The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/143926

Please be advised that this information was generated on 2019-08-18 and may be subject to change.
Combined Measurement of the Higgs Boson Mass in pp Collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS Experiments

The ATLAS and CMS Collaborations

Abstract

A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the $H \to \gamma\gamma$ and $H \to ZZ \to 4\ell$ decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is $m_H = 125.09 \pm 0.21$ (stat.) ± 0.11 (syst.) GeV.

Submitted to Physical Review Letters
The study of the mechanism of electroweak symmetry breaking is one of the principal goals of the CERN LHC program. In the Standard Model (SM), this symmetry breaking is achieved through the introduction of a complex doublet scalar field, leading to the prediction of the Higgs boson H \cite{1-6}, whose mass m_H is, however, not predicted by the theory. In 2012, the ATLAS and CMS Collaborations at the LHC announced the discovery of a particle with Higgs boson-like properties and a mass of about 125 GeV \cite{7-9}. The discovery was based primarily on mass peaks observed in the $\gamma\gamma$ and $ZZ \rightarrow \ell^+\ell^-\ell'^+\ell'^-$ (denoted $H \rightarrow ZZ \rightarrow 4\ell$ for simplicity) decay channels, where one or both of the Z bosons can be off-shell and where ℓ and ℓ' denote an electron or muon. With m_H known, all properties of the SM Higgs boson, such as its spin, parity, and coupling strengths to SM particles are consistent within the uncertainties with those expected for the SM Higgs boson.

The ATLAS and CMS Collaborations have independently measured m_H using the samples of proton-proton collision data collected in 2011 and 2012, commonly referred to as LHC Run 1. The analyzed samples correspond to approximately 5 fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 7$ TeV, and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV, for each experiment. Combined results in the context of the separate experiments, as well as those in the individual channels, are presented in Refs. \cite{12, 14-16}.

This Letter describes a combination of the Run 1 data from the two experiments, leading to improved precision for m_H. Besides its intrinsic importance as a fundamental parameter, improved knowledge of m_H yields more precise predictions for the other Higgs boson properties. Furthermore, the combined mass measurement provides a first step towards combinations of other quantities, such as the couplings. In the SM, m_H is related to the values of the masses of the W boson and top quark through loop-induced effects. Taking into account other measured SM quantities, the comparison of the measurements of the Higgs boson, W boson, and top quark masses can be used to directly test the consistency of the SM \cite{17} and thus to search for evidence of physics beyond the SM.

The combination is performed using only the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ decay channels, because these two channels offer the best mass resolution. Interference between the Higgs boson signal and the continuum background is expected to produce a downward shift of the signal peak relative to the true value of m_H. The overall effect in the $H \rightarrow \gamma\gamma$ channel \cite{18-20} is expected to be a few tens of MeV for a Higgs boson with a width near the SM value, which is small compared to the current precision. The effect in the $H \rightarrow ZZ \rightarrow 4\ell$ channel is expected to be much smaller \cite{21}. The effects of the interference on the mass spectra are neglected in this Letter.

The ATLAS and CMS detectors \cite{22, 23} are designed to precisely reconstruct charged leptons, photons, hadronic jets, and the imbalance of momentum transverse to the direction of the beams. The two detectors are based on different technologies requiring different reconstruction and calibration methods. Consequently they are subject to different sources of systematic uncertainty.

The $H \rightarrow \gamma\gamma$ channel is characterized by a narrow resonant signal peak containing several hundred events per experiment above a large falling continuum background. The overall signal-to-background ratio is a few percent. Both experiments divide the $H \rightarrow \gamma\gamma$ events into different categories depending on the signal purity and mass resolution, as a means to improve sensitivity. While CMS uses the same analysis procedure for the measurement of the Higgs boson mass and couplings \cite{15}, ATLAS implements separate analyses for the couplings \cite{21} and for
the mass \[14\]; the latter analysis classifies events in a manner that reduces the expected systematic uncertainties in \(m_H\).

The \(H \rightarrow ZZ \rightarrow 4\ell\) channel yields only a few tens of signal events per experiment, but has very little background, resulting in a signal-to-background ratio larger than 1. The events are analyzed separately depending on the flavor of the lepton pairs. To extract \(m_H\), ATLAS employs a two-dimensional (2D) fit to the distribution of the four-lepton mass and a kinematic discriminant introduced to reject the main background, which arises from ZZ continuum production. The CMS procedure is based on a three-dimensional fit, utilizing the four-lepton mass distribution, a kinematic discriminant, and the estimated event-by-event uncertainty in the four-lepton mass. Both analyses are optimized for the mass measurement and neither attempts to distinguish between different Higgs boson production mechanisms.

There are only minor differences in the parameterizations used for the present combination compared to those used for the combination of the two channels by the individual experiments. These differences have almost no effect on the results.

