrata was demonstrated in two independently generated groups of Dectin-2−/− mice, reinforcing this conclusion. However, these mice were less susceptible to C. glabrata than to C. albicans, as reported earlier (13). The increased susceptibility of Dectin-2−/− mice to C. glabrata was apparent through their incapacity to eliminate the fungus from the kidneys, the target organ of disseminated candidiasis (31). Previously reported studies already showed that systemic candidiasis increased the fungal burden in kidneys of Dectin-1−/− mice compared with the fungal burden in kidneys of the wild-type mice (12). The fact that the animals were able to eradicate C. glabrata from the liver, in comparison with the results for the kidneys, confirms recent findings concerning organ-specific Candida infection and immune responses mediated primarily by neutrophils and monocytes, as well as by various molecular factors (32–34).

Fungal pathogens have developed a number of strategies to improve their chance of survival in the host environment; e.g., Candida albicans and Cryptococcus neoformans either destroy macrophages or escape via nonlytic exocytosis (35, 36). Interestingly, C. glabrata engulfed by macrophages does not undergo a morphological transition but survives and multiplies within mammalian macrophages (37, 38), which are ultimately damaged by ingested C. glabrata (38). In our study, we assessed the role of Dectin-2 for the phagocytosis and killing of C. glabrata and observed that neutrophils and macrophages lacking this receptor were less capable of ingesting and killing the yeast. Using live-cell video microscopy, we found that significantly fewer Dectin-2−/− macrophages took up C. glabrata, in accordance with a lower phagocytic index where phagocytosis had occurred. These defects in the uptake and phagocytosis of C. glabrata could not be attributed to a defect in mobility. Finally, signaling through C-type lectin receptors induces cytokines and ROS that both activate the spleen tyrosine kinase (Syk)-caspase recruitment domain family member 9 (CARD9)-nuclear factor-κB (NF-κB) pathway (39) and, most likely, induce the intraphagosomal damage of fungal cells. In line with a role of the CARD9 pathway, Drewniak et al. showed that human CARD9 deficiency resulted in a selective defect in
the host defense against invasive fungal infection, caused by impaired phagocyte killing in unopsonized samples compared with the phagocyte killing in opsonized samples (40). In the present study, Dectin-2−/− neutrophils produced less ROS than wild-type neutrophils after stimulation of cells with either opsonized C. glabrata or C. albicans, suggesting a role of Dectin-2 in the killing of Candida species despite the presence of opsonins.

The induction of proinflammatory cytokines is an important component of anti-Candida host defense. Macrophage-derived proinflammatory cytokines like IL-1, KC, or IL-6 activate the recruitment of phagocytes and the phagocytosis and killing of fungi by phagocytes, and mice deficient in these cytokines have an increased susceptibility to systemic candidiasis (41, 42). No major defects in the production of these cytokines were observed in cells isolated from Candida-challenged Dectin-2−/− mice. In contrast, the secretion of cytokines produced by Th1 and Th17 lymphocytes was significantly decreased in Dectin-2−/− mice. IFN-γ is the main product of Th1 lymphocytes, and it has been proven to have a crucial role in antifungal host defense in mice (43). The defective production of IFN-γ by the splenocytes of Dectin-2−/− mice may represent one of the mechanisms determining the increased susceptibility to C. glabrata in these mice. Similarly, the Th17 cytokine, IL-17, represents an important component of antifungal host defense through its activation of neutrophils (44), while patients with defective Th17 responses develop chronic mucocutaneous candidiasis (45). The level of IL-17 produced by Dectin-2−/− splenocytes was significantly decreased at day 7 postinfection, suggesting a role for Dectin-2 in regulating splenocyte recall responses to fungal infection. The defective Th17 responses in Dectin-2−/− mice could therefore contribute to their susceptibility to C. glabrata. These results underline the conclusions of Saijo et al. (13) concerning Dectin-2-mediated immunity to C. albicans. The IL-17 defect in response to C. glabrata observed in our study was, however, less pronounced than that previously reported for C. albicans (13). Moreover, we should observe that the cytokine differences were most pronounced earlier during infection. At later time points during the infection, the picture starts to be biased by the higher fungal burden in the KO mice, which may counterbalance the defective cytokine production capacity.

The known fungal ligands recognized by Dectin-2 are α-mannans (13). Whereas significant research has been conducted on the structure of the C. albicans cell wall, much less is known regarding the cell wall components of C. glabrata. While recognition of mannans of C. glabrata by Dectin-2 is most likely, future studies should define the precise ligand-receptor interaction profile, especially as C. glabrata is less likely to form hyphae than C. albicans. Moreover, both endogenous (T cell) and exogenous (microbial carbohydrate) ligands for Dectin-2 may be important for the generation and maintenance of tolerance or the recognition of carbohydrate structures. Of particular interest is that previous reports have highlighted the ability of Dectin-2 to specifically signal after recognition of the hyphal form of C. albicans (28). The interaction between C. glabrata and Dectin-2 is different, as C. glabrata does not form traditional compartmentalized hyphae. Still, previous reports have described tubes and pseudohypha formation in several clinical isolates of C. glabrata (46), and these might be recognized by Dectin-2.
In conclusion, we demonstrate that the immune responses triggered by Dectin-2 during infection with *C. glabrata* might link innate immune recognition, phagocytosis, and killing of the fungus with the adaptive T helper-dependent responses. A combination of these mechanisms controls *C. glabrata* during systemic infection. Deciphering the precise mechanisms responsible for host defense against *C. glabrata* represents an important step in understanding of the pathophysiology of the disease and for the possibility to design future novel immunotherapeutic strategies.

Acknowledgements

We thank A. Whittington for the useful discussion and H. M. J. Roelofs and E. D. Olthof for the assistance with ROS production. We thank the University of Aberdeen Animal Facility and Microscopy Facility and also D. MacCallum and R. Drummond for technical assistance. This work was supported by European Union ALLFUN (FP7/2007 2013, HEALTH-2010-260338) (Fungi in the setting of inflammation, allergy and autoimmune diseases: Translating basic science into clinical practices ALLFUN) to D.C.I., M.G.N., and N.A.R.G. M.G.N and J.Q. were also supported by a Vici grant of the Netherlands Organization of Scientific Research (to M.G.N.). N.A.R.G. was also supported by the Wellcome Trust (080088, 086827, 075470, and 097377). L.P.E. is a CSO Senior Clinical Fellow and supported by WT project, programme, and equipment grants (089930 and 094847). G.D.B. was funded by the Wellcome Trust (086558 and 097377).
Role of Dectin-2 for Host Defense against Systemic Infection with Candida glabrata

References

20 Zhang Z, Lutz B. Cre recombination-mediated inversion using lox66 and lox71: method to
introduce conditional point mutations into the CREB-binding protein. Nucleic Acids Res. 2002 Sep 1;30(17):e90.

Role of Dectin-2 for Host Defense against Systemic Infection with Candida glabrata

PART TWO
Modulation of innate immune responses after *Candida* infection: induction of trained immunity
Trained immunity or tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors

Daniela C. Ifrim, Jessica Quintin, Leo A.B. Joosten, Cor Jacobs, Trees Jansen, Liesbeth Jacobs, Neil A.R. Gow, David L. Williams, Jos W.M. van der Meer, and Mihai G. Netea

Clinical Vaccine Immunology Volume 21, Issue 4, Pp 534-545.
Abstract

Upon priming with *Candida albicans* or with the fungal cell wall component β-glucan, monocytes respond with an increased cytokine production upon restimulation, a phenomenon termed “trained immunity.” In contrast, the prestimulation of monocytes with lipopolysaccharide has long been known to induce tolerance. Because the vast majority of commensal microorganisms belong to bacterial or viral phyla, we sought to systematically investigate the functional reprogramming of monocytes induced by the stimulation of pattern recognition receptors (PRRs) with various bacterial or viral ligands. Monocytes were functionally programmed for either enhanced (training) or decreased (tolerance) cytokine production, depending on the type and concentration of ligand they encountered. The functional reprogramming of monocytes was also associated with cell shape, granulocity, and cell surface marker modifications. The training effect required p38- and Jun N-terminal protein kinase (JNK)-mediated mitogen-activated protein kinase (MAPK) signaling, with specific signaling patterns directing the functional fate of the cell. The long-term effects on the function of monocytes were mediated by epigenetic events, with both histone methylation and acetylation inhibitors blocking the training effects. In conclusion, our experiments identify the ability of monocytes to acquire adaptive characteristics after prior activation with a wide variety of ligands. Trained immunity and tolerance are two distinct and opposing functional programs induced by the specific microbial ligands engaging the monocytes.

Keywords: trained immunity, microbial ligands, monocytes, memory.
Introduction

More than 3 decades ago, a number of studies reported enhanced immune responses upon reinfection in diverse invertebrate taxa that do not possess adaptive immunity, such as cockroaches (1–3), shrimp (4, 5), and mealworm beetles (6). Interestingly, invertebrates also have proven to be able to mount enhanced secondary immune responses (7) and to transmit protection to their offspring (8). While this protection is nonspecific, several studies demonstrated that these effects enable discrimination between different classes of pathogens. Recently, Witteveldt et al. showed that such immune memory can be used in the vaccination of invertebrates (9). Whereas vertebrates use somatic rearrangement of immunological receptors to induce adaptive immune responses, one mechanism employed by the host defenses of invertebrates to confer adaptation to infection is alternative splicing of pattern recognition genes, such as Down syndrome cell adhesion molecule, which generates a highly diverse set of >31,000 potential alternative splice forms (10, 11). These two molecular processes have the same consequence: they create a receptor repertoire that is sufficiently diverse for discriminating between the broad varieties of different antigens.

The function of prototypic mammalian innate immune cells, such as NK cells, can also be enforced, leading to protection against reinfection with viral pathogens (12–15). Similarly, monocytes and/or macrophages exhibit memory characteristics that mediate protective effects after a second encounter with a pathogen (16, 17). We have termed this phenomenon “trained immunity,” defined as enhanced nonspecific innate immune protection that is suggested to be mediated by epigenetic mechanisms (18). In contrast to trained immunity, engagement of the Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) has been known for several decades to inhibit the cell function in a process called LPS-induced tolerance (19, 20). LPS tolerance is an active process involving epigenetic remodeling (21), and this process has been suggested to be the basic mechanism responsible for the immunoparalysis that occurs after Gram-negative sepsis (22). Despite the importance of both LPS tolerance (19, 20) and trained immunity (16, 17), very little is known about the modulatory characteristics of the various classes of pattern recognition receptors and microbial ligands.

The aim of this study was to systematically investigate the potential to either train or induce tolerance of the well-known classes of PRRs expressed on monocytes/macrophages, as depicted in Table 1. We demonstrate that several bacterial, fungal, and viral ligands induce the functional reprogramming of monocytes, leading to either nonspecific enhanced (training) or diminished (tolerance) cytokine production upon secondary stimulation, a process that is often dependent on ligand concentration. Understanding the nature of the signaling pathways in determining the functional fate of innate host responses upon sequential stimulation of pattern recognition receptors may represent an important step toward understanding bacterial and fungal colonization and/or invasion of the mucosa on one hand, and for developing novel immunotherapeutic strategies on the other hand.
Materials and Methods

Blood samples. Blood was collected from healthy volunteers at Sanquin Bloodbank in Nijmegen, Netherlands. Informed consent was obtained from the volunteers included. Human peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats.

Reagents. Culture medium used was Roswell Park Memorial Institute (RPMI) 1640 Dutch modifications from Sigma-Aldrich, supplemented with 1% gentamicin, 1% L-glutamine and 1% pyruvate (Life Technologies, Nieuwekerk, Netherlands). *Candida* β-glucan was isolated and purified as previously described (23). Other reagents were obtained as follows: Pam3CSK4 (EMC microcollections, L2000), LPS (*E. coli* serotype 055:B5, Sigma-Aldrich) with an additional purification step (24), Flagellin from *Salmonella typhimurium* FLA-ST, CpG type C ODN M362, Tri-DAP and R848 (InvivoGen), Poly(I:C) (Brunswick, USA), Syk inhibitor (EMD, 574711), P38-inhibitor SB202190 (Sigma-RBI, S7067), ERK inhibitor (Promega, V1121) and JNK inhibitor SP600125 (AG Scientific, Inc., S-2022), PMA (phorbol 12-myristate 13-acetate; Sigma), CD45-PC7 (Beckman Coulter), CD68-APC (Biolegend), CD14-PE (Beckman Coulter), CD11b-FITC (Beckman Coulter) and

Table 1: Pattern recognition receptors, microbial ligands and their adapter molecules.

<table>
<thead>
<tr>
<th>PRR</th>
<th>Microbial ligands</th>
<th>Adapter molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane receptors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dectin-1</td>
<td>β-glucan</td>
<td>CARD9</td>
</tr>
<tr>
<td>TLR2</td>
<td>lipoteichoic acid (Pam3CSK4) lipoproteins glycosyl-phosphatidylinositol from Toxoplasma gondii</td>
<td>TIRAP MyD88</td>
</tr>
<tr>
<td>TLR4</td>
<td>lipopolysaccharide (LPS) envelope proteins of RSV glycosyl-phosphatidylinositol from Toxoplasma gondii</td>
<td>TIRAP TRAM TRIF</td>
</tr>
<tr>
<td>TLR5</td>
<td>Flagellin</td>
<td>MyD88</td>
</tr>
<tr>
<td>Endosomal receptors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLR3</td>
<td>dsRNA polyinosinic:polycytidylic acid (Poly (I:C))</td>
<td>TRIF</td>
</tr>
<tr>
<td>TLR7/8</td>
<td>ssRNA (R848)</td>
<td>MyD88</td>
</tr>
<tr>
<td>TLR9</td>
<td>CpG DNA</td>
<td>MyD88</td>
</tr>
<tr>
<td>Cytosolic receptors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOD1</td>
<td>L-Ala-γ-D-Glu-mDAP (Tri-DAP)</td>
<td>CARD6</td>
</tr>
<tr>
<td>NOD2</td>
<td>Muramyl dipeptide (MDP)</td>
<td>CARD12</td>
</tr>
</tbody>
</table>
DC-SIGN (Biolegend). Versene solution was purchased from InVitrogen and the Cytotoxic96 nonradioactive assay was purchased from Promega. Syk inhibitor was used previously, as described (16). The epigenetic inhibitors, used previously (16, 17), were as follows: histone methyltransferase inhibitor (MTA, Sigma-Aldrich, D5011), epigallocatechin-3-gallate histone acetyltransferase inhibitor (HAT-i) (EGCG, Sigma, E4143), histone demethylase inhibitor (Pargyline, Sigma-Aldrich, P8013) and histone deacetylase inhibitor (ITF2357/9, ITALFARMACO S.p.A as described in patent WO 97/43251, US 6034096 (25, 26)).

Stimulation experiments. Mononuclear cells were isolated by density centrifugation of PBS-diluted blood (dilution 1:1) over a Ficoll-Paque PLUS gradient (GE Healthcare). PBMCs were washed 3 times with PBS and suspended in RPMI 1640 culture medium supplemented with 1% gentamicin, 1% pyruvate, and 1% L-glutamine. Cells were counted in a Coulter counter (Coulter Electronics), and the concentration was adjusted to 5 × 10⁶ cells/ml. For stimulation experiments, a 100 μl suspension of 5 × 10⁵ PBMCs in RPMI medium was added to flat-bottomed 96-well plates (Greiner Bio-One) and incubated for 1 h at 37°C, with 5% CO₂. Adherent monocytes were selected by three times washing out non-adherent cells with warm PBS. For training, cells were preincubated for 24 h with either RPMI (negative control), β-glucan (1 μg/ml) (positive control), or with serial dilutions of Pam3CSK4 (100 μg/ml to 0.01 pg/ml), LPS (100 ng/ml to 10⁻⁵ pg/ml), Flagellin (10 μg/ml to 0.01 pg/ml), Poly(I:C) (100 μg/ml to 0.01 pg/ml), R848 (100 μg/ml to 0.01 pg/ml), CpG (10 μg/ml to 0.001 pg/ml), Tri-DAP (10 μg/ml to 0.001 pg/ml), and MDP (10 μg/ml to 0.01 pg/ml) for 24 h. After the first incubation, monocytes were washed with warm PBS and maintained in RPMI supplemented with 10% pooled human serum for 5 days (media was refreshed at day 3). Thereafter, the cells were subjected to a second stimulation of cytokine production with LPS (10 ng/ml), Pam3CSK4 (10 μg/ml) or RPMI (negative control). After 24 h, duplicate supernatants were collected, pooled and stored at -20°C until assayed.

To investigate whether various inhibitors would affect training, adherent monocytes were preincubated for 1 h, prior to the first stimulation, with p38 inhibitor (1 μM), Syk inhibitor (140 μM), JNK inhibitor (20 μM), ERK inhibitor (10 μM), MTA (1 mM), EGCG (15 μM), pargyline (3 μM) or ITF2357/9 (100 nM). Subsequently, the microbial stimuli were added to the cells together with the inhibitors for an additional 24 h. Thereafter, the cells were washed with PBS and further incubated in culture media supplemented with 10% pooled human serum for 5 days. On day 6, the trained macrophages were subjected to a second stimulation with either LPS or Pam3CSK4, for 24 h. The supernatants were collected and stored at -20°C until assessed.

Cytokine assay. The concentrations of TNF-α (R&D Systems, Abingdon, UK) and IL-6 (Sanquin, Amsterdam, Netherlands) were measured 24 h after the second stimulation, in cell culture supernatants using ELISA, according to the manufacturer instructions.

Lactate hydrogenase (LDH) were performed with the CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega), according to the manufacturer’s instructions. Briefly, the adherent monocytes were incubated for 24 h with different microbial ligands and the secreted LDH was measured in cell culture supernatants. To check for putative cytotoxic effects of
MAPK-, Syk- and epigenetics inhibitors, the adherent monocytes were incubated for 24 h with RPMI, MAPK kinase-, Syk- or epigenetic inhibitors. Thereafter, the supernatants and cells were collected and stored until assessed. The values of inhibitors in RPMI were considered as background and subsequently subtracted from the final results. RPMI was considered negative control. The final values are depicted in %.

Extracellular Cytokine Staining and Flow Cytometry. 3 ml of PBMCs with a concentration of 5 x 10^6 cells/ml were cultured in a well of a 6-well plate. After 1 h of incubation at 37°C, with 5% CO₂, non-adherent cells were washed 3 times with warm PBS. The remaining adherent monocytes were prestimulated with concentrations of different ligands which would induce either training or tolerance, such as β-glucan (1 µg/ml), MDP (1 µg/ml), Flagellin (1 µg/ml), R848 (1 µg/ml), Pam3CSK4 (1 µg/ml) and RPMI (negative control), for 24 h. The stimuli were washed away and the cells were further incubated for 5 days in the presence of RPMI supplemented with 10% pooled human serum. On day 7, the cells were incubated for 1 h with Versene solution, collected, harvested by centrifugation and suspended in PBS supplemented with 1% PBA. The cells were washed two times and stained extracellularly with the following antibodies: anti-CD45-PeCy7 (Beckman Coulter), anti-CD68-APC (Biolegend), anti-CD14-PE (Beckman Coulter), anti-CD11b-FITC (Beckman Coulter) and anti-DC-SIGN-APC (Biolegend). Samples were measured on a FACS FC500, and data were analyzed using the CXP software (Beckman Coulter).

Statistical analysis. IBM SPSS Statistics software, Version 20, was used to perform statistical analysis. All experiments were performed at least three times with minimum six volunteers. The data represent cumulative results of all experiments performed, and the number of donors is given as “n” in figure legends. In order to assess the training effect of a specific ligand upon a secondary stimulation, non-trained cells stimulated with LPS (or Pam3CSK4) were compared with trained cells restimulated with LPS (or Pam3CSK4). The differences between groups were analyzed with Wilcoxon signed rank test and were considered statistically significant at P values of < 0.05.

Results

The type of ligand-PRR interactions as well as pathogen associated molecular pattern (PAMP) concentration decides the inflammatory state of monocytes

Some microbial ligands such as β-1,3-glucan (β-glucan) and the muramyl dipeptide (MDP) component of peptidoglycans induce trained immunity through the engagement of dectin-1 and nucleotide-binding oligomerization domain 2 (NOD2), respectively (16, 17), while the TLR4 agonist, LPS, induces tolerance (19, 20). We performed a systematical assessment to determine whether exposure of adherent monocytes to the microbial ligands of the TLR and NOD-like receptor (NLR) classes of pattern recognition receptors such as Pam3CSK4, LPS, Flagellin, Poly(I:C), R848, CpG and Tri-DAP also influences the cell response to a secondary
stimulation. The adherent monocytes were therefore exposed to each different PRR ligand for 24 h (first stimulus) at a concentration that would induce an inflammatory response, followed by a washout step. Following a resting time of 5 days, period during which monocytes in the absence of any primary event differentiate into macrophages, cells were exposed to a secondary stimulation with either LPS or Pam3CSK4 (second stimulus) (Fig. 1A).

The *C. albicans* cell wall component β-glucan strongly trains monocytes, leading to an enhanced production of TNF-α and IL-6 upon nonspecific secondary stimulation with LPS or Pam3CSK4 (16); therefore, β-glucan preincubation of monocytes was used as an inherent control of effective training throughout this study (Fig. 1B). In contrast to the training obtained upon engagement of dectin-1, the stimulation of the membrane receptors TLR2, TLR4 and TLR5 by inflammatory doses of Pam3CSK4 (100 µg/ml), LPS (100 ng/ml) and Flagellin (10 µg/ml) induced a long-term tolerant state in which monocytes produced fewer proinflammatory cytokines (TNF-α and IL-6) upon restimulation than did the RPMI-treated control cells (Fig. 1C-1E). Although LPS tolerance has been described *in vitro* (21) and *in vivo* (27) in short-term experiments, no studies have assessed the long-term effects of LPS. Using our training model of human adherent monocytes, we described a long-term tolerance effect of LPS (100 ng/ml) on the cytokine production observed upon secondary stimulation. In contrast to the membrane associated-TLRs, engaging cytosolic PRRs during a primary exposure to pure ligands revealed more diverse outcomes in terms of innate immune memory features. Preactivation of the endosomal TLR3 with a strong inflammatory dose of Poly(I:C) (100 µg/ml) maintained the cells in a tolerant status, being refractory to the second stimulation (Fig. 2A). Similarly, engagement of the endosomal TLR7/8 with R848 (100 µg/ml) also induced a refractory state of monocytes for TNF-α but not for IL-6 (Fig. 2B). However, the use of CpG (10 µg/ml) to preactivate TLR9 failed to induce any trained or tolerant effect (Fig. 2C). In contrast, engagement of NOD1 by Tri-DAP (10 µg/ml) and NOD2 by MDP (10 µg/ml) significantly trained the cells towards an increased production of TNF-α and IL-6 (Fig. 2D and E). Of note, while no correlation could be observed between the trained or refractory status obtained and the intracellular adapter molecules of TLRs (i.e., MyD88, Toll-interleukin 1 receptor [TIR] domain-containing adaptor protein [TIRAP], and TIR domain-containing adapter-inducing beta interferon [TRIF]) (Table 1), it seemed that engaging receptors that signal through caspase recruitment domain (CARD) molecules favor an enhanced trained immunity status. Altogether, the activation of TLRs present at the cell surface seemed to maintain the cells in a refractory status. However, engaging endosomal TLRs had a striking and different effect on the functional fate of monocytes, regardless of the adaptor molecules used to signal. Finally, engaging cytosolic NLRs receptors seemed to result in an enhanced proinflammatory immune status.

In order to assess whether the ligand concentration would influence the training of monocytes, titrations of all the ligands assessed in this study were performed. None of the first incubations with low doses of ligands induced measurable amounts of proinflammatory cytokines in supernatants collected after the first 24 hours (data not shown). We first deciphered the titration response of the cell membrane-associated TLRs. Systematically
Fig. 1: (A) In vitro training scheme. Adherent monocytes were incubated with pure ligands (training stimuli) for 24 h at 37°C. Following the first incubation, the cells were washed with warm PBS and further incubated with RPMI and pooled human serum for 5 days. In the absence of any training stimulus during the first 24 h, primary monocytes maintained in culture for several days eventually differentiated into macrophages. After this resting period, different pattern recognition receptor ligands were added (second stimulus) for an additional 24 h. (B to E) Tolerance induced by the membrane receptors. The cells were preexposed for 24 h to culture medium, β-glucan (1 µg/ml) (B), Pam3CSK4 (100 µg/ml) (C), LPS (100 ng/ml) (D), or Flagellin (10 µg/ml) (E). Primary stimuli were washed out, and after 6 days, the macrophages were restimulated with RPMI (negative control), LPS (10 ng/ml), or Pam3CSK4 (10 µg/ml). While β-glucan induced training, Pam3CSK4, LPS, and flagellin induced tolerance. The data are presented as the means ± SEM (n > 8, 5 independent experiments), *p<0.05, **p<0.01, ***p<0.001, #p<0.05 (tolerance). Wilcoxon signed rank test was used to detect significant differences.
Fig. 2: Differential effects of endosomal and cytosolic receptors on adherent monocytes. The cells were preexposed for 24 h to culture medium, Poly(I·C) (100 µg/ml) (A), R848 (100 µg/ml) (B), CpG (10 µg/ml) (C), Tri-DAP (10 µg/ml) (D), and MDP (10 µg/ml) (E). Primary stimuli were washed out, and after 6 days, the macrophages were restimulated with RPMI (negative control), LPS (10 ng/ml), or Pam3CSK4 (10 µg/ml). While Poly(I·C) induced tolerance for TNF-α and IL-6, R848 was able to induce tolerance for TNF-α only, and CpG did not exert any significant effect on the inflammatory status of monocytes. Both types of NLRs were able to enhance the status of monocytes upon a second exposure to either LPS or Pam3CSK4. The data are presented as the means ± SEM (n > 8, 5 independent experiments), *p<0.05, **p<0.01, ***p<0.001, *p<0.05 (tolerance). Wilcoxon signed rank test was used to detect significant differences.

lowering the amount of Pam3CSK4 which is used to activate the cell membrane associated TLR2, strongly modified the monocytes reprogramming characteristics. Pam3CSK4 in low concentration (1 µg/ml) resulted in a tolerance status for TNF-α and IL-6 upon LPS secondary stimulation. Interestingly, upon restimulation with Pam3CSK4, Pam3CSK4-preactivated monocytes were programmed to produce an increased amount of IL-6 compared to that
produced by nonactivated (RPMI) control cells (Fig. 3A). The anti-inflammatory-trained pattern was generally observable for TNF-α upon LPS secondary stimulation (Fig. 3A). Similarly, decreasing the amount of LPS and Flagellin during the pre-activation period of monocytes led to the opposite effect of tolerance, that is a pro-inflammatory status represented by significantly elevated levels of TNF-α and IL-6 upon restimulation (Fig. 3B and C).

We next deciphered the effect of differential engagement of cytosolic receptors. Preincubation of cells with low doses of Poly(I·C) or R848 gradually reversed the long-term tolerance effect (Fig. 4A and B), leading to a training effect upon restimulation with LPS or Pam3CSK4. Interestingly, lowering the concentrations of CpG (Fig. 4C), Tri-DAP (Fig. 4D), or MDP (Fig. 4E) did not reverse the long-term effect obtained with high inflammatory doses. Particularly, lowering the doses of CpG did not alter the “inert” status of priming, and none of the doses used triggered an enhanced or refractory immune status upon restimulation of the monocytes (Fig. 4C). However, although the enhanced proinflammatory status of the monocytes was not reversed to tolerance, the training effect obtained with the preactivation of NLRs eventually vanished by lowering the amount of Tri-DAP and MDP, resulting in normal nontolerant and nontrained cells (Fig. 4D and E). Cell viability and ligand toxicity were assessed at 24 h and at 7 days after the first stimulation for all the ligands tested, and none of the ligands used during the 24 h of primary cell stimulation enhanced LDH release.

Fig. 3: Dose responses of membrane-bound receptors. The cells were preexposed for 24 h to culture medium or to different concentrations of Pam3CSK4 (100 µg/ml to 0.01 pg/ml) (A), LPS (100 ng/ml to 10⁻⁵ pg/ml) (B), and Flagellin (10 µg/ml to 0.01 pg/ml) (C). The first stimuli were washed away, and adherent monocytes were further incubated for 5 days in culture medium supplemented with 10% pooled human pool serum. At day 6, the cells were restimulated with RPMI (negative control), LPS (10 ng/ml), or Pam3CSK4 (10 µg/ml). Depending on the concentration used, after several days, cells entered either a trained or tolerized status. The data are presented as the means ± SEM (n > 8, 5 independent experiments), *p<0.05, **p<0.01, ***p<0.001, *p<0.05 (tolerance). Wilcoxon signed rank test was used to detect significant differences. TNF-α and IL-6 from cells stimulated with RPMI were below the detection limit.
Differential cytokine induction by PRR families

compared to RPMI-treated cells (Supplementary Fig. S1), demonstrating that the decreased cytokine production was not due to the toxicity of the ligands used in the experiments.

Trained or tolerized cells exhibit a broad range of cell size, granulocity, and different macrophage markers at the surface

Macroscopically, cells trained with β-glucan (1 µg/ml), MDP (1 µg/ml) and Flagellin (1 µg/ml) are considerable larger than nontreated cells (Fig. 5A-D), while macrophages that entered a tolerized status were comparable in size to RPMI-treated cells (Fig. 5E and F). The phenotype of considerable larger trained cells is reminiscent of a previous study.

Fig. 4: Dose responses of endosomal and cytosolic receptors. The cells were preexposed for 24 h to culture medium or to different concentrations of Poly(I·C) (100 µg/ml to 0.01 pg/ml) (A), R848 (100 µg/ml to 0.01 pg/ml) (B), CpG (10 µg/ml to 0.001 pg/ml) (C), Tri-DAP (10 µg/ml to 0.001 pg/ml) (D), and MDP (10 µg/ml to 0.01 pg/ml) (E). The first stimuli were washed away, and adherent monocytes were further incubated for 5 days in culture medium supplemented with 10% pooled human pool serum. At day 6, the cells were restimulated with RPMI (negative control), LPS (10 ng/ml), or Pam3CSK4 (10 µg/ml). Depending on concentration used, after several days, cells entered either a trained or tolerized status. The data are presented as the means ± SEM (n > 8, 5 independent experiments). *p<0.05, **p<0.01, ***p<0.001, # p<0.05 (tolerance). Wilcoxon signed rank test was used to detect significant differences. TNF-α and IL-6 from cells stimulated with RPMI were below the detection limit.
Differential cytokine induction by PRR families

by Daigneault et al (28), in which human monocyte-derived macrophages with serum and PMA-activated-THP1 cells via activation showed increased light scattering due to the accumulation of organelles (28). To establish the similarities and differences between long-term innate immune reprogramming by PRRs ligands from the process of PMA-induced-cell activation, we assessed the effect of two different concentrations of PMA (10 µg/ml and 10 ng/ml) in our in vitro experimental model. Preincubation of monocytes with a low dose of PMA during the first 24 h resulted in an enhanced proinflammatory status, while higher concentration (10 µg/ml) induced a refractory immune status compared to the non-activated control macrophages (Supplementary Fig. S2). Hence, these results suggest the ability of PMA to induce differential activation of monocytes at the level of pro-inflammatory cytokines production, in a dose-dependent manner, similarly to TLRs ligands.

To further investigate the phenotype of trained versus tolerant cells, we assessed several surface markers on the cells treated with different PAMPs, by means of flow cytometry (Fig. 6). Adherent monocytes were trained as previously described (Fig. 1A) and after 6 days, cells were restimulated with medium alone. RPMI-trained cells are represented in Fig. 6A. All the counts were gated on CD45high (Fig. 6B and C). β-glucan was used as an inherent control; thus, based on β-glucan trained macrophages, several cell populations were identified for CD14, CD68 and DC-SIGN positive cells (Fig. 6D to F), while for CD11b+ only one cell population was identified (Fig. 6G). The levels of CD14+, CD68+, DC-SIGN+ and CD11b− at the cell surface were assessed. Interestingly, based on the side and forward scatter analysis, all β-glucan-trained cells proved to be of a broad granulocity and size range, and most of the cells positive for CD14, CD68 and CD11b (Fig. 6H to J). Similar observations were obtained with MDP and Flagellin-treated cells at a concentration that induces training (1 µg/ml) (Fig. 6H and J), while CD68+ and DC-SIGN+ were less present on the MDP and Flagellin-trained cells. Tolerant macrophages treated with Pam3CSK4 (1 µg/ml) or R848 (1 µg/ml) were significantly smaller than β-glucan-trained cells, with a broad granulocity, and fewer were positive for CD68, CD11b or DC-SIGN, while CD14 was still present to a similar intensity as β-glucan-trained cells (Fig. 6H to K).

Trained immunity is dependent on MAP kinase-dependent pathways and histone methylation and acetylation

(MAPK) play a key role in the induction of the initial inflammatory cytokine response of the activated monocytes (29). This prompted us to investigate whether MAPK (ERK, JNK, and p38) and Syk pathways are involved in the training effects of monocytes. While β-glucan signaling induces trained immunity via the noncanonical Raf1 pathway (16), we show here that p38 and JNK are involved in the training of primary monocytes by MDP and Flagellin (Fig. 7A and B). In contrast, ERK and Syk inhibitors did not affect training by these ligands (data not shown). β-glucan and Mycobacterium bovis BCG-induced trained immunity is mediated by epigenetic mechanisms (16, 17). We assessed whether histone modifications by methylation or acetylation influence the observed training effects of MDP and Flagellin.
Inhibition of histone methyltransferases with 5'-deoxy-5'-methylthio-adenosine (MTA) or inhibition of histone acetyltransferases with epigallocatechin-3-gallate (EGCG) drastically inhibited the training of monocytes (Fig. 7C and D). In contrast, the inhibitors of histone demethylase or deacetylase enzymes did not significantly influence the training effects of MDP or Flagellin. Notably, the putative cytotoxic effects of MAPK, Syk, and epigenetic inhibitors used in the study were assessed by LDH measurements. None of the inhibitors used during
Differential cytokine induction by PRR families

Fig. 6: Flow cytometric analysis of CD14-, CD68-, DC-SIGN-, and CD11b-positive cells gated on CD45+ populations after prestimulation with β-glucan, MDP, Flagellin, R848, and Pam3CSK4. A total of 3 ml at 5 x 10^6 PBMCs was incubated for 1 h, washed 3 times with PBS, and the remaining adherent monocytes were coincubated with with β-glucan (1 µg/ml), MDP (1 µg/ml), Flagellin (1 µg/ml), R848 (1 µg/ml) and Pam3CSK4 (1 µg/ml) or with RPMI (untrained control) for 24 h. Thereafter, the cells were washed and further incubated with RPMI supplemented with 10% pooled human serum for 5 days. At day 6, the macrophages were incubated with Versene solution for 1 h at 37°C, detached from the plate, and stained extracellularly using anti-CD45 PECy7, anti-CD14 PE, anti-CD68 APC, anti-DC-SIGN APC, and anti-CD11b FITC antibody. (A) The side scatter (SS) and forward scatter (FS) of the RPMI-treated cells are shown. (B and C) One representative picture of the staining and gating on CD45+ high β-glucan-trained cells is shown. Depending on the fluorescence intensity as well as cell size, we identified several cell populations, depicted as negative (-), positive (+), and high positive (++). Gating on different populations of CD14+ β-glucan-trained cells (D), CD68+ β-glucan-trained cells (E), DC-SIGN+ β-glucan-trained cells (F), and CD11b+ β-glucan-trained cells (G) are shown. (H to K) % of positive cells gated on CD45+ high. The data are presented as the means ± SEM (n > 2, 4 independent experiments).
the 24 h of primary cell stimulation enhanced LDH release compared with RPMI-treated cells (Supplementary Fig. S3), demonstrating that the molecules were not toxic to the cells.

Discussion

In the present study, we show that primary exposure to microbial ligands alters the functional fate of monocytes, which is determined by the nature and concentrations of the PRRs engaged. Engagement of NLRs (NOD1 or NOD2 receptors) induces trained immunity, a long-term enhanced immune status upon priming with high doses of MDP or Tri-DAP, which can
Differential cytokine induction by PRR families

vanish with smaller amounts of ligands. The engagement of TLRs with high inflammatory doses of PRR ligands predominantly induces tolerance, with the exception of CpG, for which tolerance seems to be inherent at any dose assessed. Interestingly, low concentrations of TLR ligands not only abolished the tolerance-induced effect but also reversed it, and in fact, trained the monocytes to be maintained in a heightened proinflammatory state. Furthermore, functional reprogramming of monocytes was also associated with cell shape and cell surface marker modifications. Finally, training of monocytes by MDP and flagellin is mediated by p38 and JNK MAPK dependent pathways and depends on epigenetic histone modifications.

Earlier studies have shown that β-glucan recognition by monocytes through dectin-1 and CR3 induces trained immunity (30), which mediates protection to reinfection in a T-/B-cell-independent fashion (16). Similarly, BCG vaccination in human volunteers induces epigenetic reprogramming of monocytes and enhances secondary responses to microbial stimulation (17). In this study we report that differential engagement of PRRs and that PMA activation of monocytes might result in either an enhanced or refractory innate immune status. These findings raise an important conceptual question: what is the difference between a stimulated cell, a differentiated macrophage, and a trained immune cell? The difference can be defined at a molecular epigenetic level: the unstimulated monocyte or macrophage is characterized by the absence of cytokine production, with silent markers for both histone acetylation and methylation. During cell activation and active transcription, both histone methylation and histone acetylation are present at the promoter and enhancer levels, potentiating gene transcription. The trained cell has lost its acetylation markers and thus has lost active transcription (after an initial stimulation). However, in a trained cell (in contrast to a naïve cell), the promoters of inflammatory genes are tagged by histone methylation, which allows for an accelerated and stronger response upon restimulation. We recently described the H3K4 methylation as a property of trained monocytes (16), and this characteristic was confirmed in a landmark study by Ostuni et al. (31) showing the kinetic events during macrophage training. The authors proposed the name “latent enhancers” for the epigenetic units determining cell training (31). The opposing process of trained immunity is the innate immune tolerance, which has been known for more than half a century and which was recently demonstrated to be regulated by epigenetic events (21, 32, 33).

Despite the importance of innate immune training and tolerance, no systematic studies have attempted to define which microbial ligands and pattern recognition receptors induce trained immunity or tolerance. In the present study, we screened the major TLR and NLR microbial ligands for their capacity to induce either training or tolerance. Although dose dependent, we identified important bacterial ligands, such as Flagellin and MDP, which can induce trained immunity. In flagellated bacteria, Flagellin is one of the major proteins in the cell, and mammals tend to have a strong immune response to Flagellin. This molecule is recognized in mammals by Toll-like receptor 5 (34, 35). Immune responses to Flagellin have been proposed to play an important role in the pathogenesis of inflammatory bowel diseases (36, 37). From this perspective, the capacity of Flagellin to induce trained immunity and a more potent inflammatory response may have important consequences for
the pathogenesis of this disease. On the other hand, our data may lead to the conclusion that Flagellin represents an important new type of adjuvant for improving vaccination, a hypothesis that is supported by earlier studies showing that Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with *Yersinia pestis* (38). Muramyl dipeptide is a component of bacterial cell wall peptidoglycan that is recognized by NOD2 (39), which is present in most bacterial species. The importance of NOD2 in protection against inflammatory bowel disease has been highlighted by the fact that particular mutations in NOD2 are associated with susceptibility to Crohn’s disease (40, 41). Recently, it has been proposed that MDP functions as a mucosal adjuvant that enhances the immunogenicity of virus-like particles (42). Consequently, its capacity to induce trained immunity may represent an important advantage in these settings.

In contrast, other microbial ligands, such as the TLR9 agonist CpG, had little, if any, long-term effects on the function of monocytes. This argues that only certain ligands at certain concentrations are capable of inducing trained immunity. A particular interesting finding is that TLRs in high doses, with the exception of TLR9, consistently induced long-term tolerance to secondary stimulation with bacterial ligands. These findings are supported by earlier studies showing that the *in vitro* tolerance and crosstolerance phenomena might be induced via TLR2, TLR4, and TLR9 (43). Additionally, it has been reported that TLR7/8 engagement mediates short-term tolerance in mice both *in vitro* and *in vivo* (44, 45). Further investigation of the mechanisms mediating this effect is warranted, especially in light of the known immunosuppressive effects of viral infections (46, 47). The levels of several activation markers at the cell surface were assessed. Based on the side and forward scatter analyses, β-glucan-, MDP-, and Flagellin-trained cells are of a broad granulocytosis and cell size and mainly positive for CD14 and CD11b, while cells positive for CD68 and DC-SIGN were less present. Tolerant macrophages, treated with Pam3CSK4 or R848, were significantly smaller than β-glucan-trained cells, and fewer were positive for CD68, CD11b, or DC-SIGN, while the activation marker CD14 was still present on these cells. No clear effect was seen on the expression of DC-SIGN on the macrophages. The increase or decrease in these activation markers might thus contribute to an increase or decrease, respectively, in the innate immune responses during the induction of trained immunity; nonetheless, future studies are warranted in order to prove this. In addition, one may also speculate that trained cells present different classes of activation markers than tolerized cells, depending on the subclasses of macrophages induced upon prestimulation.

An important question regarding trained immunity refers to the signaling and molecular mechanisms responsible for its induction. MAP kinases, such as p38, JNK, or ERK, are known to be crucial signaling pathways mediating the stimulation of inflammatory mediators (48, 49), with the p38MAPKα pathway being critical for normal inflammatory responses *in vivo* (50). Notably, the TRIF-dependent late-phase activation of the p38MAPK/MK2 pathway has been demonstrated to be essential for the translational control of TNF-α production (51). LPS regulates the transcript stability of TNF-α (52, 53) via activation of the p38MAPK/MK2 pathway. Considering these crucial biological functions of MAPKs, we assessed their role
Differential cytokine induction by PRR families

in the induction of trained immunity. Our data demonstrate that JNK and p38 MAPK are central for the induction of trained immunity by Flagellin and MDP, and they might represent potential therapeutic targets for clinical situations in which trained immunity mediates a long-term inflammatory response. In contrast, ERK and Syk do not seem to be needed to elicit trained immunity. Dynamic chromatin changes across immunological pathways participate in the training mechanism induced by the preincubation of monocytes with β-glucan (16). Exposure of monocytes to β-glucans induces high levels of H3K4 trimethylation at the promoter level of inflammatory genes, which correlates with long-term increased production of proinflammatory cytokines in β-glucan-trained monocytes, a hallmark of trained immunity (16). The blockade of histone methylation or histone acetylation inhibits trained immunity; the first of these modifications has been associated with a state of transcriptional priming, while the latter is associated with actual mRNA transcription. Similar mechanisms of epigenetic memory have been demonstrated in plants during the phenomenon of systemic acquired resistance (54) and may be involved in the resistance to reinfection in invertebrates (55); both classes of organisms are devoid of adaptive immune responses. Thus, the present study demonstrates that even in the presence of adaptive immunity, the training of innate immunity is operational and serves to enhance resistance to certain types of infection.

A key aspect for consideration is that of the duration of trained immunity effects in vivo and their potential impact on hematopoietic stem cells. We recently demonstrated trained immunity effects of BCG on monocytes for up to 3 months after vaccination (17). Considering the fact that circulating monocytes have a short half-life of only days, this implies training effects of vaccination on monocyte progenitor cells, and future studies are warranted to assess this important aspect. Moreover, future studies should also assess whether the direct contact of monocytes with microbial ligands is absolutely necessary for the induction of trained immunity, or whether soluble factors, such as cytokines, may also induce similar effects in certain circumstances. In addition, one should also keep in mind that classical monocyte differentiation into macrophages also implies epigenetic changes. However, there are fundamental differences between the epigenetic elements in differentiation versus training of monocytes: in the classical differentiation, both histone methylation and acetylation epigenetic markers lead to the expression of proteins that are characteristic of a macrophage; in the training state, histone acetylation markers are lost, and the promoters of certain genes retain only the histone methylation markers characteristic of latent enhancers (31). These latent enhancers will determine the increased transcription of those genes only after cell stimulation. It can be also envisaged that in certain situations, both training and differentiation markers can be induced, with their respective functional consequences.

Our data have a number of broad implications. By inducing long-term changes in cell capacity to respond to different pathogens, the processes of trained immunity and tolerance might have important effects on the susceptibility of a host to infections. Subsequently, a logical possibility is that the microorganisms encountered by the host on a regular basis may serve to differentiate and continually renew a pool of memory-like macrophages that have enhanced responses to an infectious challenge. By identifying the receptors and signaling
pathways that determine the functional fates of monocytes and macrophages, our findings have the potential to lead to the development of new therapeutics that can harness both the potential of trained immunity to induce robust responses to enhance pathogen defenses and of immune tolerance to inhibit autoimmune phenomena.

Acknowledgements

D.C.I. received funding from the European Union’s Seventh Framework Programme [FP7/2007-2013] under grant agreement n° HEALTH-2010-260338 (Fungi in the setting of inflammation, allergy and autoimmune diseases: Translating basic science into clinical practices “ALLFUN”) (awarded to M.G.N.). M.G.N. and J.Q. were supported by a Vici grant of the Netherlands Organization of Scientific Research (awarded to M.G.N.). This work was supported, in part, by National Institutes of Health grant GM53522 to D.L.W. N.A.R.G. was supported by the Wellcome Trust.
References

24. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ. Cutting edge: Repurification of lipopolysaccharide

27 Research Support, Non-U.S. Gov’t]. 2005 Jan-Dec;11(1-12):1-15.

38 Vijay-Kumar M, Gewirtz AT. Role of Flagellin in Crohn’s Disease: Emblematic of the Progress and Enigmas in Understanding Inflammatory Bowel Disease. Inflammatory Bowel Diseases. 2009 May;15(5):789-95.

41 Brant SR, Shugart YY. Inflammatory bowel disease gene hunting by linkage analysis - rationale, methodology, and present status of the field. Inflammatory Bowel Diseases. 2004 May;10(3):300-11.

Supplementary Fig. 1: LDH cytotoxicity assay. Adherent monocytes were cocultured for 24 h with either culture medium or with different microbial ligands. Thereafter, supernatants were collected (A) and cells were further cultured in RPMI supplemented with serum for another 6 days. At day 7 supernatants were once again collected (B) and subjected to a cytotoxicity assay, conform to manufacturer’s instructions. All the ligands, independently on the concentration, were proven to be non-toxic to the cells. Data are presented as mean ± SEM (n = 2).
Supplementary Fig. 2: The influence of PMA on prestimulation of primary monocytes. Cells were pre-exposed for 24 h to culture medium or to PMA at two different concentrations: 10 μg/ml and 10 ng/ml. The first stimuli were washed away and adherent monocytes were further incubated for 5 days in culture medium supplemented with 10% pooled human serum. During the 6 days of incubation period, monocytes differentiate into macrophages. Cells were further subjected to a second stimulation with LPS (10 ng/ml) or Pam3CSK4 (10 μg/ml) for an additional 24 h. TNF-α (A) and IL-6 (B) were assessed in the cells culture supernatants. Data are presented as mean ± SEM (n = 3).

Supplementary Fig. 3: LDH cytotoxicity assay. Adherent monocytes were cocultured for 24 h with either culture medium or with p38-, ERK-, JNK-, Syk- and epigenetic inhibitors (MTA, EGCG, pargyline and ITF2357/9). Thereafter supernatants, as well as cells lysates, were collected and subjected to a cytotoxicity assay, conform to manufacturer's instructions. MAPK-, Syk- as well as epigenetic inhibitors were proven to be non-toxic to the cells. Data are presented as mean ± SEM (n = 2).
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*

Lisa Rizzetto, Daniela C. Ifrim, Noemi Tocci, Shih-Chin Cheng, Jessica Quintin, Carlotta De Filippo, Manuel A. S. Santos, Mihai G. Netea, Duccio Cavalieri

Submitted for Publication.

* Equal contribution
Abstract

The immune system is essential to maintain the mutualistic homeostatic interaction between the host and its micro- and mycobiota. Living as a commensal on human skin and being a passenger in the digestive tract, *Saccharomyces cerevisiae* could potentially modulate the host immunity and significantly shape the immune response. We observed that diverse *S. cerevisiae* strains induce trained immunity in monocytes through a strain-dependent manner leading to enhanced cytokine production upon secondary stimulation with TLR ligands and bacterial commensals. These features are reflected by the differences in the pro-inflammatory properties dependent on the origin of the strains, which may be potentially related to the different adaptation to the environment from which they were isolated. We also established that in addition to β-glucan, *S. cerevisiae* chitin drives induction of trained immunity at several levels: increased cytokine production, but also direct antibacterial activity. Differential chitin content accounts for the differences in training properties observed among strains, with the clinical strains being the most effective. This study reveals how commensal and passenger microorganisms could be important in promoting health and preventing mucosal diseases by modulating host defense and regulating the microbiota. Dietary supplementation of specific probiotic microorganisms may be a viable strategy to train a healthy immune system.

Keywords: trained immunity, *S. cerevisiae*, strain diversity, inflammation, TLR ligands
Fungal chitin induces trained immunity in human monocytes during cross-talk with Saccharomyces cerevisiae

Introduction

In several higher organisms, including plants, a central mechanism for efficient protection from infection is defense priming, the preconditioning of immunity induced by microbial colonization after germination or birth (1,2), supporting the relevance of innate immune memory (3). This property of host defense is also referred as ‘trained immunity’, defined as an increased responsiveness of the innate immune system to secondary stimuli after an initial encounter with training microorganisms (4,5).

Similarly to root symbioses, human microbiota functionally contributes to the nutrition and protection of the host, significantly shaping mammalian immunity both at the mucosal surface of the host and systemically (6–9). Recent studies have shown that fungal microbiota, or mycobiota, is an important player in the host-microbes interaction, and that its effects are integrated with those of the dominant bacterial component (10–12). The complex interaction between microbiota, mycobiota and the immune system is critical for establishing a balance between immunity and tissue health. A recent publication (9) added another fundamental contribution to the role of skin microbiota in activating and educating host immunity, shedding new light on the interplay between immune systems and microbiota in shaping each other. It has been earlier demonstrated that C. albicans triggers differential immune signaling upon interaction with either inflammatory or tolerogenic dendritic cells (6) and, similarly to what occurred for Aspergillus fumigatus (8) and harmless fungi such as Saccharomyces cerevisiae (13), the type and intensity of immune reactivity is strain dependent (7). Moreover, fungi modulate responses towards other microorganisms such as intestinal and skin bacteria (14,15).

Candida spp. are not the only fungal colonizer of humans. Saccharomyces cerevisiae has been earlier demonstrated to be a constant colonizer of skin (16) and human intestinal tract (17), and a recent study has shown that it may even surpass Candida species in some human populations (18). Even if it is a harmless fungus, S. cerevisiae shares with Candida many of the same cell wall structures, often leading to similar effects on host defense. In this work, we assessed the capacity of various S. cerevisiae strains to train human myeloid cells to react stronger towards other microorganisms such as bacteria or Candida. S. cerevisiae can efficiently induce trained immunity in human monocytes in a strain and strain origin-dependent manner, leading to enhanced cytokine production in vitro. This effect was only partially dependent on β-glucan and mannan, and was mainly driven by chitin, explaining the major training properties observed upon challenge with strains presenting a chitin-rich cell wall, i.e. Crohn’s disease (CD) isolates. The differences in the stimulatory capacities of Saccharomyces depending on the strain and the context from which they were isolated underlines the need to understand the interaction between mycobiota and the host, in order to identify the boundaries between friend and foe, and between health and disease.
Methods

Blood samples. Human peripheral blood mononuclear cells (PBMCs) were isolated fromuffy coats provided by the Sanquin Bloodbank in Nijmegen, The Netherlands or at Careggi Hospital in Florence, after obtaining informed consent (ethical approval document n. 87/10). The study was designed in conformity with the international recommendation (Dir. EU 2001/20/EC) and its Italian counterpart (DM 15 Luglio 1997; D.Lvo 211/2003; D.L.vo 200/2007) for clinical trial and following the Declaration of Helsinki, to assure protection and care of subjects involved. Dectin-1-deficient cells were isolated from patients homozygous for the stop mutation Y238X (39).

Reagents. Ficoll-Paque (GE Healthcare) was used to isolate PBMCs by differential centrifugation. RPMI 1640 Dutch Modification (RPMI) (Sigma-Aldrich), supplemented with 1% gentamicin, 1% L-glutamine, and 1% pyruvate (Life Technologies, Nieuwekerk, The Netherlands) was used as culture medium. Monocytes were isolated using magnetic CD14 positive selection (Miltenyi Biotec). In a challenge experiment, IL-4 and GM-CSF (both from Gentaur, Belgium) were added to induce monocyte differentiation into dendritic cells. C. albicans and S. cerevisiae β-glucan and mannan were isolated and purified as described previously (40,41). Pam3Cys and LPS (Escherichia coli serotype 055:B5) were purchased from Sigma-Aldrich, with an additional purification step for LPS (42). Only preparation with > 98% purity were used in the experiments.

Microorganism. S. cerevisiae strains, previously isolated from different environmental sources, were cultured in complete medium (YPD, 2% yeast extract, 1% peptone, 2% glucose) for 18 h, then collected. C. albicans ATCC MYA-3573 (UC 820), was grown overnight to yeast cells in Sabouraud broth at 37°C. Staphylococcus aureus and Escherichia coli were grown overnight in Tryptic Soy Broth (TSB, Difco) at 37°C. Cells were harvested by centrifugation, washed twice with PBS, and resuspended in culture medium (RPMI; ICN Biomedicals, Aurora, OH). For trained immunity assays, S. cerevisiae yeasts and Candida were heat-killed for 30 min at 95°C and resuspended in culture medium to a cell inoculum size of 10⁶ cells/ml.

Cell wall characterization and chitin purification. Cell wall characterization has been performed as described by Ferreira et al. (2006) (43) with modifications. Cells were cultured in YPD liquid medium at 28°C and collected at late exponential phase. The cells were washed once with distilled water and three times with 0.1 M Tris-HCl buffer (pH 8.5) containing 1mM phenyl sulphonyl fluoride and disrupted in the same buffer with 0.5 mm-diameter glass beads by serial cycles of vortexing (30s at maximum speed) and ice cooling (20s). Cell walls were harvested by centrifugation for 30 minute at 4200 g and dried in a speedvac concentrator. To extract chitin, cell wall dried biomass was subjected to alkaline extraction, followed by acid extraction according to the protocol described by Ferreira et al. (2006) (43). Chitin was finally obtained by dialysis of the extract and lyophilized to determine the dry weight. Only preparation with > 98% purity were used in the experiments.

Cell preparation. The PBMC fraction was obtained by density centrifugation of diluted blood (1:1 ratio between blood and pyrogen-free saline) over Ficoll-Paque. PBMCs were washed twice
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*.

Monocytes were isolated from low density PBMCs by magnetic enrichment with anti-CD14 beads (Miltenyi Biotec). In a challenge experiment, monocytes were cultured in the presence of GM-CSF (800 U/ml) and recombinant IL-4 (1000 U/ml) for 6 days to allow DC differentiation (44). DC activation was induced by *S. cerevisiae* strains. A serial dilution of live yeast preparations was added to the moDCs at different stimuli-to-DC ratios. For confirmation experiments, PBMCs from the same healthy subjects were used; stimulation was performed as in DC challenge experiments. Depending on the experiment, supernatants were collected after 24 h or 5 d, and stored at -20°C until the assays.

In-vitro induction of trained immunity. Monocytes (10⁶ cells/ml) were added in a volume of 100 µl/well in flat-bottom 96-well plates (Greiner, Nurnberg, Germany). Cells were incubated with one of the first stimuli for 24 h, rested for 5 days and re-incubated for another 24 h with one of the second stimuli. As priming stimuli we used 1 X 10⁴ cells/ml of the different *S. cerevisiae* strains, *S. cerevisiae*- or *Candida*-derived β-glucan (10 µg/ml), *S. cerevisiae*-derived mannan (10 µg/ml) or chitin (10 µg/ml). After 24 h, cells were washed to remove all stimuli, and they were allowed to rest for 5 days before being exposed to a second stimulation with various stimuli. The second stimuli were one of the following: LPS (10 ng/ml), Pam₃Cys₃ (10 µg/ml), *Staphylococcus aureus* (1 X 10⁷/ml), or heat killed *C. albicans* (1 X 10⁶/ml) in a final total volume of 200 µl. To investigate whether priming could be blocked, monocytes were incubated for 1 h with dectin-1/CLEC7A Ab (dectin-1 antagonist; 10 µg/ml) or with the isotype control (10 µg/ml), before priming. After this, cells were treated with either RPMI or *S. cerevisiae* derived β-glucan (10 µg/ml) and incubated for 24 h, followed by a second stimulation with LPS (10 ng/ml) for an additional 24 h. Cytokines were measured after the second stimulation.

Cytokine assay. TNF-α and IL-6 levels on monocytes were determined by enzyme-linked immunosorbent assays on 24 h monocyte cell culture supernatants according to manufacturer’s instructions (R&D Systems). For the other experiments, at the indicated times, supernatants from human cell cultures were collected and cytokine detection was performed using the Milliplex® MAP human cytokine/chemokine kit (Millipore), according to the manufacturer’s instructions.

Microorganism survival following uptake by primed monocytes. Monocytes (10⁶ cells/ml) were added in a volume of 100 µl/well in flat-bottom 96-well plates (Greiner, Nurnberg, Germany). Cells were incubated with one of the first stimuli for 24 h, rested for 5 days and re-incubated for another 24 h with one of the second stimuli. As a priming stimulus, we used 1 X 10⁴ cells/ml of YP4 *S. cerevisiae* strain, *S. cerevisiae* derived β-glucan (10 µg/ml), *S. cerevisiae* derived mannan (10 µg/ml) or YP4 derived chitin (10 µg/ml). After 24 h, cells were washed to remove all stimuli, and they were allowed to rest for 5 days before being exposed to a second stimulation with various stimuli. The second stimuli were *E. coli* (1 X 10⁷/ml), *S. aureus* (1 X 10⁷/ml), or *C. albicans* (1 X 10⁶/ml) in a final total volume of 200 µl. After 6 h of stimulation, monocytes were collected, washed three times with PBS, treated with zymolyase (2 mg/ml) or lysozyme (10 mg/ml), and washed twice; cells lysated with a hypotonic solution (0.05% KCl) to release intracellular microorganisms were plated on solid complete medium (YPD for yeast cells, TSB for bacterial cells). Survival of microorganisms after uptake are
reported as the percentage of CFUs after 1 day (bacteria) or 3 days (fungus) relative to the total number of cells growing in the absence of monocytes exposure. Control experiments were carried out to verify that the hypotonic solution was not toxic to bacteria and yeasts.

In vitro phagocytosis assay. Primed monocytes (as above) will be seeded into poly-L-lysine slides and incubated for 30 min at 37°C and 5% CO₂ and then infected with *E. coli* or *C. albicans*. For *C. albicans* internalization evaluation, after PBS washing and medium replacement, cells were infected with Oregon green 488 (Molecular Probes, Life Technologies) prelabelled *Candida* cells (1X10⁶ cells/mL in complete RPMI) and further incubated for 1.5 h. Thereafter, calcofluor white (Sigma-Aldrich) was added (20 µL per well) 15 min before each end point. Cells were washed with PBS to remove nonadherent yeasts and fixed with cold ethanol for 30 min at -20°C and labeled in red with PHK26 (Sigma-Aldrich). Calcofluor white staining of fungi allows one to discriminate between adherent (Calcofluor white accessible) and phagocytized (i.e. internalized, Calcofluor white) yeast cells. When visualized by epifluorescence microscopy, all the yeast cells appeared as green (independently of the localization), while the not-internalized yeast cells were blue stained. Finally, merging of Oregon green 488 and Calcofluor white images allowed one to definitively exclude the extracellular yeast cells. By contrast, *E. coli* were labeled using Oregon green (Molecular Probes, Life Technologies) only without distinguishing between internalized or not internalized bacteria. Cells where stained NucBlue Live Cell Stain Ready Probes reagent (Molecular Probes). A minimum of 200 monocytes per group were scored and any cell containing one or more particles was counted as phagocytic.

Phagolysosome acidification assay. To visualize the acid yeast-containing vesicles, chamber slides were prepared as in Phagocytosis assay; then, primed monocytes were exposed to the acidotropic dye LysoTracker DND-99 (75 nM) and infected as described above. Afterwards the samples were fixed with cold ethanol and immediately examined by fluorescence microscopy. Acidification control groups consisted of uninfected cells. A minimum of 200 yeast/bacteria-containing phagosomes was scored; the percent of acid phagolysosomes was evaluated as the ratio between the number of LysoTracker-labelled phagosomes and the total number of yeast-containing phagosomes.

Statistical analysis. The paired Wilcoxon test was used to compare differences between the effect of a particular stimulus and the RPMI medium control. The level of significance was set at p<0.05.

Results

S. cerevisiae isolates train differently the cytokine responses towards TLR ligands and fungi

As *C. albicans* enhanced the cytokines response towards TLR ligands and colonizing bacteria (14), we tested whether *S. cerevisiae* was also able to induce trained immunity in monocytes. To investigate this effect, monocytes from healthy donors were first exposed to low doses of *S.
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*.

* cerevisiae (Fig. 1A) and *C. albicans* for 24 hr (Fig. 1B). After that, the initial stimulus was removed and the cells were washed. After an additional 5-days resting period, cells were restimulated with pure components of the bacterial cell wall or with *C. albicans* (Figs. 1A and B). Exposure of monocytes to a laboratory strain of *S. cerevisiae* yeast potentiated the production of TNF-α induced by a second bacterial stimulus such as LPS, the lipopeptide analog Pam3Cys10, or by the fungal pathogen *C. albicans* (Fig. 1A) to the same extent as *C. albicans* (Fig. 1B).

Considering the variability in stimulating pro- and anti-inflammatory cytokines of fungal strains (8,13), we probed the ability of a set of *S. cerevisiae* strains to induce trained immunity towards different microbial ligands such as *E. coli* LPS (Fig. 2A) and Pam3Cys10 (Fig. 2B). This set comprises: 2 laboratory strains (SK1 (19) and BY4741 (20) used as reference strains in previous studies (21)), 9 clinical isolates (13) - 8 from CD patients, one from healthy subject -, 4 wild strains from Barriada wine region of Portugal, and 4 grape isolates from Tuscan vineyards (22). The results showed that different *S. cerevisiae* strains differentially train TNF-α production in response to both TLR ligands, in a similar or even higher extent than *C. albicans* (14). In contrast to the clinical and Tuscan grape isolates, laboratory and Barriada wine (wild) strains showed little

Figure 1. *In vitro* training of monocytes with *S. cerevisiae*. Monocytes were trained with *S. cerevisiae* (A) or *C. albicans* (B) (priming stimulus) and after 24 h washed to remove the stimulus. TNF-α and IL-6 were measured in supernatants after bacterial cell wall pure components or *C. albicans* second stimulation (n = 8; four independent experiments). Bars indicate mean + SD (n = 10, four independent experiments). *p<0.05 trained cells versus RPMI–stimulated, Wilcoxon nonparametric test for two related samples. P3C, Pam3Cys10.
ability to train the monocytes response to PamCys4 (Figs. 2A and B). All strains were able to modulate TNF-α and IL-6 production upon challenge with LPS, albeit to different extents. The clinical YP4 isolate showed the greatest potential to train cytokine production (Figs. 2A and B).

Since one of human commensal microorganisms is \textit{C. albicans} itself, we tested whether \textit{S. cerevisiae} isolates from different environmental niches train cytokine production in response to \textit{C. albicans} stimulation. As shown in Fig. 2C, while the healthy human isolate Y13EU was not able to modulate TNF-α and IL-6 production, clinical and wild isolates enhance monocyte response to \textit{C. albicans} with different extents.

β-glucans from \textit{S. cerevisiae} mediate training partially through Dectin-1

As in the case of \textit{C. albicans}, the outer layer of the cell wall of \textit{S. cerevisiae} is enriched with mannoproteins, whereas the inner layer is composed of chitin and β-glucan. Both mannosylated proteins, phospholipomannan and β-glucan are known inducers of proinflammatory cytokines through C-type lectin receptors (23). Therefore, we assessed whether purified β-glucan from \textit{S. cerevisiae} (Sc) was able to exert a training effect similar to that obtained with \textit{S. cerevisiae} whole organism or \textit{C. albicans} (Ca)-derived β-glucan (14). \textit{S. cerevisiae}-derived β-glucan trained the monocytes and led to an increased amount of TNF-α induced by the secondary stimuli (Fig. 3A). When we blocked the β-glucan receptor dectin-1 with an anti–dectin-1 antibody, β-glucan training effect was considerably reduced (~50%), but not abolished, whereas the isotype control antibody had no effect (Fig. 3B). To note that, the incomplete suppression of the training activity could be due to the little traces of mannann and chitin in the β-glucan preparation. We completed the assessment of the role of dectin-1 by using primary monocytes isolated from four dectin-1 deficient volunteers. In dectin-1-deficient cells β-glucan training was partially abrogated, validating the role of the dectin-1 receptor in mediating the β-glucan–dependent trained immunity (Fig. 3C).

However, although these results show that β-glucan exerts a strong training effect, this mechanism does not account alone for the effect induced by the whole microorganism as revealed by using dectin-1 deficient cells (Fig.4A). Thus, we assessed the priming potential of \textit{S. cerevisiae}-derived mannan alone and in combination with β-glucan (Fig. 4B). As shown, mannan alone could induce an increase of TNF-α production in response to a secondary infection, but the effect is merely additive to that of β-glucan, revealing that mannan is able to potentiate the training effect shown by β-glucan. This seems to be in contrast to what is observed in \textit{C. albicans}, but in line with the differential branching of \textit{S. cerevisiae} and \textit{Candida} fungal mannan, which determines different immune reactivity (21, 24).

Fungal chitin drives/potentiates the immune training and potentiate intracellular killing of fungi and bacteria

Differential mannan branching only partially clarifies the different training properties shown by the diverse \textit{S. cerevisiae} isolates. The isolates from patients we tested showing the most significant ability to modulate cytokine production to a secondary bacterial stimulation (Figs.
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*

Figure 2. *S. cerevisiae* strains enhance differently the cytokine responses of cells restimulated with TLR ligands. A. *In vitro* training of monocytes with different strains of *S. cerevisiae* towards LPS (A), Pam3Cys4 (B) or C. *albicans* (C) stimulation. White bars: laboratory strains; dark grey: clinical strains; light grey: Tuscan wine isolates; dashed: Barriada wild isolates. Bars indicate mean ± SD (N=6). *p*<0.05 trained cells versus RPMI-stimulated, Wilcoxon nonparametric test for two related samples. P3C, Pam3Cys4.
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*.

Figure 3. β-glucans are essential, but not sufficient, in enhancing cytokine production mediated by *S. cerevisiae*.

A. Monocytes were incubated with RPMI or *S. cerevisiae* β-glucan (10 µg/ml), period after which the cells were washed to remove the stimulus. After 5 days of resting, monocytes were reincubated with pure ligands or heat-killed bacteria.

B. Monocytes were incubated with RPMI, CLEC7A Ab, and the isotype control (10 µg/ml). After 1 hr of incubation, cells were treated either with RPMI or β-glucan (10 µg/ml) and, after 5 days of resting, restimulated with LPS or Pam3Cys4.

C. Monocytes from 4 healthy and 4 dectin-1–deficient subjects were incubated with RPMI and β-glucan (10 µg/ml) for 24 h, followed by a second stimulation with TLR ligands for an additional 24 h after 5 days of resting. For all the experiments, TNF-α and IL-6 were measured in supernatants after the second stimulation. Data are presented as fold increase with respect to not-trained (RPMI-stimulated) cells. For (A), n = 10; for (B), (C), n = 4. Bars indicate mean ± SD. *p < 0.05, **p < 0.01 versus RPMI–stimulated cells, Wilcoxon nonparametric test for two related samples. Pam3Cys4.

2C and 3A) were isolated from pediatric CD patients (13). Next, we investigated whether the strains isolated from different environments induce different inflammatory properties, which might explain the differential training. Therefore, in parallel to the current investigation, we screened the immune reactivity of monocyte-derived dendritic cells to an enlarged set of *S. cerevisiae* strains. This investigation showed a wide diversity in the immune-modulatory profiles among the different strains isolated from diverse ecological niches, quantified directly by cytokine production capacity comparison (S1 Fig.). In general, the different isolates showed...
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*

Figure 4. Training with *S. cerevisiae* strains isolated from Crohn's disease patients is partially dectin-1-dependent, and mannans are important to potentiate the cytokine modulation. A. Healthy and dectin-1–deficient monocytes were incubated with RPMI and clinical *S. cerevisiae* isolates for 24 h, after which the cells were washed to remove the stimulus. This was followed by a second stimulation with TLR ligands for an additional 24 h after 5 days of resting. TNF-α and IL-6 were measured in supernatants. B. Monocytes were exposed to RPMI, β-glucan (10 µg/ml), *S. cerevisiae* derived mannan (10 µg/ml) or a combination of both for 24 h, after which the cells were washed to remove the stimulus. After 5 days of resting, monocytes were restimulated with pure ligands. TNF-α was measured in supernatants. (A, B), Bars indicate mean ± SD (n=4). *p <0.05, LPS trained dectin1−/− cells versus LPS trained control cells. $p <0.05, P3C trained dectin1−/− cells versus P3C trained control cells. Wilcoxon nonparametric test for two related samples. LPS, lipopolysaccharide; P3C, Pam3Cys.

An immune-based diversity that seemed to correlate with their origin, as shown by clustering of the 6 cytokine profiles (S2A Fig.) and principal component analysis (S2B Fig.).

The interesting cytokines profile observed was confirmed using PBMCs for stimulation with live high- and low-inflammatory strains (S3 Fig.). The different isolates showed
Fungal chitin induces trained immunity in human monocytes during cross-talk with Saccharomyces cerevisiae

diverse ability to promote IL-17 and IFN-γ production, and their inflammatory role was counterbalanced by different extents by IL-10 induction. We speculate that differences in the cell wall composition of the isolates tested influenced their ability to induce and train cytokine production, and could be the result of the different environmental selective forces. Thus, we investigated the cell wall composition of 4 strains with different ecological niches: the laboratory SK1 strain, the environmental BB2240 strain, the CD’s YP4 isolate and the healthy isolated Y13EU. While β-glucan content did not differ among the isolates, chitin was almost 10-fold more prevalent in the CD isolate with respect to the laboratory and the environmental strains (Fig. 5A). We isolated chitin from those strains and assessed the immune training properties of this fungal cell wall component. Chitin was able to induce a potent immune response in terms of IL-6 and TNF-α induction (Fig. 5B).

We thereafter compared the ability of whole S. cerevisiae cell and its cell wall component to induce trained immunity for killing both fungi and bacteria. In this set of experiments, monocytes trained as previously described were exposed for 6 h to live fungus C. albicans, to the Gram-positive bacteria S. aureus or to the Gram-negative bacteria E. coli.

Trained monocytes showed enhanced killing ability with respect to non-trained monocytes (Fig. 5C). Particularly, chitin-trained monocytes showed the most potent antibacterial killing. This result demonstrates an enhancement of direct antibacterial killing capacity of monocytes after induction of trained immunity by S. cerevisiae, and this effect is driven by chitin.

As the internalization ability of chitin-trained immune cells did not differ from one of not-trained cells (Figs. 6A-B), in order to investigate the events following internalization by monocytes, we evaluated the fate of the yeast-containing phagosomes in terms of acidification. As shown in Figs. 6C-D, the percent of E. coli as well as C. albicans containing-acid phagolysosomes was increased in chitin-trained cells with respect to not-trained monocytes, thus accounting for the more efficient ability to kill the pathogens.

Discussion

Although an anti-inflammatory potential of microbial/yeast strains was occasionally suggested in vitro (25, 26) or in experimental models (25, 26), few reliable observations were reported in terms of strain variability and of specific mechanisms involved (27, 28). To our knowledge, no studies addressed S. cerevisiae immune reactivity at a strain level and its ability to modulate the cytokines response of human primary cells to bacteria and fungi. The different S. cerevisiae isolates tested induce trained immunity in monocytes, resulting in an enhanced pro-inflammatory cytokine production when they are exposed to a secondary bacterial or fungal stimulus.

The induction of trained immunity is dependent on the carbohydrate components of the cell wall of S. cerevisiae. This is in agreement with previous studies showing that β-glucan is an immunostimulant and is responsible for the training properties of C. albicans (14, 29). One of the main receptors mediating the priming effects of S. cerevisiae β-glucan is dectin-1, as shown by inhibitory experiments as well as the use of cells genetically deficient
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*

Fig. 5. Chitin drives training immune properties of *S. cerevisiae* and enhanced intracellular killing of primed monocytes. A. Cell wall composition characterization of the laboratory SK1 strain, the environmental BB1533 strain, the CD isolate YP4 and the healthy isolated Y13EU strain. Sugars composition is expressed in percentage of the total cell wall. Numbers on the top refer to the percentage of chitin content. B. Monocytes were exposed to RPMI, *S. cerevisiae* whole cell, *S. cerevisiae* derived chitin (10 µg/ml), β-glucan (10 µg/ml), mannan (10 µg/ml) or a combination of mannan and β-glucan for 24 h, after which the cells were washed to remove the stimulus. After 5 days of resting, monocytes were restimulated with pure ligands or *C. albicans*. TNF-α and IL-6 were measured in supernatants. Data are presented as fold increase with respect to not-trained (RPMI-stimulated) cells. *p<0.05, **p<0.01 trained cells versus RPMI–stimulated cells, Wilcoxon nonparametric test for two related samples. For (A), n = 3; for (B), (C), n = 4. Bars indicate mean ± SD. LPS, lipopolysaccharide; P3C, Pam3Cys.
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*

Fig. 6. Chitin does not change internalization properties but promotes killing by increasing the acidification of microbial containing phagolysosomes. Monocytes were exposed to RPMI or *S. cerevisiae* derived chitin (10 µg/ml) for 24 h, after which the cells were washed to remove the stimulus. After 5 days of resting, monocytes were restimulated for 1.5 h to green-labeled *E. coli* (A) or *C. albicans* (B). After appropriate staining, cells were visualized by fluorescence microscopy. Representative images of 3 independent experiments. C. Oregon green 488 prelabelled microorganisms were exposed to Lyso-Traker labeled monocytes (E : T=1 : 5); samples were then fixed and visualized by fluorescence microscopy. The results, expressed as percent of acid phagolysosomes, were calculated by evaluating the number of red-stained vacuoles among 200 yeast-containing vacuoles. D. Representative images of *C. albicans* containing- acid phagolysosomes. Bars indicate mean + SD (N=3). *p<0.05 trained cells versus RPMI-stimulated, Wilcoxon nonparametric test for two related samples.
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*

for this receptor. However, the incomplete abolishment of training in monocytes genetically deficient for a functional dectin-1 receptor suggests that part of the trained immunity signal is mediated by other cell wall components.

Cell wall characterization in terms of β-glucan and chitin content indicated how isolates from different ecological niches showed a remarkable different cell wall composition, with the clinical isolates being highly enriched in chitin content. Under normal growth condition, chitin is a minor component of *C. albicans* cell wall, comprising only the 2-3% of its dry weight (30); however, chitin content of a *S. cerevisiae* isolate from a patient with Crohn's disease represented 20% of the dry weight of the yeast. Our results show that strains specifically isolated from CD patients (13) are able to strongly modulate cytokines response to bacterial antigens and fungi and this effect is largely dependent on chitin. Because training is induced towards purified TLR ligands, which are important components of bacteria, we tend to conclude that the priming induced by the diverse *S. cerevisiae* strains acts on TLR-dependent–signaling pathways, as shown by the reliable effect on Pam₃Cys₄ stimulation.

Even though chitin is an essential structural polysaccharide of fungal pathogens and parasites, some controversy persists on its role in human immune response (31–34). Earlier studies have shown that *C. albicans*-derived chitin reduces direct stimulation of in vivo LPS-induced inflammation and contributes to dampening the immune response by NOD2 and TLR9-mediated secretion of IL-10 (34). In a previous finding we showed how *S. cerevisiae* spores, which wall is largely composed by chitin, elicit inflammatory IL-17 responses, while cells of the same strain induce tolerance (21). Thus, by increasing the chitin content in their cell wall, fungi may influence the immune system in two ways: 1. favoring their persistence by influencing immune homeostasis and 2. training the innate host response against bacteria.

The results presented here give a novel perspective on the role of non-pathogenic microorganisms for immune homeostasis. The chitin-induced training suggests how chitin levels could importantly help breaking potential dysbiosis, priming organismal protection against bacterial pathogens. This training effect does not require colonization but can be elicited simply via exposure to chitin rich yeast cells or spores. Thus yeasts would play a fundamental role in shaping gut microbiota simply when passengers, rather than necessarily persisting as colonizers. We can speculate that the recent elimination of *S. cerevisiae*, as well as of other immune regulators, from fermented foods, and overall the reduction of early exposure to beneficial microbiomes (or mycobiomes?), is not only causing a reduction in anti-inflammatory signals, but is more importantly causing a decreased ability of “training” our immune system to handle pathogenic microorganisms, resulting in potentially uncontrolled immune reactions. The finding that the best “trainers” are strains isolated from Crohn's patients leads us to hypothesize an evolutionary advantage of chitin production in surviving and colonizing the human gut. It remains unclear if, in addition to these potential beneficial effects, induction of trained immunity may also have unintended deleterious effects, since fungi have been reported to increase the severity of intestinal inflammation in murine models of colitis (35,36).

Several directions of research are opened by this study: on the one hand future investigations should assess the molecular pathways that are involved in the induction
of trained immunity by \textit{S. cerevisiae} and chitin, as recently shown to involve epigenetic (37) and metabolic (38) reprogramming for β-glucan, and on the other hand translational studies should assess the clinical potential of these effects. Further studies on the ability to induce trained immunity of yeasts in Crohn’s mouse model will reveal whether trained immunity responses to fungi are potentially associated with onset of remission of Crohn’s disease. Discovering the factors that drive microbial colonization will help us develop new antimicrobial therapeutics based on their potential to induce trained immunity. Selected strains of the ‘Generally Recognized as Safe’ \textit{S. cerevisiae} described in this study could be specially suited for this task and for developing novel therapeutic approaches to IBD, or in general, to disease associated to inflammatory responses towards an unbalanced microbiota.

Acknowledgements

This work was supported from the European Union’s Seventh Framework Programme [FP7/2007-2013] under grant agreement n° HEALTH-2010-242220 (“SYBARIS”) and from the Accordo di Programma Integrato “MetaFoodLabs” (Provincia Autonoma di Trento) (to D.C). J.Q., S.C. Cheng and M.G.N. were supported from a Vici grant of the Netherlands Organization for Scientific Research, and from an ERC Consolidator Grant (nr. 310372) (both to M.G.N.). M.G.N. and D.C.I. were supported from the European Union’s Seventh Framework Programme [FP7/2007-2013] under grant agreement n° HEALTH-2010-260338 (“ALLFUN”) (to M.G.N.).

L.R, D.C and M.G.N conceived the idea; L.R., D.C.I., J.Q., S.C. Cheng performed the experiments; C.D.F and M.S. provided the yeast strains; all the authors participated in results discussion; L.R. M.G.N and D.C wrote the manuscript.

Conflict of Interest Disclosure:

The authors declare no commercial or financial conflict of interest.
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*.

References

23. Mahla RS, Reddy MC, Prasad DVR, Kumar H. Sweeten PAMPs: Role of Sugar Complexed PAMPs in Innate Immunity and Vaccine
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*

Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*

Supplementary Fig. 1: Immune reactivity to different *S. cerevisiae* isolates. The ability of DCs to discriminate among different strains of the *S. cerevisiae* species was tested as differential cytokine production. DCs were stimulated with yeast cells for 24 h and cultures supernatants used for TNF-α, IL-10, IL-1β, IL-6, IL-12p70 and IL-23 measurements. TNFα was fairly uniform for the different strains investigated, with the exception of two clinical isolates – one derived from a healthy subject (Y13EU), one from a patient (YA5) - which showed a markedly low induction of this cytokine. Clinical isolates from patients showed a lower induction of IL-12p70 with respect to the healthy human isolates. Despite differences in IL-12p70, the Tuscan grape isolates induced uniform levels of IL-10. Immune responses induced by wild Portuguese strains were more variable. Interestingly, the wild BB1533 strain induced a response similar to some clinical isolates. This strain also showed clear growth advantages on Cycloheximide, Paramomycin, Benomyl, 4-nitroquinoline oxide and vanadate in a phenomic screen and was genetically distinct from the other *S. cerevisiae* isolates (Santos M., unpublished observations). These results highlight the ability of *S. cerevisiae* to promote both, pro- or anti-inflammatory responses upon immune cell recognition. Bars indicate mean ± SD (n=6).

Supplementary Fig. 2: Immune reactivity to different *S. cerevisiae* isolates correlates with their origin. (A) Clustering of cytokine production induced by moDCs in response to different *S. cerevisiae* strains. Pearson correlation calculated using TMeV software. B. Principal components analysis (PCA) over cytokine response to different *S. cerevisiae* strains.
Fungal chitin induces trained immunity in human monocytes during cross-talk with *Saccharomyces cerevisiae*

Supplementary Fig. 3: Immune reactivity to different *S. cerevisiae* isolates. Healthy PBMCs were stimulated with various *S. cerevisiae* strains for 24 h or 5 days, and cytokine protein levels were measured in the supernatants. Bars indicate mean + SD (n = 8).
Defective trained immunity in patients with STAT1-dependent chronic mucocutaneous candidiasis

Daniela C. Ifrim, Jessica Quintin, Lisette Meerstein-Kessel, Theo S. Plantinga, Leo A.B. Joosten, Jos W.M. van der Meer, Frank L. van de Veerdenk, and Mihai G. Netea

Abstract

Patients with STAT1-dependent chronic mucocutaneous candidiasis (CMC) and patients with STAT3-dependent hyper IgE syndrome (HIES) display defects in Th17 cytokine production capacity. Despite this similar immune defect in Th17 function, they show important differences in the type of infections to which they are susceptible. Recently, our group reported differential regulation of STAT1 and STAT3 transcription factors during epigenetic reprogramming of trained immunity, an important host defense mechanism based on innate immune memory. We therefore hypothesized that STAT1 and STAT3 defects have different effects on trained immunity and this may partly explain the differences between CMC and HIES regarding the susceptibility to infections. Indeed, while trained immunity was normally induced in cells isolated from patients with HIES, the induction of innate training was defective in CMC patients. This defect was specific for training with Candida albicans, the main pathogen encountered in CMC, and it involved a type II interferon-dependent mechanism. These findings describe the role of STAT1 for the induction of trained immunity, and may contribute to the understanding of the differences in susceptibility to infection between CMC and HIES patients. This study could also provide directions for personalized immunotherapy in patients suffering from these immunodeficiencies.

Keywords: trained immunity, CMC, HIES
Defective trained immunity in patients with STAT1-dependent chronic mucocutaneous candidiasis

Introduction

Chronic Mucocutaneous Candidiasis (CMC) and hyper immunoglobulinemia E syndrome (HIES) are rare primary immunodeficiencies, both characterized by defective Th17 cytokine production; this immunological defect is mainly caused by STAT1 and STAT3 mutations, respectively (1-5). More rarely, mutations in IL-17F or IL-17RA have also been described in CMC patients (6), and DOCK8 mutations in autosomal recessive HIES (7). Despite the similarities between CMC and HIES concerning genetic and immunological defects, important phenotypic differences distinguish these clinical entities regarding susceptibility to infections. While CMC patients suffer mainly from Candida and dermatophyte infections, and only later during life from respiratory tract infections (8), HIES patients have an increased susceptibility to skin and respiratory tract infections, especially with Staphylococcus aureus and Streptococcus pneumoniae, while their fungal complications are less prominent (4, 9-12). The immunological substrate for these differences in susceptibility is not known. Other striking differences are the skeletal abnormalities in HIES and the autoimmune endocrinopathy in CMC (13, 14).

Recently, a novel host defense mechanism has been proposed, consisting of long-term enhanced biological activity of innate immune cells, which was termed trained immunity (15, 16). Trained immunity relies on epigenetic reprogramming of monocytes or macrophages, and represents a de-facto memory of the innate immune response (17, 18). The epigenetic and metabolic substrate of trained immunity has been lately described (19, 20). Interestingly, these studies uncovered differential regulation of STAT1 and STAT3 during induction of trained immunity and innate immune tolerance (19). This finding led us to hypothesize that the induction of trained immunity may be differentially regulated or defective in patients suffering from CMC and/or HIES.

In the present study we explored the trained immunity responses in peripheral blood mononuclear cells isolated from either CMC or HIES patients. We demonstrate that CMC patients display a defective induction of trained immunity by Candida albicans, while this was normal in HIES patients. This defect in CMC patients is specific for Candida and is mediated through an interferon-γ (IFN-γ)-dependent pathway. These findings might explain the incapacity of CMC patients to clear fungal infections, and may lead to further understanding the differences between these two complex immunodeficiency disorders.

Materials and Methods

Patients and healthy volunteers. Blood samples were collected from five autosomal dominant CMC patients harboring mutations in the STAT1 gene, three HIES patients with STAT3 mutations, and from age- and gender-matched healthy volunteers who did not suffer from infectious or inflammatory diseases. Blood was collected by venipuncture into 10 mL EDTA tubes (367525; BD). The study was approved by the Arnhem-Nijmegen Ethical Committee, and the participants gave written informed consent.
Defective trained immunity in patients with STAT1-dependent chronic mucocutaneous candidiasis

Reagents and microorganisms. Culture medium used was RPMI 1640 Dutch modifications (Sigma-Aldrich) supplemented with 1% gentamicin, 1% L-glutamine and 1% pyruvate (Life Technologies, Nieuwekerk, Netherlands). Particulate *C. albicans* β-1,3-glucan was isolated and purified as previously described (21). *C. albicans* ATCC MYA-3573 (UC 820) (22) was grown overnight in Sabouraud broth at 29°C; cells were harvested by centrifugation, washed twice, and resuspended in PBS. *Candida* conidia were heat killed for 30 min at 95 °C. Other reagents were obtained as follows: LPS (*E. coli* serotype 055:B5, Sigma-Aldrich) with an additional purification step (23), CD56 MicroBeads were purchased from Miltenyi Biotec. Ustekinumab (CNTO 1275) was purchased from Janssen Biotech, Inc. Nanogam (IgG, human normal immunoglobulin, IVIg) was purchased from Sanquin and IL-18BP was kindly provided by Prof. Charles Dinarello (University of Colorado).

Stimulation experiments. Peripheral blood mononuclear cells (PBMCs) were isolated as previously described (24). PBMCs were counted on a Beckman Coulter Z1 Particle Counter and adjusted to 5 x 10⁶ cells/ml. The trained immunity protocol was performed as described (17): in brief, 100 μl of the PBMC suspension were added per well in 96-well round-bottom plates, and pre-incubated for 24 h with either RPMI, β-glucan (1 μg/ml) or heat-killed *Candida* conidia 10⁴ CFU/ml, at 37 °C and 5% CO₂. After preincubation, cells were washed with warm PBS and let to rest in RPMI supplemented with 10% human pool serum for 5 days (period during which media was refreshed on day 3). Thereafter, on day 6, cells were subjected to a second stimulation of cytokine production with various stimuli (RPMI, LPS 10 ng/ml, or *Candida* 10⁵ CFU/ml) in a final volume of 200 μl. After another 24 hours, supernatants were collected and stored at -20 °C until assayed. To investigate whether IFN-γ inhibitors affect *Candida* training, PBMCs were preincubated for 1 h prior to the first stimulation with IgG control, Ustekinumab or IL-18BP in a final concentration of 10 μg/ml. Subsequently, RPMI or *Candida* were added to the cells with the inhibitors for an additional 24 h. Thereafter, PBMCs were washed with PBS and further incubated for 5 days in culture medium supplemented with 10% pooled human serum. On day 6, the trained macrophages were subjected to a second stimulation, for 24 h, with either LPS or *Candida*. The supernatants were collected and stored at -20°C until assessed.

To assess the role of NK cells in this process, NK cells were isolated via positive selection with CD56 isolation beads from Miltenyi Biotec conform manufacturer’s instructions. Thereafter, the CD56 positive cells were stimulated for 48 hours with heat-killed *Candida* (10⁶ CFU/ml) or heat-killed *S. aureus* (10⁷ CFU/ml). PBMCs depleted of NK cells were further included in training experiments, being trained with *Candida* (10⁴ CFU/ml) as described above and restimulated with either LPS (10 ng/ml) or *Candida* (10⁵ CFU/ml). After 24 hours of cell stimulation, supernatants were collected and stored at -20 °C until the amounts of TNF-α and IL-6 were assayed.

Enzyme-linked immunosorbent assay (ELISA). The concentrations of TNF-α (R&D Systems, Abingdon, UK), and IL-6 (Sanquin, Amsterdam, Netherlands) were measured 24 h after the second stimulation in cell culture supernatants with ELISA, according to
Defective trained immunity in patients with STAT1-dependent chronic mucocutaneous candidiasis

the manufacturer instructions. The concentration of IFN-γ (Sanquin, Amsterdam, Netherlands) was measured in cell culture supernatants at 48h after the stimulation.

Statistical analysis. Results from at least two sets of experiments with a minimum of four volunteers were pooled and analyzed in GraphPad. The data are presented as the means ± SEM and Wilcoxon signed-rank test was used to compare differences between groups. The level of significance was set at \(*p<0.05 \).

Results

PBMCs isolated from patients with CMC, but not HIES, display defective Candida-mediated trained immunity

As previously shown, PBMCs of patients who suffer from CMC due to STAT1 mutations stimulated for 24 h with heat-killed Candida were able to produce normal amounts of TNF-α and IL-6 compared to the healthy controls (2). We therefore tested whether trained immunity could be triggered by Candida. PBMCs from five CMC patients and nine healthy donors that were exposed to β-glucan, Candida and RPMI (negative control) for 24 h. On day 6 after recovery, cells were subjected to a second exposure to LPS, Candida or RPMI (negative control) for an additional 24 h. Interestingly, while PBMCs from CMC patients could be trained by β-glucan (Suppl. Fig. 1), they could not be trained by C. albicans (Fig. 1).

In contrast, PBMCs isolated from HIES patients showed a normal degree of training with both Candida (Fig. 2) and β-glucan (Suppl. Fig. 2), as shown by the enhanced production of TNF-α and IL-6 upon restimulation with either LPS or Candida.

Figure 1: Defective trained immunity in CMC patients. PBMCs from healthy volunteers and CMC patients were trained for 24 hours by incubation with culture medium or low concentrations of C. albicans (10⁴ CFU/ml). Thereafter the stimulus was removed and cells were let to rest in RPMI with 10% human serum. On day 6, a second stimulation with LPS (10 ng/ml) or C. albicans (10⁵ CFU/ml) was performed for an additional 24 h. TNF-α and IL-6 levels were measured in cell culture supernatants after the second stimulation. \(n = 9 \) healthy controls, \(n = 5 \) CMC patients. The data are presented as the means ± SEM. HC: healthy control; CMC: Chronic Mucocutaneous Candidiasis; LPS: Lipopolysaccharide; C.alb.: Candida albicans.
Defective trained immunity in patients with STAT1-dependent chronic mucocutaneous candidiasis

Defective IFN-γ production by NK cells from CMC patients

The defective trained immunity in PBMCs from CMC patients suggests that STAT1, but not STAT3, is crucial for *Candida*-induced trained immunity. IFN-γ is a proinflammatory cytokine produced by NK- and T-cells that induces activation of both innate and adaptive immunity against candidiasis. Because IFN-γ acts through an IFNGR- and STAT1-dependent signaling pathway, and has been previously reported to epigenetically reverse immune tolerance (25), we hypothesized that it may be involved in the defective trained immunity in CMC. Interestingly, while purified NK cells from HIES patients produced similar amounts of IFN-γ as the healthy controls (Fig. 3A), IFN-γ production was significantly diminished in CMC patients (Fig. 3A), suggesting defective NK cell function in patients suffering from CMC only. Moreover, when PBMCs from both groups of patients were depleted of NKs and subsequently trained with *Candida*, not only the cells from patients with CMC showed a defect in training, but NK-depleted cells from HIES were also not able to respond to a similar extent as PBMCs from healthy controls (Fig. 3B), demonstrating an essential role for the NK-cell-derived IFN-γ production for the induction of training in HIES patients. Of importance, depletion of NK cells in PBMCs from healthy volunteers did not abolish their capacity to mount a trained immunity response (Fig. 3C), suggesting that in healthy volunteers T-cell-derived IFN-γ is able to complement for the loss of NK-cell function. The defective Th1-cell function in CMC and HIES patients leads however to a strong dependency on NK-cell-derived IFN-γ.

![Figure 2: Normal trained immunity in HIES patients. PBMCs from healthy volunteers and HIES patients were trained for 24 hours with culture medium or to very low concentrations of *C. albicans* (10⁵ CFU/ml). At day 6, a second stimulation with LPS (10 ng/ml) or *C. albicans* (10⁵ CFU/ml) was performed for an additional 24 h. TNF-α and IL-6 levels were measured in cell culture supernatants after the second stimulation. *n* = 9 healthy controls and *n* = 3 HIES patients. The data are presented as the means ± SEM. HC: healthy control; HIES: Hyper-IgE syndrome; LPS: Lipopolysaccharide; *Calb.*: *Candida albicans.*]
Defective trained immunity in patients with STAT1-dependent chronic mucocutaneous candidiasis

Figure 3: NK-dependent production of IFN-γ mediated trained immunity. (A) Defective NK cells in CMC patients. NK cells from two CMC and two HIES patients were isolated with CD56 positive beads and thereafter stimulated with either C. albicans or S. aureus. IFN-γ was measured in cell culture supernatants after 48 hours of incubation. (B) Defective training of PBMCs depleted of NK cells in CMC and HIES patients. PBMCs from one CMC and two HIES patients were first depleted of NK cells and then trained for 24 hours with culture medium or to very low concentrations of C. albicans (10^4 CFU/ml). At day 6, a second stimulation with C. albicans (10^5 CFU/ml) was performed for an additional 24 h. TNF-α and IL-6 levels were measured in cell culture supernatants after the second stimulation. The data are presented as the means ± SEM. HC: healthy control; CMC: Chronic Mucocutaneous Candidiasis; HIES: Hyper-IgE syndrome; C.alb.: Candida albicans. (C) Training of PBMCs from healthy controls depleted of NK cells. PBMCs from healthy controls were trained for 24 hours with culture medium or with very low concentrations of C. albicans (10^4 CFU/ml), after which they were stimulated as described above. n = 6, 3 independent experiments. The data are presented as the means ± SEM. LPS: Lipopolysaccharide; C.alb.: Candida albicans.

Inhibiting IFN-γ production by blocking IL-12 and IL-23 with Ustekinumab, or by blocking IL-18 with IL-18BP, significantly decreased the training by Candida in PBMCs from healthy controls, both for TNF-α and IL-6 (Fig. 4). Of note, the training was not abolished by IgG control (Fig. 4). Moreover, the inhibition was significant only for Candida training and Candida restimulation, and not for LPS restimulation (data not shown).
Defective trained immunity in patients with STAT1-dependent chronic mucocutaneous candidiasis

Discussion

In this study we demonstrated that PBMCs from CMC patients failed to mount Candida-induced trained immunity. This process was caused by STAT1 defects and mediated through NK-cell-dependent production of IFN-γ.

The findings of the present study are relevant at several levels. Firstly, they point to an important immunological difference between patients with CMC and HIES. As both these immunodeficiencies are caused by genetic defects in STAT molecules, and have a similar immunological defect in proper activation of Th17 pathway (1, 3), it remained unexplained why their susceptibility to infection is different. The identification of specific defects in Candida-induced trained immunity in CMC, but not HIES patients, represents a first clue for the severe susceptibility to fungal infections in CMC, compared with the less prominent susceptibility to fungal infections in HIES. Secondly, the discovery of trained immunity defects in CMC patients, and not in HIES, provides important insights into understanding the communication between important players in host defense. Through in vitro experiments with NK cells and NK cell depletions, we concluded that T- and NK cell-derived IFN-γ plays a central role in potentiating trained immunity in a paracrine and possible endocrine manner. Although trained immunity has been initially described to be induced in monocytes, it should be expected that important interactions should take place with other cell types. The first of such interactions is described here, with NK-cell derived IFN-γ playing a central role in potentiating trained immunity in a paracrine and possible endocrine manner. We found that while the role of NK-cells is redundant in healthy individuals with normal T-cell function, the release of IFN-γ by NK cells rescues the training in HIES patients that have defective T cell IFN-γ production. In contrast, CMC patients that display both defective T- and NK-cell production of IFN-γ explain defective trained immunity. A role for NK-cells in the induction of trained immunity has been also recently described after BCG vaccination (26).
The role of IFN-γ and STAT1 for the induction of trained immunity is in line with previous observations. We have described differential regulation of STAT1 and STAT3 during induction of trained immunity and immune tolerance (19), data that provided the initial impulse to study these mechanisms in CMC and HIES. Furthermore, IFN-γ has been demonstrated to reverse the effects of LPS tolerance, the ‘opposite’ of trained immunity, specifically by activating Brg1, which in turn remodels chromatin facilitating the access of transcription factors (25). IFN-γ exerts its biological activity through activation of intracellular pathways containing Jak1, Jak2 and STAT1 (27). The role of STAT1 signaling for trained immunity may thus be explained through its role in the type II IFNGR pathway. In line with this, a recent study demonstrated that activation of STAT-1 by IFN-γ correlates with multiple histone modifications such as H3K4me2, H3K4me3, H3K9me3 and H3K36me3 (28).

It remains unclear why β-glucan is still able to train cells from CMC patients, as it has been proposed that the mechanism through which Candida trains immune cells is through β-glucan/Dectin-1 (17). However, recent data suggesting that other cell wall Candida structures, such as chitin, are also important for trained immunity induced by the whole fungus (Rizzetto L, unpublished data) may represent one possible explanation. One limitation of the study that should be acknowledged is the limited number of patients. Unfortunately, this was unavoidable due to the rare nature of both CMC and HIES diseases.

Although the in vitro model of training PBMCs is a simplified system, it does provide a direct assessment of the propensity of PBMCs from diverse individuals to be trained. However, this is the first study reporting defective trained immunity in CMC and normal training effects in HIES patients. Thereby this study enhances our understanding of specific immunological disturbances in each of these complex immunodeficiencies. Moreover, it can provide new openings in the design of novel immunotherapeutical strategies towards a personalized treatment of CMC and HIES.

Acknowledgements

This work was supported by European Union ALLFUN (FP7/2007 2013, HEALTH-2010-260338) (Fungi in the setting of inflammation, allergy and autoimmune diseases: Translating basic science into clinical practices “ALLFUN”). M.G.N and J.Q. were also supported by a Vici grant of the Netherlands Organization of Scientific Research (to M.G.N.). Fvd.V was supported by a Veni grant of the Netherlands Organization of Scientific Research. D.C.I., J.Q., T.S.P., J.W.M.v.d.M., F.L.v.d.V. and M.G.N. designed and analyzed the experiments. D.C.I. performed the experiments. J.Q. and T.S.P. contributed to some of the experiments. D.C.I., L.A.B.J, F.L.v.d.V., J.W.M.v.d.M., and M.G.N. wrote the manuscript, and all authors contributed to the manuscript preparation. M.G.N. supervised the project.
Defective trained immunity in patients with STAT1-dependent chronic mucocutaneous candidiasis

References

Defective trained immunity in patients with STAT1-dependent chronic mucocutaneous candidiasis

28 Buro LJ, Chipumuro E, Henriksen MA. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1)-activated transcription of the interferon regulatory factor 1 gene (IRF1). Epigenetics Chromatin. 2010;3(1):16.
Supplementary Figure 1: β-glucan-induced trained immunity in CMC patients. PBMCs from healthy volunteers and CMC patients were trained for 24 hours with culture medium or to very low concentrations of β-glucan (1µg/ml). At day 6, a second stimulation with LPS (10 ng/ml) was performed for an additional 24 h. TNF-α and IL-6 levels were measured in cell culture supernatants after the second stimulation. \(n = 9 \) healthy controls, and \(n = 5 \) CMC patients. The data are presented as the means ± SEM. HC: healthy control; CMC: Chronic Mucocutaneous Candidiasis; LPS: Lipopolysaccharide.

Supplementary Figure 2: β-glucan-induced trained immunity in HIES patients. PBMCs from healthy volunteers and HIES patients were trained for 24 hours with culture medium or to very low concentrations of β-glucan (1µg/ml). At day 6, a second stimulation with LPS (10 ng/ml) was performed for an additional 24 h. TNF-α and IL-6 levels were measured in cell culture supernatants after the second stimulation. \(n = 9 \) healthy controls, and \(n = 3 \) HIES patients. The data are presented as the means ± SEM. HC: healthy control; HIES: Hyper-IgE syndrome; LPS: Lipopolysaccharide.
Antifungal innate immunity: recognition and inflammatory networks

Katharina L. Becker, Daniela C. Ifrim, Jessica Quintin, Mihai G. Netea, and Frank L. van de Veerdonk

* Equal contribution

Abstract

A large variety of fungi are present in the environment, among which a proportion colonizes the human body, usually without causing any harm. However, depending on the host immune status, commensals can become opportunistic pathogens that induce diseases ranging from superficial non-harmful infection to life-threatening systemic disease. The interplay between the host and the fungal commensal flora is being orchestrated by an efficient recognition of the microorganisms, which in turn ensures a proper balance between tolerance of the normal fungal flora and induction of immune defence mechanisms when invasion occurs. Pattern recognition receptors (PRRs) play a significant role in maintaining this balance due to their capacity to sense fungi and induce host responses such as the induction of proinflammatory cytokines involved in the activation of innate and adaptive immune responses. In the present review we will discuss the most recent findings regarding the recognition of Candida albicans and Aspergillus fumigatus and the different types of immune cells that play a role in antifungal host defence.

Keywords: Candida, Aspergillus, pattern recognition receptors, inflammatory networks
Introduction
During the last few decades, the prevalence of fungal infection has considerably increased, especially due to the immunosuppressive treatments in cancer therapy, transplantation, and the HIV epidemics (1). Moreover, pathogenic fungi are able to rapidly adapt and become resistant to antifungal agents (2). The human commensal *Candida albicans* and the environmental fungus *Aspergillus fumigatus* are facultative pathogens, which in immunocompetent individuals do not cause infection. However, immunocompromised patients are prone to systemic fungal infections in which mortality rates can rise up to 60% (3). While the clinical presentation of candidiasis and aspergillosis differs, the mechanisms needed to control infection, including the pattern recognition and inflammatory networks, share many characteristics.

Pattern recognition receptors in fungal infection
Both *Candida* and *Aspergillus* undergo a continuous morphology switch between yeasts and hyphae, resulting in differential exposure of fungal pattern associated molecular patterns (PAMPs). *C. albicans* cell wall contains carbohydrate polymers and glycoproteins, comprising mainly chitin, β-1,3- and β-1,6-glucan and O- and N-linked mannan. The *Aspergillus* cell wall is predominantly composed of chitin, α-glucans, β-(1,3)-(1,4)-glucans, and galactomannans. One important feature of the *Aspergillus* conidial cell wall is the outer layer of hydrophobic rodlets. During swelling of the conidial cell wall and subsequent germination, the hydrophobic layer changes into a hydrophilic structure exposing polysaccharides. During the course of fungal infection and invasion, the first crucial step in mounting effective immune responses is the recognition of the invaders by the host. Various pattern recognition receptors (PRRs) on differential cell populations will recognize fungal invaders and trigger bona fide signalling pathways and cellular responses (Figure 1).

C-type lectin receptors
Mannans present in the outer layer of *Candida* and *Aspergillus* cell wall comes in direct contact with the host and can be recognized by the C-type lectin receptors (CLRs). Mannose receptor (MR), primarily present on macrophages, recognizes *Candida* N-mannan (4), and further induces IL-17 (5). MR has also been shown to recognize *Aspergillus* conidia and induces proinflammatory cytokines (5). Dectin-2, which is mainly expressed on dendritic cells (DCs), macrophages and neutrophils, recognizes *Candida* α-mannan and also triggers IL-17 (6). In addition to its role in modulating T helper (Th) responses, Dectin-2 has also been associated with ROS production, as well as phagocytosis and killing of *Candida glabrata* (7). Dectin-2 forms heterodimers with Dectin-3, leading to proinflammatory responses upon *C. albicans* infection (8). Dectin-2 is also important for the *Aspergillus*-specific immune response, being up-regulated upon recognition of the fungus. Its expression is restricted to the population of monocyte-derived macrophages (9).

Galectin-3 on macrophages recognizes β-mannans (10), and induces a protective antifungal response in murine macrophages through the secretion of TNF-α. Moreover,
mice deficient in Galectin-3 are more susceptible to disseminated candidiasis (11). Mincle is a CLR expressed on monocytes and neutrophils, yet with an unknown ligand. In murine models, Mincle was responsible for inducing protective responses against *C. albicans*, mainly by the initiation of TNF-α production; mice deficient in this receptor were drastically susceptible to systemic candidiasis (12). However, the role of Mincle in *Aspergillus* recognition is still unknown. DC-SIGN is present on dendritic cells as well as macrophages and recognizes *Candida* N-linked mannan (13), and can bind and internalize *Aspergillus* conidia (14). It induces a cascade of cytokines that activate Th cells in order to differentiate and initiate adaptive immune responses. Mannose-binding lectin (MBL) is a soluble CLR that also binds mannan modulating the recruitment of phagocytes and proinflammatory responses against *Candida* (15).

β-1,3 and β-1,6-glucan is shielded by the mannoproteins in *C. albicans* yeast, but they are exposed on budding yeast, and *Candida* hyphae. Dectin-1, a well-described CLR present on macrophages and monocytes, binds to a long β-1,3-glucan chain (16) inducing cytokines as well as internalization of the fungus upon formation of a “phagocytic synapse” (17). Resting *Aspergillus* conidia do not present abundant β-glucans on their surface either, which might account for the redundant role of Dectin-1 in induction of different Th subsets in experimental *in vitro* models (18, 19). Inhibition of Dectin-1 on alveolar macrophages did not affect phagocytosis of resting *A. fumigatus* conidia (20). In contrast, alveolar macrophages stimulated with germinated conidia produce innate cytokines via the Dectin-1 pathway (21). Dectin-1 was described to be involved in both clinical spectra of aspergillosis: in an invasive aspergillosis mouse model, IL-17 production is mediated by Dectin-1 and was dependent on IL-23 (22), and in an allergic mouse model, Dectin-1 was demonstrated to drive pulmonary pathology via IL-22 production (23). Corticosteroids block *Aspergillus*-induced autophagy via the Dectin-1/Syk pathway (24), and corticosteroid-resistant asthma was associated with detrimental IL-17 and IL-22 production (25), suggesting a strong role for autophagy and Dectin-1 to drive pathology in severe forms of asthma. Dectin-1 polymorphisms were not associated with disseminated candidiasis in humans, but were associated with *Candida* colonization, while susceptibility to invasive aspergillosis was dependent on Dectin-1 polymorphisms (26, 27). In conclusion, CLRs play an important role in mediating immunity against *Candida* and *Aspergillus* through inducing Th-derived cytokines and mediating uptake of the fungus.

Toll like receptors

Toll like receptors (TLRs) have been extensively studied in the context of fungal recognition. TLRs play a significant role in a murine model of disseminated candidiasis and, together with IL-1 receptor, activate several potent antifungal-signalling mechanisms (28). TLR2−/− mice were reported to have an increased susceptibility to disseminated candidiasis that could be attributed to a decreased secretion of TNF-α and MIP-2 and impaired recruitment of neutrophils (29). In contrast, others have shown that TLR2−/− mice are more resistant to systemic candidiasis exhibiting an increased chemotaxis and IFN-γ secretion, while IL-10 was significantly impaired. Interestingly, the recruitment of monocytes was enhanced in
TLR2−/− mice, suggesting an increase in the candidacidal activity in these mice (30). TLR4−/− mice are more susceptible to systemic candidiasis due to an impaired secretion of KC and decreased neutrophil recruitment resulting in a higher fungal burden in the kidneys (31). However, TLR1 polymorphisms, but not TLR2 and TLR4 polymorphisms, have been associated with human susceptibility to C. albicans infection (27). TLR4−/− mice were more susceptible to Aspergillus infections, and TLR4 polymorphisms were associated with invasive aspergillosis (28, 32). Immunosuppression of TLR2−/− mice resulted in higher susceptibility to Aspergillus infections (33); however polymorphisms in TLR2 were not associated with invasive aspergillosis (26). The intracellular receptor TLR3 recognizes fungal nucleic acids. TLR3 had a protective role against Candida, as a mutation in the L412F variant of TLR3 leads to lower activation of nuclear factor-kappa B (NF-κB) and decreased levels of IFN-γ, resulting in increased susceptibility to cutaneous candidiasis (34). TLR3−/− and TRIF−/− mice were found to be susceptible to invasive pulmonary aspergillosis, and TLR3 polymorphisms have been associated with invasive aspergillosis (26, 35), suggesting an important role of TLR3 in mediating protection against Aspergillus infection as well. Conclusions on the role of TLR7 and TLR9 in fungal infection have not been consistent, and no polymorphisms in TLR7 are associated to date with invasive aspergillosis or candidiasis (26, 27).

NOD-Like receptors
NOD1 and NOD2 are intracellular NOD-Like receptors (NLRs) that recognize bacterial peptidoglycans. Chitin-mediated responses, such as the induction of IL-10, were found to be dependent on NOD2 as well as TLR9 and MR (36). However, there is presently only in vitro data to support a role for NOD2 in fungal infection, no in vivo studies in NOD2 mice have been performed, and no studies have been performed on the role of NOD1 in fungal infection. The best-characterized NLR is NLRP3, which is a component of the inflammasome. Mice deficient in NLRP3 are more susceptible to Candida infections (37-39). One study showed involvement of NLRP3 in anti-Aspergillus host defence in vitro; however, disseminated aspergillosis has not been studied in NLRP3-deficient mice (40).

Inflammatory networks
Recognition of fungal-associated molecular patterns by PRRs will lead to the initiation of an efficient host defence that is mandatory to clear the invading fungus. Several populations of cells are involved that orchestrate this clearance (Figure 2).

Epithelial cells
The epithelium constitutes a mechanical barrier against invading fungi. C. albicans is in permanent contact with epithelial cells and infection with tissue invasion is associated with morphological changes of yeast into hyphae. Candida hyphae can penetrate the epithelial cells through two distinct mechanisms: induced endocytosis and active penetration.
Antifungal innate immunity: recognition and inflammatory networks

Fungi
- *C. albicans*
- *A. fumigatus*
- *C. albicans? A. fumigatus?*

PAMPs
- β-glucan
- α-mannan
- hyphal α-mannan
- N-mannan
- mannann
- unknown
- mannann
- β-glucan
- GXM/PLM
- O-mannan
- β-mannosides
- β-glucan

Extracellular PRRs
- Dectin-1
- Dectin-2
- Dectin-3
- MR
- DC-SIGN
- Mincle
- MBL
- CR3
- TLR1/2
- TLR6
- TLR4
- Galectin-3
- CD36

Intracellular PRRs
- NLRP3
- TLR3
- TLR7
- TLR9
- NOD2

Cytoplasm

Nucleus

- NF-κB & IRF1/3
- expression of cytokines & chemokines
Fig. 1: Recognition of *C. albicans* and *A. fumigatus* by innate immune cells. The pattern recognition receptors Dectin-1, Dectin-2, Dectin-3, FC gamma receptor (FcRγ), Mannose Receptor (MR), Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN), Mincle, Mannan-binding lectin (MBL), Complement Receptor 3 (CR3), Galectin-3, Cluster of Differentiation 36 (CD36), Toll-like receptors (TLRs), NACHT, LRR, and PYD domain–containing protein 3 (NLRP3), and nucleotide-binding oligomerization domain–containing protein 2 (NOD2) recognize the fungal cell wall components β-glucan, α-mannan, β-mannan, N/O-mannan, phospholipomannan (PLM), glucuronoxylomannan (GXM), chitosan, chitin, or fungal DNA and RNA. These signals activate canonical or non-canonical inflammatory pathways, with the subsequent induction of an immune response, such as secretion of cytokines, chemokines, initiation of phagocytosis or inflammasome activation.

Epithelial cells respond to *Candida* with activation of NF-κB and cytokine production when two pathways are induced; the second pathway, namely MPK1 and c-Fos activation, was dependent on hyphal formation. In this way, conidia are tolerated and germination is seen as a danger signal in which the epithelium plays an important initial step to induce a protective inflammatory network (41). *Aspergillus* species are not typical commensals. Lung epithelium not only acts as an efficient barrier, it can also phagocytose *Aspergillus* conidia. Although primary epithelial cells from the respiratory tract phagocytose *Aspergillus* conidia, the killing capacity of these cells is low (42). However, they can control outgrowth, and in addition potent antifungal drugs such as posocanazol, can accumulate in the membranes of lung epithelial cells and, in this way, might contribute to efficient exposure of antifungal drugs during *Aspergillus* infection. Thus, epithelial cells can play an important role in fungal infection by restricting fungal outgrowth and initiate potent antifungal host responses.

Monocytes and macrophages

Residential macrophages are phagocytes that are essential in mediating the first steps of an effective antifungal host defence. Fungi have evolved strategies to escape these initial first steps. *Candida* can inhibit phagolysosome maturation and production of NO by macrophages, while *Aspergillus* can inhibit phagolysosome acidification (20). In addition, fungi can change the characteristics of macrophages; *Candida* infection can induce a more anti-inflammatory phenotype enhancing fungal survival by switching M1 macrophages to a M2 phenotype (43). Recently, the importance of residential macrophages to control disseminated fungal infection was elegantly demonstrated. A deficiency in accumulation of residential macrophages in the kidney due to a deficiency in the chemokine receptor CX3CR1 lead to renal failure and death. Moreover, patients with a polymorphism leading to a decreased function in CX3CR1 were more susceptible to disseminated candidiasis. These data highlight the essential role of residential macrophages, in particular, in the kidney to control disseminated fungal infection (44). In addition to macrophages, monocytes can also phagocytose spores and inhibit germination. Monocytes have a potent conidial killing capacity and are essential in the first 48h to control disseminated candidiasis (45). Moreover, monocytes can rapidly differentiate into DC that transport spores to draining lymph nodes, where they prime and expand *A. fumigatus*-specific Th cells (46). In addition, monocytes can augment neutrophil conidicidal activity and play a crucial role in controlling disseminated fungal infection (47).
Neutrophils

Neutrophils are essential to clear fungal invasion, which is underscored by the observation that immunosuppression with prolonged neutropenia is a major risk factor for invasive fungal infections. Various neutropenic mouse models have clearly demonstrated a significant role for neutrophils in disseminated fungal infection. Mice depleted of alveolar macrophages prior to pulmonary aspergillosis recruited neutrophils normally and are able to restrict hyphal tissue invasion, while neutrophil depletion prior to or within 3 h after infection resulted in high susceptibility (48). Neutrophils use oxidative and non-oxidative killing mechanisms, which are both essential in Candida and Aspergillus infections. The oxidative burst is produced by the enzymes NADPH oxidase and myeloperoxidase. NADPH oxidase deficiency results in the disease chronic granulomatous disease (CGD), which is associated with an extraordinary increased susceptibility to invasive mold infection, highlighting the importance of NADPH-oxidase in controlling fungal infection. Another specific feature of neutrophils is their capacity to rapidly release granules that mediate extracellular killing. Those granules contain, next to NADPH oxidase and myeloperoxidase, other proteins with antimicrobial properties, like lysozymes, lactoferrins, elastases, defensins, gelatinases or cathepsin G (49).

In a cell-free supernatant of degranulated neutrophils of CGD patients, a normal amount of iron-free lactoferrin was found, which was capable to decrease fungal growth (50). Additionally, neutrophil elastase and cathepsin B were described to have antifungal activity and elastase was found to contribute to neutrophil extracellular traps (NETs) (51). NETs, which are composed of DNA that forms large fibrillar structures that can bind pathogens and antimicrobial peptides, provide a mechanism to combat hyphae that are too big to be phagocytosed. It was demonstrated that Candida can be captured by NETs, however it did not contribute to efficient killing (52). Similarly, NETs were able to limit fungal growth, but not to kill Aspergillus conidia and hyphae (51, 53). Bianchi et al. have demonstrated that NET formation is deficient in CGD patients and that NET formation can be restored by gene-therapy resulting in successful neutrophil-dependent elimination of A. nidulans conidia and hyphae. The neutrophil-associated calprotectin was identified to inhibit growth of A. nidulans in the NETs of CGD mice after gene therapy (54). The antifungal activity of calprotectin is not restricted to Aspergillus; it was also identified as the main component in NETs controlling Candida growth in vivo and in vitro (55). CGD is not only characterised by a deficiency in neutrophil killing and NET formation. The NADPH oxidase is also present in monocytes and macrophages, and has been shown to be also important for controlling fungal infection (56).

In addition, macrophages and monocytes deficient in NADPH-oxidase have a defect in autophagy, an intracellular mechanism that can control Aspergillus outgrowth (57). Whereas autophagy appears to be crucial for Aspergillus infection, it seems redundant in candidiasis, although initially it was reported that mice deficient in autophagy were more susceptible to Candida infection (58, 59). A selective killing defect by neutrophils for C. albicans, but not for A. fumigatus, was found in CARD9 deficient neutrophils resulted in abnormal ultrastructural phagolysosomes and massive hyphal outgrowth, which was independent of ROS production and release of azurophilic granules. Neutrophils were found to display two independent killing
mechanisms: ROS-dependent that is crucial for clearing opsonized *Candida* and CARD9 dependent that is crucial for unopsonized *Candida* (60). This suggests that neutrophils have an unknown killing mechanism that is specific for *Candida* initiated by CARD9.

IL-17 is a potent mediator of neutrophil recruitment. Next to Th cells and innate lymphoid cells, neutrophils themselves have been reported as a source for IL-17, in a Dectin-1- and IL-23-dependent manner, and RORγT-positive neutrophils exposed to IL-23 and IL-6 express the receptor IL-17RC (61). This suggests an autocrine feedback loop in recruiting neutrophils to the site of the fungal infection. Mice deficient in IL-17 signalling are more susceptible to systemic candidiasis. However, patients with an IL-17 deficiency suffer from mucosal candidiasis, but do not develop invasive candidiasis, and are not more susceptible to invasive mould infection. It is still an open question to what extent IL-17 determines neutrophil faith and function at the mucosa. In a mouse model of oropharyngeal candidiasis, IL-17RA−/− and IL-23−/− mice depleted for neutrophils show higher fungal burden compared to non-neutropenic animals, suggesting that IL-17 deficiency does not result in a complete neutrophil function at the site of infection (62). In addition, the recruitment of neutrophils by vaginal epithelial cells producing S100 alarmins was independent of IL-17 production (63).

Dendritic cells

Dendritic cells (DCs) achieve a crucial patrolling function. They are located in the mucosa and migrate to the draining lymph nodes to activate T cells. DCs stimulated with the fungal pathogens *Aspergillus* and *Candida* show increased activation markers like CD80 and CD86, as well as IL-8 and IL-12p70 production (64). Moreover, DCs play a crucial role for the host response against *Candida* via the production of type-I IFN-β in a Dectin/Syk/IRF5 dependent pathway (65-67). DCs are mainly involved in activation and shaping Th responses. During pulmonary *Aspergillus* infection conidial transport from the lung to the lung-draining lymph nodes, priming of CD4+ T cell responses and the prevention of the pulmonary fungal burden was mediated by monocytes-derived CD11b+ DC population in a murine model (46). *Aspergillus* conidia triggered protective Th1 and Treg responses, whereas *Aspergillus* hyphae triggered an anti-inflammatory Th2/Th17 profile (68). The protective DC responses are dependent on the PI3K/Akt/mTOR pathway, while the anti-inflammatory DCs depend on STAT3/IDO activation (68). The direction of the airway inflammation in mice into either Th2 or Th17 was dependent on TNF-α produced by monocyte-derived DCs: BALB/c mice showed a high amount of TNF-α-producing DCs promoting Th17 responses with subsequent neutrophils recruitment, while C57BL/6 mice displayed a low amount of TNF-α-producing DCs, associated with high IL-5 levels and eosinophilia (69). Plasmacytoid DCs (pDCs) represent a specific subset of DCs, and, in the context of fungal infections, have not been studied in great extend. In a mouse model of invasive aspergillosis a specific influx of pDCs was observed, and depletion of pDCs resulted in an increased susceptibility to invasive aspergillosis. *In vitro* analysis showed that hyphal growth was inhibited by pDCs in a contact-independent manner. Interestingly, pDCs produced inflammatory cytokines, such as IFN-α and TNF-α, that were independent of TLR9 (70). In contrast, pDCs in a vaginal candidiasis model were suggested to
mediate tolerance, since pDCs that were present in the draining lymph nodes of the infection lacked the upregulation major histocompatibility complex class II, CD80, CD86, and CD40 (71). This could point to a crucial difference in pDC responses induced by Aspergillus or Candida that might be dependent on the site of infection.

Innate lymphoid cells
Recently, a novel population of innate lymphocytes called innate lymphoid cells (ILCs) has been identified. ILCs are analogous to Th subsets, but differ because they lack the T cell receptor. They have been named according to their cytokine profile. ILC1 cells express T-bet and produce IFN-γ, ILC2 cells express GATA3 and produce IL-5 and IL-13, and ILC3 cells express RORγt and produce IL-17 and IL-22. Only a few studies so far have deciphered a role for innate lymphoid cells in the host defence against Aspergillus or Candida. The IL-17-producing ILC3 cells have been described as being important in the defence against and the control of pathogens at the mucosal barrier. C. albicans is a potent inducer of IL-17 (72) and mice lacking IL-17 are highly susceptible to Candida infections (73). As described earlier, patients with an IL-17 deficient phenotype such as hyper IgE syndrome (74) and patients with chronic mucocutaneous candidiasis (75), suffer from mucosal candidiasis, but the lack of IL-17 in these patients has been predominantly attributed to Th17 cells. Innate lymphoid cells would supply a faster source of IL-17 than the adaptive Th17 cells, and they represent an additional important source of IL-17.

The first clues that ILCs play an important role in controlling fungal infection and colonization come from experimental mouse models. Fungal control in a murine model of oral candidiasis was mediated by IL-17 secreting ILCs and both, ILC depleted RAG-/- and RORC+ ILC-/- mice completely failed to control fungal outgrowth (76). The relevance of ILCs in mediating pulmonary host responses in the lung was demonstrated in a study where Candida airway exposure was able to protect against Pseudomonas aeruginosa-induced lung injury, an effect that was dependent on pulmonary ILCs that expressed IL-22 (77). It has been demonstrated that ILCs play a role in the pathogenesis of asthma and allergic reactions, and the contribution of GATA3+ ILCs to allergic reactions mediated by Aspergillus has recently been studied in patients with chronic sinusitis. These patients showed a significant proliferation of GATA3+ ILCs and increased GATA3+ ILCs responsiveness to IL-33 induced by Aspergillus extract which resulted in an increased IL-13 production (78). Interestingly, also invariant NKT (iNKT) cells are found to contribute to airway hyperactivity in an IL-33 dependent manner, directly activated by the Aspergillus glycosphingolipid Asperamide B (79). This might explain one mechanism via which Aspergillus can directly induce allergic responses in an immunocompetent host, and suggests a critical role for ILCs in fungal-induced allergic reactions. The role of ILCs in an immunosuppressive status during invasive fungal infection still needs to be investigated.

Natural Killer Cells
Natural Killer (NK) cells contribute to the rapid innate immune response against invading pathogens in an antigen-independent manner, mainly by recognizing infected cells and
Antifungal innate immunity: recognition and inflammatory networks

Induce cell death of the infected cell. NK cells also contribute to the host defence against fungal infections. The additional depletion of NK cells in a T/B-cell-deficient SCID mice increases the susceptibility to systemic candidiasis, while it had no (or even an opposite) effect in immunocompetent mice (80). NK cells might substitute for specific functions of B and T cells when these cells are absent, which is in line with the observation that NK cell activation by Candida results in the production of high amounts of GM-CSF, IFN-γ and TNF-α, cytokines that are also produced by T cells. Although phagocytosis by NK cells did not inhibit hyphal growth of Candida, antifungal activity against Candida was observed that was mediated by extracellular perforin production by NK cells (81). Comparably, NK cells could kill Aspergillus hyphae via a perforin-mediated mechanism, while Aspergillus conidia were not affected (82). Bouzani et al. also showed that only germinated morphological forms of Aspergillus were able to stimulate NK cells to produce high amount of IFN-γ. However, in contrast to Voigt et al. and Schmidt et al., they propose a perforin-independent killing mechanism, since they observed that the killing was mediated via a soluble factor (83).

NK cells are potent producers of IFN-γ, and IFN-γ is crucial for controlling Aspergillus infection, which is highlighted by the fact that IFN-γ knockout mice display an increased susceptibility to invasive aspergillosis. In a murine model of invasive aspergillosis in which neutrophils were depleted, NK cells were the major population of cells that were able to secrete IFN-γ and to control fungal growth in the lung during early infection. The depletion of NK cells in IFN-γ-deficient mice did not result in increased severity of the infection, while depletion of NK cells in wild type mice resulted in a similar increases susceptibility to infection that was observed in IFN-γ-deficient mice. These data strongly suggest that in neutropenic conditions the protective IFN-γ responses during early invasive aspergillosis are critically dependent on NK cells. (84).

Platelets

Classically, platelets, mediate blood coagulation after interruption of the endothelium. In addition, platelets are capable to mediate innate immune functions, especially during bloodstream infections. Although in vitro studies failed to show the capacity of C. albicans to aggregate human platelets, in vivo platelets bound to C. albicans and were activated after bloodstream injection in a murine model (85). Platelets produced peptides like Rantes or platelet factor 4 with antimicrobial activity against Candida and platelet-rich plasma inhibited the growth of Candida (86). In Aspergillus infection, the production of the proinflammatory IL-8 from human monocytes is enhanced by platelets activated by Aspergillus hyphae, and all Aspergillus morphotypes had the capacity to activate platelets (87). This seems to be an interesting feedback-loop, since Aspergillus germination and hyphal formation was inhibited by activated platelets (88). Interestingly, not only the direct contact of the platelets to Aspergillus was necessary, also Aspergillus cell culture supernatant was able to activate platelets, suggesting a potentially harmful contribution to systemic infection by increasing thrombotic status during invasive aspergillosis (88).
Antifungal innate immunity: recognition and inflammatory networks

Fig. 2: Signalling networks of the innate immune response against *Aspergillus*. (1) Inhaled *Aspergillus* conidia reaching the alveoli are endocytosed by the lung epithelial cells, in which they survive or escape from via hyphal formation. Epithelial cells react upon fungal growth with expression of pro-inflammatory cytokines. (2) Once internalized in alveolar macrophages and monocytes, *Aspergillus* conidia are phagocytosed, which is prevented by hyphal formation. Acidification in the phagolysosomes is essential for the killing of *A. fumigatus* conidia. Reactive oxygen species (ROS) are produced to effectively kill and eradicate *Aspergillus*. A defect ROS system of macrophages and monocytes like in CGD is associated with defect autophagy resulting in pro-inflammatory cytokine production. (3) Upon invasion, neutrophils are recruited by proinflammatory cytokines produced by macrophages and monocytes or by IL-17 expressed in RORgt+ neutrophils and acting on the IL-17RC receptor via an autocrine feedback loop. *Aspergillus* conidia are intracellular killed by the ROS system, while *Aspergillus* conidia and hyphae bind to neutrophils extracellular traps (NETs), which mainly consist of neutrophil DNA and antimicrobial proteins like calprotectin, inhibiting the fungal growth without killing. (4) Natural killer cells are activated by the germinated and hyphal forms of *Aspergillus* and mediate the killing via perforin release or directly via IFN-γ. Next to that, IFN-γ enhances conidial killing by macrophages. (5) The role of innate lymphoid cells (ILCs) in the lung during invasive aspergillosis is largely unknown. Invariant (i) NKT cells are directly activated by asperamide B derived from *Aspergillus* and cause together with IL-13, derived from Th2 cells, allergic airway responses. (6) Monocyte-derived dendritic cells recognize *Aspergillus* conidia and hyphae resulting in upregulation of CD80+ and CD86+ and the production of IL-8 and IL-12p70. DCs shape adaptive Th responses after migration to the lymph node. *Aspergillus* conidia induce preferentially Th1/Treg responses and *Aspergillus* hyphae Th17/Th2 responses. DCs, high positive for TNF, mediate differentiation into the Th17 direction with production of IL-17 and low positive for TNF into the Th2 direction with production of IL-13. (7) As the last step of invasion, *Aspergillus* can overcome the endothelium and reach the blood stream. All growth forms of *Aspergillus* activate platelets, which activate monocytes to produce IL-8. Activated platelets are capable of inhibiting hyphal formation.

Conclusions and future perspectives

During the past years, fungal pathogens have been of rising interest especially due to the increasing number of immunocompromised patients. In order to combat fungal infections, the human immune system needs to be able to efficiently sense the fungal pathogen, and to activate a plethora of immune cells that are able to engulf and clear the pathogen. In this regard, PRRs are of significant importance. Numerous studies revealed beneficial as well as detrimental roles of different TLRs in fungal infections. Furthermore, several studies on murine models are contradictory, probably due to the differences in the experimental setup, mouse strains that are used, as well as differences in fungal strains. Although many PRRs that recognize fungal PAMPs have been identified, there is still a large amount of unexplored PRRs that could contribute to antifungal host defence. Moreover, the interactions that have been described between PRRs point to an even more complex dynamic cell wall recognition system on immune cells. The knowledge that there could be many fungal PRRs that are dynamically expressed and have the capacity to interact with each other indicates that understanding fungal recognition at the host cell membrane needs further studies and will be challenging and complex.

Fungal recognition as well as the interplay between the innate immune cells forms the initial inflammatory network that is needed to control fungal infection. A better understanding of the role of epithelial cells in fungal infection has lead to an increased awareness that non-classical immune cells, such as epithelial cells, endothelial cells, and platelets, also play a crucial role in the orchestration of an efficient antifungal host response. In addition, new subsets of immune cells, such as ILCs have come to stage and NK cells have gained interest in their contribution to control fungal infection. These new players next to
the traditional and well-known professional phagocytes such as neutrophils and monocyte/macrophages open up relevant new questions. To what extend does immunosuppression with corticosteroids affect these new players? And in turn, does this influence the function of the classical phagocytes? Does NADPH-oxidase deficiency influence effective epithelial and endothelial antifungal host responses? In addition, recent studies have suggested an innate immune memory in NK cells as well as in monocytes, which opens new horizons regarding the host-fungus interactions. Hence, not only CLRs, but also some TLRs were shown to mediate immune responses to a microbe, upon a second encounter, by either strengthening or diminishing host responses by the means of host chromatin remodelling that can shape the host immune response (89, 90), making these receptors interesting candidates for further investigation as potential targets for vaccines.

Acknowledgements
This study was supported by the ALLFUN EU-FP7 grant. M.G.N. was partly supported by a Vici Grant of the Netherlands Organization for Scientific Research. F.vd.V. was partly supported by a Veni Grant of the Netherlands Organization for Scientific Research.
References

41 Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, et al. An essential role for the

81 Shaw JL, Fakhri S, Citardi MJ, Porter PC, Corry DB, Kheradmand F, et al. IL-33-responsive innate lymphoid cells are an important source of IL-13...

Summary and perspectives
Despite the increased knowledge on the mechanisms of Candida recognition and the networks of innate and adaptive host defense activated during infection (1), much remains to be learned regarding the distinctive modulatory effects of Candida spp on host immune responses, while further studies are warranted in order to decipher the complex host-pathogens interactions and the relationship and synergy among the different PRRs.

In Chapter 2 of this thesis we analyzed the capacity of C. albicans to modulate the cytokine responses of PBMCs to bacteria that normally colonize the skin and mucosa. We showed that C. albicans primes the cells for enhanced proinflammatory cytokine production when they are exposed to a secondary bacterial stimulus. This priming effect is dependent on β-glucan and N-linked mannan present on the Candida cell wall. Therefore, the chronic exposure of primary human immune cells to C. albicans primes them for subsequent stimulation with different microorganisms, mechanism that could explain the potential stimulatory effects of the fungus in hyperinflammatory conditions (e.g. the suggested role of Candida in Crohn’s disease). Therefore, the Dectin-1/Raf-1 signaling pathway described to be responsible for this effect may represent a potential therapeutic target in autoinflammatory diseases.

In the next two chapters we investigated the role of Dectin-2, one important C-type lectin receptor, for the innate host defense against two of the most important Candida species: C. albicans and C. glabrata. In Chapter 3 we confirmed that Dectin-2−/− mice were more susceptible to systemic candidiasis, which is most probably due to the elevated fungal load in the kidneys. Phagocytosis of C. albicans by the Dectin-2−/− macrophages was moderately decreased. Interestingly, the secretion of most of the macrophage-derived cytokines from Dectin-2−/− mice with systemic candidiasis was defective. No striking differences among several Candida mutants defective in mannans could be detected between naïve wild-type and Dectin-2−/− mice, apart from the β-mannan-deficient bmt1Δ/bmt2/bmt5Δ triple mutant, suggesting that β-mannan may partially mask α-mannan detection, which is the major fungal structure recognized by Dectin-2.

In Chapter 4 we showed that Dectin-2 is an important component of the host defense against systemic infection with C. glabrata. Dectin-2−/− mice were more susceptible to C. glabrata, susceptibility that was associated with a combination of decreased production of protective T-helper-derived cytokines and defective phagocytosis and killing of the yeast by neutrophils and macrophages, respectively. These results not only broaden our knowledge regarding the interaction between C. glabrata and the immune system, but they also give us insights into the possibility of designing future immunotherapeutic strategies based on Dectin-2 receptor.

Trained immunity is a novel described phenomenon through which cells associated with the innate immune system exhibit memory characteristics upon a second encounter with a microorganism or with a microbial ligand (2, 3). In Chapter 5 we showed that a primary exposure to microbial ligands alters the functional fate of monocytes towards tolerance or training, and this is dependent on the nature of PRRs engaged and on their concentration. Trained immunity and tolerance may have important effects on the host susceptibility to infections by inducing long-term changes in innate cells, such as monocytes, macrophages or NK cells, in the capacity
of non-specifically responding to a secondary infection. This could be of exceptional interest
in developing new therapeutic strategies against excessive autoinflammatory responses or for
improving ineffective immune responses against an infection, by harnessing innate immune
cells and their related receptors and signaling pathways.

In Chapter 6 we investigated whether other commensal fungi, such as Saccharomyces cerevisiae,
are also able to induce trained immunity. We show that different strains of Saccharomyces
are able to train human primary cells, with this training effect being dependent not only
on β-glucan and mannan but also on chitin. Strains specifically isolated from CD patients
are able to modulate cytokines response to bacterial antigens and fungi and this effect is
mostly dependent on chitin. We observed a strong strain-specific variation of the cytokine
production after stimulation of monocytes with different human environmental isolates of S.
cerevisiae, which also correlated with the origin of the strain, suggesting that that differential
adaptation to the environment might be a determining factor of fungal pathogenicity.

Both patients with chronic mucocutaneous candidiasis (CMC) and patients with Hyper-IgE
syndrome (HIES) have defects in generation of Th17 responses, however their phenotype
in terms of types of infections differs significantly. Recently STAT1 was identified as one of
the transcription factors modulated during induction of trained immunity (4), and we have
thus hypothesized that defects in trained immunity might characterize patients with defects
in STAT1. In Chapter 7 we report that patients with STAT1-defective CMC are less able to
mount trained immunity against C. albicans, and no such defect is observed in patients with
STAT3-defective (HIES). These results may highlight a clinical significant fact with regard
to the phenotype of those two groups of patients and their susceptibility to infections,
since CMC patients predominantly suffer of Candida infections (5), while HIES patients
encounter mainly Staphylococcal infections (6, 7). These finding are biologically important
due to the fact that they identify a new STAT1- and NK/IFN-γ-dependent pathway that is
important for induction of trained immunity.

Future perspectives

The results reported in these studies both contribute to an improved understanding of the
innate immune responses activated during systemic Candida infections, and, at the same
time, open new avenues of investigation for the future.

Candida-induced priming of innate immunity and the signaling pathways involved in
this process may represent an important aspect of novel immunotherapeutic strategies, and
therefore its potential exploitation in different Candida infections could be of significant
interest, especially for patients suffering of autoinflammatory diseases. Of specific interest is
the role of Dectin-2 in interaction with different Candida species and its synergy with other
C-type lectins or with TLRs. Whether the Dectin-2 is involved in either the stimulation of
Th17 immune responses or in induction and/or inhibition of innate immune cytokines may
represent a new research line in the near future.
Vaccination represents the most effective manipulation of the immune system; therefore, harnessing not only the adaptive, but also the innate immune responses may lead to more efficient ways of protection against different infectious factors. Several interesting points regarding the trained immunity remain to be investigated in the coming years. What is the training effect of a broad range of different microorganisms (either commensals or pathogens) on innate immune cells and what precisely is the relationship between them? What are the distinctive mechanisms through which different ligands induce either training or tolerance? Another interesting aspect could be the effect of sequential training with the same or with different microorganisms and/or ligands? Do they still induce training/tolerance and at which level? Do the time period between the training and the restimulation influence the final outcome? Can trained immunity be reversed and if yes, what is its clinical importance?

Of specific interest remains what kind of innate immune cells, apart from monocytes/macrophages and NK cells, are able to exhibit memory characteristics. Are dendritic cells also able to respond to a secondary stimulation? What about neutrophiles or mast cells? What is the synergy (if there is any) between the innate and adaptive cells in inducing trained immunity?

Up till now, several epigenetic profiles of trained monocytes and/or macrophages have been described as probably the most important molecular mechanism involved in training. In the coming years we will need to decipher the epigenetic profiles of other innate immune populations and the period during which these changes are to be found after the training.

In conclusion, the immune responses induced by Candida represent a complex signaling network in which Candida species and possibly particular strains induce specific effects, and in which cell wall morphology and the collaboration between PRRs and different cytokines play a significant role. Moreover, trained immunity represents an important newly described phenomenon that changes our understanding concerning the relation between fungi and the immune system, opening novel perspectives for therapeutic and prophylactic applications.
References

6. Freeman AF, Holland SM. Clinical manifestations, etiology, and pathogenesis of the hyper-IgE syndromes. Pediatr Res. 2009 May;65(5 Pt 2):32R-7R.

Samenvatting en perspectieven
Rezumat și perspective
Acknowledgements
List of publications
Curriculum Vitae
Samenvatting en perspectieven

Ondanks de toegenomen kennis over de mechanismen van Candida herkenning en de geactiveerde netwerken van het aangeboren en het adaptieve immuunsysteem tijdens de infectie (1), blijft er nog veel te leren over de onderscheidende modulerende effecten van Candida spp immuunreacties van de gastheer. Verdere studies zijn gerechtvaardigd om de complexe gastheer-pathogenen interacties en de synergie tussen de verschillende pathogen herkenningsreceptoren (PRRs) te ontcijferen.

In hoofdstuk 2 van dit proefschrift, analyseerden wij de capaciteit van C. albicans om de cytokine productie van perifere bloed mononucleare cellen (PBMC) op bacteriën die normaal de huid en slijmvliezen koloniseren, te moduleren. Wij hebben ontdekt dat C. albicans de PBMCs activeert tot een verhoogde pro-inflammatoire cytokineproductie wanneer de cellen worden blootgesteld aan een secundaire bacteriële stimulie. Dit activerend effect is afhankelijk van β-glucan en N-gekoppelde mannan die aanwezig zijn in de Candida celwand. Na de chronische blootstelling van primaire humane PBMCs aan C. albicans, worden ze gegeprimeerd voor een daaropvolgende stimulatie met verschillende micro-organismen. Deze mechanismen zouden de mogelijke stimulerende effecten van de schimmel in hyperinflammatoire omstandigheden (bijvoorbeeld de voorgestelde rol van Candida bij de ziekte van Crohn) kunnen verklaren. Daarom is de beschreven Dectin-1/Raf-1 signaalroute verantwoordelijk voor dit effect een potentieel therapeutisch doel bij autoinflammatoire ziekten.

In de volgende twee hoofdstukken, onderzochten wij de rol van Dectin-2, een van de belangrijkste C-type lectine receptoren (CLRs), voor de aangeboren afweer tegen twee belangrijke Candida species: C. albicans en C. glabrata. In hoofdstuk 3, bevestigden wij dat Dectin-2-/- muizen gevoeliger zijn voor systemische candidiasis, wat waarschijnlijk veroorzaakt wordt door verhoogde fungale belasting in de nieren. De fagocytose van C. albicans door Dectin-2-/- macrofagen is vermindert ten opzichte van wild type macrofagen. Interessant is de vinding dat cytokine productie door macrofagen van Dectin-2-/- muizen met systemische candidiasis defect was. Er konden geen opvallende verschillen tussen verschillende Candida mutanten in mannanen worden gedetecteerd tussen naïeve wildtype en Dectin-2-/- muizen, behalve de β-mannan-deficiënte bmt1Δ/bmt2Δ/bmt5Δ drievoelige Candida mutant. Deze observatie suggereert dat de β-mannan gedeeltelijk de α-mannan detectie kan maskeren en dat α-mannan de belangrijkste schimmel structuur is die door Dectin-2 herkend wordt.

In hoofdstuk 4 hebben wij laten zien dat Dectin-2 een belangrijk onderdeel is van de afweer tegen systemische infectie met C. glabrata. Dectin-2-/- muizen waren meer gevoelig voor C. glabrata; deze gevoeligheid was geassocieerd met een combinatie van de verminderde productie van beschermende T-helper-afgeleide cytokinen, een defecte fagocytose en het doden van de Candida door neutrofielen en macrofagen. Deze resultaten vergroten niet alleen onze kennis over de interactie tussen C. glabrata en het immuunsysteem, maar ze geven ons ook inzicht in de mogelijkheden van het ontwerpen van toekomstige immunotherapeutische strategieën die op de Dectin-2 receptor zijn gebaseerd.
Getrainde immuniteit is een nieuw beschreven mechanisme waardoor cellen die geassocieerd worden met het aangeboren immuunsysteem geheugenkenmerken vertonen bij een tweede ontmoeting met een micro-organisme of een microbiële bestandsdeel (2, 3). In hoofdstuk 5, hebben wij bewezen dat een primaire blootstelling aan microbiële liganden het functionele lot verandert van monocyten ten opzichte van tolerantie of training, en dit afhankelijk is van het betrokken type receptor en van de concentratie van de receptor (PRR). Getrainde immuniteit en toleratie kunnen belangrijke effecten hebben op de vatbaarheid van de gastheer voor infecties. Dit zou kunnen komen door het induceren van langdurige veranderingen bij cellen van het aangeboren immuunsysteem (zoals monocyten, macrofagen en NK-cellen) waardoor er een niet-specifieke reactie op treedt bij een secundaire infectie. Dit zou van uitzonderlijk belang kunnen zijn bij de ontwikkeling van nieuwe therapeutische anti-inflamatie en anti-infectie middelen, of voor het verbeteren van ineffektieve immuunrespons tegen een infectie, door gebruik te maken van aangeboren immuunsysteem cellen en hun verwante receptoren en signaalroutes.

In hoofdstuk 6 onderzochten wij of andere commensale schimmels, zoals *Saccharomyces cerevisiae*, ook getrainde immuniteit kunnen induceren. Wij zien dat verschillende stammen van *Saccharomyces* menselijke primaire cellen (PBMCs) kunnen trainen. Dit trainingseffect is niet alleen van β-glucan en mannan afhankelijk, maar ook van chitine. Specifieke geïsoleerde *Saccharomyces* stammen van CD (Crohn) patiënten zijn in staat om de productie van cytokinen door PBMCs door bacteriële antigenen en schimmels te moduleren en dit effect is meestal afhankelijk van chitine. Wij hebben een sterke soortspecifieke variatie van de cytokine productie na stimulatie van monocyten met verschillende menselijke milieu isolaten van *S. cerevisiae* waargenomen, die ook met de oorsprong van de stam is gecorreleerd. Dit suggereert dat de differentiële aanpassing aan de omgeving een bepalende factor van schimmel pathogeniteit zou kunnen zijn.

Patiënten met chronische mucocutaneous candidiasis (CMC) of met Hyper IgE syndroom (HIES), hebben defecten in de opwikkeling van Th17 reacties, ondanks dat hun fenotype in termen van soorten infecties aanzienlijk verschillen. Onlangs werd STAT1 geïdentificeerd als een van de transcriptiefactoren die gemoduleerd is bij de inductie van getrainde immuniteit (4). Onze hypothese is dat cellen van patiënten met STAT1 defecten geen getrainde immuniteit kunnen ontwikkelen. In hoofdstuk 7 beschreven wij dat CMC patiënten met een STAT1-defect, een defect in de opbouwvan getrainde immuniteit tegen *C. albicans* hebben, en dat een dergelijk defect is niet waargenomen bij patiënten met STAT3-defect (HIES). Deze resultaten kunnen een klinisch significante waarneming benadrukken, met betrekking tot het fenotype van deze twee groepen patiënten en hun vatbaarheid voor infecties, aangezien CMC patiënten voornamelijk lijden aan *Candida* infecties (5), terwijl HIES patiënten vooral aan *Staphylococcus*-infecties lijden (6, 7). Deze resultaten zijn belangrijk vanwege het feit dat nieuwe STAT1- en NK/IFNγ-afhankelijke routes identificeerd zijn die belangrijk zijn voor de inductie van getrainde immuniteit.
Samenvatting en perspectieven

Toekomstperspectieven

De gerapporteerde resultaten van deze studies dragen bij aan een beter begrip van de aangeboren immuunrespons veroorzaakt door voortdurende systemische *Candida*-blootstelling, en tegelijkertijd, bieden zij nieuwe mogelijkheden voor het onderzoek in de nabije toekomst.

Candida-geïnduceerde activering van de aangeboren immuniteit en de signalroutes die bij dit process betrokken zijn, zouden een belangrijk aspect van de nieuwe immunotherapeutische strategieën kunnen zijn. Van bijzonder belang is de rol van Dectin-2 in de interactie met verschillende *Candida*-soorten en haar synergie met andere C-type lectines of met TLR's. Of de Dectin-2 wordt betrokken bij de stimulatie Th17 immuunreacties of bij de inductie en/of remming van het aangeboren immuunsysteem van cytokines zou in de nabije toekomst kunnen worden onderzocht.

Vaccinatie is de meest efficiënte manipulatie van het immuunsysteem; daarom kan het gebruik van niet alleen adaptieve, maar ook van de aangeboren immuunrespons, leiden tot meer effectieve manieren van bescherming tegen diverse besmettelijke infectieziekten. Diverse interessante punten met betrekking tot de getrainde immuniteit blijven over om nader te worden onderzocht in de komende jaren. Wat is het trainingseffect van een breed scala van verschillende micro-organismen (het zij commensalen of pathogenen) op de cellen van het aangeboren immuunsysteem en wat is de precieze relatie tussen hen? Wat zijn de belangrijkste mechanismen die de verschillende microbiële liganden induceren bij training of tolerantie? Een ander interessant aspect zou kunnen zijn, is het effect van opeenvolgende training met dezelfde of met verschillende micro-organismen en/of liganden? Induceren ze nog steeds de training/tolerantie en op welk niveau? Is de tijd tussen de training en restimulatie van invloed op het uiteindelijke resultaat? Kan de getrainde immuniteit teruggedraaid worden en, zo ja, wat is het klinische belang hiervan?

Van specifiek belang blijft welke soort aangeboren immuuncellen, afgezien van monocyten/macrofagen en NK-cellen, in staat zijn om kenmerkende herinneringen te vertonen. Kunnen dendritische cellen ook reageren op een secundaire stimulatie? Hoe zit het met neutrofielen of mestcellen? Wat is de synergie (als die er is) tussen de aangeboren en adaptieve cellen tijdens het induceren van getrainde immuniteit?

Tot nu toe, zijn er verschillende epigenetische profielen van getrainde monocyten en/of macrofagen beschreven als waarschijnlijk de belangrijkste moleculaire mechanismen die betrokken zijn bij de training. Wij zullen de komende jaren nodig hebben om de epigenetische profielen van andere aangeboren immuuncellen en de periode waarin deze wijzigingen zijn terug te vinden na de training, te ontcijferen.

Concluderend, de geïnduceerde immuunreacties door *Candida* vormen een complex signalerend netwerk waarin *Candida* soorten en misschien zelfs bepaalde stammen specifieke effecten induceren en waarbij celwand morfologie en de samenwerking tussen PRRs en verschillende cytokines een belangrijke rol spelen. Bovendien is getrainde immuniteit een belangrijk nieuw beschreven mechanisme dat onze kennis van de relatie tussen schimmels en het immuunsysteem verandert. Dit opent nieuwe perspectieven voor therapeutische en profylactische toepassingen van getrainde immuniteit.
Referenties

6 Freeman AF, Holland SM. Clinical manifestations, etiology, and pathogenesis of the hyper-IgE syndromes. Pediatr Res. 2009 May;65(5 Pt 2):32R-7R.

Rezumat și perspective

Deși cercetarea a avansat foarte mult în ultimii ani în ceea ce privește mecanismele de recunoaștere a Candidei și activarea sistemului imunitar înnăscut (nespecific) și adaptiv (specific) în timpul infecției (1), multe rămân însă neelucidate în ceea ce privește efectele modulatoare respective ale diferitelor specii de Candida și răspunsurile imunitare ale gazdei. Studii suplimentare sunt necesare în scopul de a descifra interacțiunile complexe dintre gazdă și agenții patogeni, dar și relația de sinergie dintre diferiți receptori prezenți la suprafața sau în interiorul celulelor umane.

În capitoulul 4 am arătat că receptorul Dectin-2 joacă un rol important în protejarea împotriva infecțiilor sistemice cu C. glabrata. Șoareci deficienți în Dectin-2 au fost mai vulnerabili la C. glabrata, susceptibilitate care a fost asociată cu o secreție scăzuta de citokine protectoare derivate de la celulele Th, și o fagocitoză defectuoasă a Candidei de către neutrofile și macrofage. Aceste rezultate ajută nu numai la extinderea cunoștințelor noastre în ceea ce
Rezumat și perspective

privește interacțiunea dintre *C. glabrata* și sistemul imunitar uman, dar aduce și perspective noi în ceea ce privește îmbunătățirea strategiilor immunoterapeutice bazate pe acest receptor.

Imunitatea antrenată (instruită) este fenomenul prin care celulele asociate cu sistemul imunitar înăscut (nespecific) au caracteristici de a memora prezența unui stimul la a doua interacțiune cu un microorganism sau cu un ligand de origine microbiană (2, 3). În capitoulul 5 am arătat că o expunere primară a celulelor imune umane la liganzi microbieni modifică soarta funcțională a monocitelor către toleranță sau stimulare, depinzând atât de natura receptorilor implicați în acest process, cât și de concentrația lor. Imunitatea antrenată și toleranța pot avea efecte importante asupra susceptibilității gazdei la diferite infecții prin inducerea de modificări epigenetice pe termen lung în celulele imunare înăscute (monocite, macrofage sau celule ucigăse naturale (celule NK)), în ceea ce privește răspunderea non-specifică la o infecție secundară. Această descoperire poate fi de interes excepțional atât în dezvoltarea de noi strategii terapeutice împotriva răspunsurilor autoinflamatorii excesive, cât și pentru îmbunătățirea răspunsurilor imune împotriva unei infecții prin valorificarea celulelor imune înăscute, a receptorilor și a căilor lor de semnalizare.

În capitoulul 6 am investigat posibilitatea altor ciuperci comensale, cum ar fi *Saccharomyces cerevisiae*, de a avea capacitatea de inducere a imunității antrenate. Interesant, am arătat că diferite tulpini de *Saccharomyces* sunt capabile de a instrui celule primare umane, efect dependent nu numai de β-glucan și manan, dar și de chitină. Tulpinile izolate în special de la pacienții cu Crohn au capacitatea de a modula răspunsul de citokine la antigene bacteriene și ciuperci, efect ce este în mare parte dependent de chitină. Am observat o corelație puternică între citokine și originea tulpinilor de *Saccharomyces* sugerând că adaptarea diferențiată la mediu ar putea fi un factor determinant al patogenității fungice.

Atât pacienții cu candidoază cronică muco-cutanată (CMC, STAT1), cât și pacienții cu sindromul Hyper-IgE (SHIE, STAT3) au defecte în răspunsurile Th17, însă fenotipul lor în ceea ce privește tipurile de infecții microbiene diferă semnificativ. Recent, STAT1 a fost identificat ca unul dintre factorii de transcriptie modulat în timpul inducterii imunității antrenate (4). Ipoteza noastră s-a bazat pe faptul că defecte în imunitatea antrenată poate caracteriza pacienții cu defecte în STAT1. Prin urmare, în capitoulul 7 am raportat că pacienții cu defecte în STAT1 (CMC) sunt mai puțin capabili de a dezvolta o imunitate antrenată împotriva *Candida albicans*, defect ce nu se observă la pacienții cu sindromul SHIE (STAT3). Aceste rezultate pot evidenția un fapt clinic semnificativ în ceea ce privește fenotipul acestor două grupei de pacienți și sensibilitatea lor la infecții, deoarece pacienții CMC suferă predominant de infecții cu *Candida* (5), în timp ce la pacienții cu sindromul SHIE persistă infecțiile stafilococice (6, 7). Aceste concluzii au importanță biologică deosebită datorită faptului că am identificat calea de semnalare STAT1- și NK/IFN-γ ca fiind importantă pentru inducerea imunității antrenate.
Perspective de viitor

Rezultatele raportate în aceste studii contribuie la o mai bună înțelegere a răspunsurilor imune înăscute activate în timpul infecțiilor sistemice cu *Candida* și deschide perspective noi de investigare în ceea ce privește candidozele umane.

Capacitatea *Candidei* de a antrena sistemul imun înăscut și căile de semnalizare implicate în acest proces reprezintă un aspect important în ceea ce privește dezvoltarea de noi strategii imunoterapeutive. Prin urmare, potențialul de exploatare a diferitelor infecții produse de *Candida* ar putea fi de un interes semnificativ în special pentru pacienții care suferă de boli autoinflamatorii. Interesant este și rolul receptorului Dectin-2 și interacțiunea sa cu diferite specii de *Candida*, dar și sinergia sa cu alți receptori. O nouă linie de cercetare în viitorul apropiat ar putea fi reprezentată de implicarea receptorului Dectin-2 în stimularea răspunsurilor Th17 și în stimularea și/sau inhibarea citokinelor produse de sistemul imunitar înăscut.

Vaccinarea reprezintă cea mai eficientă manieră eficientă de manipulare a sistemului imunitar; prin urmare, valorificarea nu numai la nivel adaptiv, dar și la nivel înăscut poate duce la modalități mai eficiente de protecție împotriva diferitelor factori infecțioși (ciuperci, bacterii, virusuri etc). Multe aspecte de mare interes rămân a fi investigate în anii următori în ceea ce privește imunitatea antrenată. Care este efectul de antrenare a celulilor sistemului imunitar înăscut de către o mare varietate de microorganisme (comensale sau patogene) și care este relația dintre ele? Care sunt mecanismele distinctive prin care diferiți liganzi induc antrenare sau toleranță? Un alt aspect interesant ar fi efectul de antrenare secvențială cu aceleași sau cu diferite tipuri de microorganisme și/sau liganzi? Ar mai putea induce antrenare/toleranță și, dacă da, la ce nivel? Va fi rezultatul final influențat de perioada de timp dintre antrenare și restimulare? Poate imunitatea antrenată fi reversibilă și, dacă da, care ar fi importanța sa clinică? Care dintre celele sistemului imunitar înăscut, cu excepția monocitelor/macrofagelor și a celulelor ucigașe naturale, sunt capabile să prezinte caracteristici de memorare? Sunt celelele dendritice capabile să răspundă la o stimulare secundară? Dar neutrofile sau mastocite? Ce sinergie ar fi (dacă există) între celulele înăscute și adaptive în inducerea imunității antrenate?

Până în prezent au fost descrise mai multe profiluri epigenetice de monocite și macrofage antrenate ca fiind probabil cel mai important mecanism molecular implicat în formarea imunității antrenate. În anii următori va trebui să descifrem atât profilurile epigenetice ale diferitelor populații de celule imune nespecifice cât și perioada în care aceste modificări se regăsesc după formare.

În concluzie, răspunsurile imune induse de *Candida* reprezintă o rețea complexă de semnalizare în care diferite specii de *Candida* și, probabil diferite tulpini, induc efecte specifice, iar morfologia peretelui celular și colaborarea dintre receptori și citokine joacă un rol foarte important. Chiar mai mult, imunitatea antrenată reprezintă un fenomen important ce revoluționează cunoștințele noastre privind relația dintre ciuperci și sistemul imunitar înăscut, deschizând perspective noi pentru aplicații terapeutice și profilactice.
Referințe

6. Freeman AF, Holland SM. Clinical manifestations, etiology, and pathogenesis of the hyper-IgE syndromes. Pediatr Res. 2009 May;65(5 Pt 2):32R-7R.

Acknowledgements

Finally, I reached the most emotional part of this book realizing that I am not sure exactly where to start. Looking back I see so many faces that contributed to my life, people that shaped my direction professionally as well as personally, people that taught me how important is to see the big picture, be optimistic and enjoy small things in life.

Prof. M.G. Netea. Dear Mihai, first of all I would like to express my gratitude for offering me a second opportunity to join your team. I still remember when I first wrote you in English, applying for one of the Marie Curie fellowships you had available. Just afterwards I realized that we both speak Romanian, so I wrote you again in Romanian. It was a cold winter day when I first came to Nijmegen to discuss the project, when I was impressed not only with the city, which in my opinion at that time, was a mix between German and British style, but also with the laboratory, the colleagues and different research topics you were covering.

It’s been an extraordinary experience being part of the AIG research group. As everyone else, I will always remember your enthusiasm, positive thinking and motivation during our meetings. I could never be more motivated after a discussion with you, even when the results weren’t that favorable, you kept your enthusiasm while turning the ‘problem’ into a new challenge. We attended together several conferences, but what I liked the most was the perfect mix of exotic nature and science sessions in Guadeloupe.

Dear Mihai, I would like to thank you for all your advices and guidance during the last five years. Coming to Nijmegen and completing my PhD at Radboudumc was one of the best decisions I had ever taken. I am more than proud to have completed my PhD under your supervision. Thank you for everything!

Prof. L.A.B. Joosten. Dear Leo, it’s been a pleasure working with you. You always knew where to send me concerning possible collaboration or laboratory material. You are always up to date with the literature, regardless your research interest. Moreover, you are always full of humor and I don’t remember even once when we met and you didn’t make a joke. It was a pleasure being part of your group. Finally, I’d like to thank you for the endless recommendations you sent for me!

Dr. J. Quintin. Dear Jessica, I enjoyed working together and getting to know you. Taking part in many brainstorming meetings concerning the trained immunity phenomenon was always fascinating. Thank you for your guidance regarding the complex mice experiments or, even more challenging, trained immunity experiments. I wish you success in your career path!

Dear Prof. J. van der Meer, it’s been a pleasure to know you and to conduct my thesis in your group. I enjoyed discussing my results on different projects during the cytokine meetings. I have also learnt a lot from your comments on my papers. Thank you for all your input regarding my results and my writing skills. Last, but not least, I very much enjoyed hearing you speaking about your visits and experiences in Romania.
Acknowledgements

Prof. N.A.R. Gow. Dear Neil, I am happy to have had the opportunity of collaborating and discussing the very interesting Candida mutants constructed in your laboratory. I really appreciate taking time in reading my manuscripts. Furthermore, I truly enjoyed our ALLFUN meetings. Visiting the botanical garden in Guadeloupe together with Mihai and Amy was amazing! I enjoyed the car drive through Guadeloupe, but also the delicious dinners we had in Italy during the consortium meetings. Thank you for everything!

Dear Prof. Duccio Cavalleri and Dr. Lisa Rizetto, I would like to thank you for our fruitful collaboration on trained immunity and Saccharomyces strains. Dear Lisa, since our first meeting in Nijmegen we remained friends and I cannot wait to see each other again in the beautiful surroundings of Florence. I wish you success with your career!

Dear Dr. Chantal Fradin and Flavie Courjol, I enjoyed meeting you during our ALLFUN meetings and I am very happy with our collaboration. Thank you for sending us different Candida mutants and for your willingness to discuss and comment on the results.

Prof. Han van Krieken. Dear Han, I consider myself lucky for meeting you and being introduced to the fascinating field of pathology. Thank you for taking your time in analyzing with me different kidney samples from mice infected with Candida. It was a very interesting period during my PhD and I still remember spending uninterrupted hours of analyzing hundreds of mice samples. I remember how fast time went during these days and how some days I have even forgotten to take lunch. Thank you once again for your guidance and kindness of allowing me to use the instruments in your department.

I would also like to thank Prof. Gordon Brown, Prof. Lars Erwig and Dr. Judith Bain from Aberdeen with whom we successfully collaborated on the project with Dectin-2 knockout mice.

A big thanks goes to the ALLFUN network: Prof. Luigina Romani, Prof. Jean-Paul Latgé, Dr. Anne Beauvais, Dr. Jagadeesh Bayry, Dr. Jouault Thierry, Prof. Neil Gow, Prof. David Denning, Prof. Reto Crameri, Prof. Thierry Calandra, Dr. Claudia Covaciu, Dr. Maria Diaz-Torres, Dr. Maria Claudia Alcaro, Paola, Shriya, Flavie, Nicola and Amy. It was a pleasure being part of the network and attending all the brainstorming ALLFUN meetings.

Another big thanks goes to the whole FINSysB team: Prof. Al Brown, Prof. Claude Gaillardin, Prof. Bernhard Hube, Prof. Andrew Porter, Prof. Christophe d’Enfert, Prof. Joachim Ernst, Prof. Anna Vecchiarelli, Prof. Naama Barkai, Prof. Edda Klipp, Dr. Jason Oliver, Dr. Frans Klis, and Dr. Mathias Lavie-Richard, thank you for all your input during our network meetings. To Neelam, Diana, James, Alice, Iryna, Jules, Abhishek, Victor, Pedro, Quentin, Clemens, Malcom and Katrzyana, it was an amazing opportunity to know you all and be part of the same network. It was great meeting you all, sharing the hotel room, the excitement of a new training course, the stress of a presentation and, of course, the joy of visiting new places. Thank you all for a great friendship!

Heartedly thanks to all the colleagues from the Department of General Internal Medicine at Radboudumc. Ineke, it was a pleasure working with you. From you I’ve learnt how
to handle mice and how to plan and perform complex murine experiments. We spent a lot of time together either at the animal facility, walking from our lab to the animal facility or in our laboratory. I enjoyed discussing with you not only professionally, but also about holidays, family and about the excitement of being a grandmother in your case and a mother in my case. I also remember attending together similar courses at the sports center. Thank you for everything and I sincerely hope to keep in touch. Dear Trees and Liesbeth, from you I’ve first got to know the lab and how to perform ELISAs and trained immunity experiments. Thank you! Karin, it was really nice meeting you and I hope to meet again one day. Another big thanks goes to Magda, Johanna, Anneke, Heidi, Helga and Cor. Dear Cor, I will use this opportunity to thank you for all your patience in instructing me how to use the FACS, but also for the uncountable phone calls, journeys and perseverance with the maternity department for asking for the umbilical cord blood samples and, despite all these, never receiving them. Diana, Teske and Sonja, thank you for your friendship during our time at Radboud and afterwards. The wonderful memories at Aesculaaf and Café Jos will stay with me forever! Diana, you are the first person I knew when I first came to Nijmegen. Your free spirit, humor and energy inspired me during our busy periods in Nijmegen. Monique and Gosia, I enjoyed sharing the office with you and discussing different topics, from cytokines, cell stimulations and cloning to cooking, sporting, guys and babies. Dear Mihai and Luiza Ioana, it was a great surprise and pleasure to meet you when I first came to Nijmegen. We went together to IKEA several times, and we have also enjoyed different places in the Netherlands as well as in Belgium. I will never forget that day when we visited Antwerp, Gent, Bruges and Calais. Dear Tania, we first met in Nijmegen and since then I very much enjoyed our friendship. Time went fast and I wish we could have done more things together. I wish you all the best in your career as well as family life! Dear Andreea, it was a pleasure to know you and I am happy that you accepted to stay at my place during your experience in Nijmegen. Many thanks to all the colleagues with whom we shared different moments starting with the cytokine meetings, the busy buffy coats on Tuesday, until the wonderful trip to Cluj: James, Marije, Theo, Frank, Mark G, Mark S, Sanne, Ajeng, Duby, Ekta, Jaap, Johanneke, Khutso, Vesla, Katharina, Kathrin, Janna, Anca, Alina, Marius, Lissette, Arjan, Martin, Bas B, Bas H, Siroon, Thijs, Rinke, Anne, Maartje, Rob, Bas, Xinhui, Yati.

I would also want to thank to Alex and Mike from the animal facility. You always helped and showed me how to dissect a mouse and how to isolate different cells and organs. It was a pleasure to know you both!

Many results from this thesis are due to several group patients (Dectin-1-deficient patients, HIES, CMC, Crohn’s and NOD2-deficient patients) who were brave enough and kind to donate blood and participate in our research. Without you, my thesis would not have been complete. Thank you!

I would also like to thank the committee, Prof. Verweij, Prof. van de Kerkhof and Prof. Brown, for their willingness to assess this thesis.
Acknowledgements

An important role in my professional life played my tutors and mentors Prof. Vlad Artenie (Universitatea Alexandru Ioan Cuza, Iasi), Dr. Karola Luetzow (GKSS Institute of Polymer research), Dr. Alexander Lietke (Roche Pharma Research GmbH) and Hans-Willi Krell (Roche Pharma Research GmbH). Thank you for guiding me during my junior years.

Adelina, we know each other since we were seven, but became best friends at the beginning of our university study. I feel privileged to have a friend like you and I sincerely wish to keep this bond forever despite the thousands kilometers between us. I cannot think of my past without thinking of you. We have so many memories. Thank you for being next to me, listening and supporting me during the most difficult, silliest and happiest moments of my life!

I would like to acknowledge Judith, Marcel, Anouke, Keeley and Calvin. I am really happy to know you all and to be part of the family.

Steliana, despite the age gap between us, we managed to have an extraordinary relationship. After many years, we were brought together during crucial time in our lives; your Master studies at Radboud and the second half of my PhD. You were next to me during my pregnancy. I still remember how we both were super excited to go for a new ecography; from kilometers away you arrived within minutes when Rafael was born. We went together for dress fitting, for choosing the place for my marriage, for deciding on the decorations and the menu, for Rafael’s first year anniversary and so forth. I would like to use this opportunity to thank you for all your support, help and love you are offering us. Rafael is truly blessed with his aunty Steliana, ’tușa’. We will all miss you a lot and wish you best of luck in your next step in life!

Petrus and Fanuta Ifrim. Dragi părinți, fără suportul vostru din toate punctele de vedere nu aș fi reusit să termin doctoratul. Mai important, nu aș fi avut aceste experiențe extraordinare de viață, atât profesionale cât și personale, experiențe ce m-au format ca și individ. Va multumesc din suflet pentru că m-ați motivat să studiez și pentru că mi-ați dat aripi și respectiv libertatea de a merge oriunde am dorit eu. Chiar dacă departe fizic, sunteți mereu în sufletul meu, sunteți doi părinți extraordinari, iar cuvintele mele nu vor fi niciodată suficiente pentru a vă mulțumi pentru toată dragostea, răbdarea și increderea voastră, pentru tot ce ați făcut și încă faceți pentru mine. Vă iubesc mult!

Dear Robbert, we first met almost 4 years ago and I can safely say that it was love at first sight. It was a challenge to see each other only during the weekend for almost 2 years, but despite all
this, our love got even stronger. I could not imagine a heartier, sincerer and funnier husband. Thank you for all the beautiful moments spent together starting with Renesse, Lansarote, Düsseldorf, Berlin, Gent, Copenhagen, Florence and other wonderful places in Tuscany, Perugia, Lago di Garda, Bruges, many holiday parks in The Netherlands and Romania! I look forward to many more fantastic memories! I do not have words to express my appreciation for being next to me during a very busy and demanding period in my life, when I had to juggle the final steps of my PhD, the pregnancy, moving together, a new born, our wedding, Dutch courses, private courses, job interviews and so on. Darling, thank you for being part of my life and thank you for our wonderful son, Rafael. I love you both, more than my life! Rafael, you don’t understand it yet, but once I saw you my life has utterly changed. Nothing can be more important than knowing you safe and seeing your sweet and naughty smile every morning! You are our blessing and we will always love you from the bottom of our hearts.
List of publications

Defective trained immunity in patients with STAT1-dependent chronic mucocutaneous candidiasis.
Ifrim DC, Quintin J, Meerstein-Kessel L, Plantinga T, Joosten LAB, van der Meer JW, van der Veerdonk F, Netea MG.

Antifungal innate immunity: recognition and inflammatory networks.
Becker KL, Ifrim DC, Quintin J, Netea MG, van de Veerdonk FL.

mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity.
Science. 2014 Sep 26;345(6204):1250684.

The functional fate of human monocytes after engagement of various pattern recognition receptors.
Ifrim DC, Quintin J, Joosten LAB, Jacobs L, Jansen T, Gow NAR, Williams DL, van der Meer JW, Netea MG.

Role of Dectin-2 for host defense against systemic infection with Candida glabrata.

Candida albicans primes the Toll-like receptor cytokine responses through a dectin-1/Raf-1-mediated pathway.
Ifrim DC, Joosten LAB, Kullberg BJ, Jacobs L, Jansen T, Williams DL, Gow NAR, van der Meer JW, Netea MG, Quintin J.
The Journal of Immunology. 2013 Apr 15;190(8):4129-35.

Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes.
List of publications

Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes.

Fungal chitin induces trained immunity in human monocytes during cross-talk of _S. cerevisiae_ with microbiota.
Rizzetto L, Ifrim DC, Tocci N, Cheng SC, Quintin J, De Filippo C, Santos M.A.S., Netea MG, Cavalieri D.
In Press

The role of Dectin-2 for host defense against disseminated candidiasis.
In Press
Curriculum Vitae

Daniela Camelia Ifrim was born in Râmnicu Sărat, Romania on March 11th, 1982. In 2005 she obtained her Bachelor Degree in Biochemistry (a 4 years program) from Alexandru Ioan Cuza University of Iasi, Romania. During this period Daniela went with an Erasmus scholarship at University of Central Lancashire in Preston, UK. In 2005 Daniela performed an internship in Bioinformatics at Max-Plank Research Institute in Göttingen. Between 2006 and 2009 she enrolled in a Master course in Biotechnology at Technische Universität Hamburg-Harburg, Germany. During her Masters, Daniela performed an internship at Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht in Teltow, Berlin, under the supervision of Dr Karola Lützow, investigating the biocompatibility of biopolymeric scaffolds employed in tissue engineering. Additionally, Daniela performed a six months internship working on a project related with the development and optimization of a biochemical homogeneous assay for protein detection, at Roche Diagnostic GmbH, in Penzberg (Germany) under the supervision of Dr. Hans-Willi Krell. Furthermore, she carried on with her Master thesis working on the isolation and expansion of antigen specific human single B cells for generation of antibodies in Cell-Free Expression Systems. The research included in her thesis lasted for 9 months and was conducted by Dr Hans-Willi Krell and Dr Alexander Liefke at Roche Diagnostics GmbH in Penzberg, Germany. Daniela obtained her Master’s diploma in March 2009 with a grade of very good.

Between April 2009 and July 2010 Daniela joined the Institut National de la Recherche Agronomique, laboratory of genetics and molecular microbiology in Grignon, France. The project focused on contribution of GPI-anchored proteins to the virulence of Candida albicans and was part of FINSysB Initial Training network. In September 2010, Daniela started her PhD at the Internal Medicine Department at Radboudumc with Prof. Mihai G. Netea and Prof. Leo A.B. Joosten as promotors and Dr. Jessica Quintin as copromotor. The aim of the PhD thesis was to study the recognition of Candida by C-type lectin receptors, with emphasizes on Dectin-2 receptor, as well as trained immunity phenomenon. During her PhD Daniela C. Ifrim took part in the ALLFUN European training network (Fungi in the setting of inflammation, allergy and autoimmune diseases: Translating basic science into clinical practices) and went to several national and international conferences where she presented her work.

After her PhD, Daniela took several courses in Clinical Trials and Project Management in Clinical Trials at Pharmaschool UK.

In January 2012 Daniela met Robbert van ’t Ent with whom she married in August 2014. Their son, Rafael, was born on 12th of March 2014.