The measurement of \(m_H\), along with its uncertainty, is based on the maximization of profile-likelihood ratios \(\Lambda(\alpha)\) in the asymptotic regime \[25, 26\]:

\[
\Lambda(\alpha) = \frac{L(\alpha, \hat{\theta}(\alpha))}{L(\hat{\alpha}, \hat{\theta})},
\]

where \(L\) represents the likelihood function, \(\alpha\) the parameters of interest, and \(\theta\) the nuisance parameters. There are three types of nuisance parameters: those corresponding to systematic uncertainties, the fitted parameters of the background models, and any unconstrained signal model parameters not relevant to the particular hypothesis under test. Systematic uncertainties are discussed below. The other two types of nuisance parameters are incorporated into the statistical uncertainty. The \(\theta\) terms are profiled, i.e., for each possible value of a parameter of interest (e.g., \(m_H\)), all nuisance parameters are refitted to maximize \(L\). The \(\hat{\alpha}\) and \(\hat{\theta}\) terms denote the unconditional maximum likelihood estimates of the best-fit values for the parameters, while \(\hat{\theta}(\alpha)\) is the conditional maximum likelihood estimate for given parameter values \(\alpha\).

The likelihood functions \(L\) are constructed using signal and background probability density functions (PDFs) that depend on the discriminating variables: for the \(H \rightarrow \gamma\gamma\) channel, the diphoton mass and, for the \(H \rightarrow ZZ \rightarrow 4\ell\) channel, the four-lepton mass (for CMS, also its uncertainty) and the kinematic discriminant. The signal PDFs are derived from samples of Monte Carlo (MC) simulated events. For the \(H \rightarrow ZZ \rightarrow 4\ell\) channel, the background PDFs are determined using a combination of simulation and data control regions. For the \(H \rightarrow \gamma\gamma\) channel, the background PDFs are obtained directly from the fit to the data. The profile-likelihood fits to the data are performed as a function of \(m_H\) and the signal-strength scale factors defined below. The fitting framework is implemented independently by ATLAS and CMS, using the RooFit \[27\], RooStats \[28\], and HistFactory \[29\] data modeling and handling packages.

Despite the current agreement between the measured Higgs boson properties and the SM predictions, it is pertinent to perform a mass measurement that is as independent as possible of SM assumptions. For this purpose, three signal-strength scale factors are introduced and profiled in the fit, thus reducing the dependence of the results on assumptions about the Higgs boson couplings and about the variation of the production cross section times branching fraction with the mass. The signal strengths are defined as \(\mu = (\sigma_{\text{expt}} \times \text{BF}_{\text{expt}})/(\sigma_{\text{SM}} \times \text{BF}_{\text{SM}})\), representing the ratio of the cross section times branching fraction in the experiment to the correspond-
ing SM expectation for the different production and decay modes. Two factors, μ_{ggF+HH} and μ_{VBF+HH}, are used to scale the signal strength in the $H \to \gamma\gamma$ channel. The production processes involving Higgs boson couplings to fermions, namely gluon fusion (ggF) and associated production with a top quark-antiquark pair (ttH), are scaled with the μ_{ggF+HH} factor. The production processes involving couplings to vector bosons, namely vector boson fusion (VBF) and associated production with a vector boson (VH), are scaled with the μ_{VBF+VH} factor. The third factor, $\mu_{4\ell}$, is used to scale the signal strength in the $H \to ZZ \to 4\ell$ channel. Only a single signal-strength parameter is used for $H \to ZZ \to 4\ell$ events because the m_H measurement in this case is found to exhibit almost no sensitivity to the different production mechanisms.

The procedure based on the two scale factors μ_{ggF+HH} and μ_{VBF+VH} for the $H \to \gamma\gamma$ channel was previously employed by CMS [15] but not by ATLAS. Instead, ATLAS relied on a single $H \to \gamma\gamma$ signal-strength scale factor. The additional degree-of-freedom introduced by ATLAS for the present study results in a shift of about 40 MeV in the ATLAS $H \to \gamma\gamma$ result, leading to a shift of 20 MeV in the ATLAS combined mass measurement.

The individual signal strengths μ_{ggF+HH}, μ_{VBF+VH}, and $\mu_{4\ell}$ are assumed to be the same for ATLAS and CMS, and are profiled in the combined fit for m_H. The corresponding profile-likelihood ratio is

$$\Lambda(m_H) = \frac{L(m_H, \hat{\mu}_{ggF+HH}(m_H), \hat{\mu}_{VBF+VH}(m_H), \hat{\mu}_{4\ell}(m_H), \hat{\theta}(m_H))}{L(\hat{m}_H, \hat{\mu}_{ggF+HH}, \hat{\mu}_{VBF+VH}, \hat{\mu}_{4\ell}, \hat{\theta})}. \quad (2)$$

Slightly more complex fit models are used, as described below, to perform additional compatibility tests between the different decay channels and between the results from ATLAS and CMS.

Combining the ATLAS and CMS data for the $H \to \gamma\gamma$ and $H \to ZZ \to 4\ell$ channels according to the above procedure, the mass of the Higgs boson is determined to be

$$m_H = 125.09 \pm 0.24 \text{ GeV}$$

$$= 125.09 \pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (syst.)} \text{ GeV}, \quad (3)$$

where the total uncertainty is obtained from the width of a negative log-likelihood ratio scan with all parameters profiled. The statistical uncertainty is determined by fixing all nuisance parameters to their best-fit values, except for the three signal-strength scale factors and the $H \to \gamma\gamma$ background function parameters, which are profiled. The systematic uncertainty is determined by subtracting in quadrature the statistical uncertainty from the total uncertainty.

Equation (3) shows that the uncertainties in the m_H measurement are dominated by the statistical term, even when the Run 1 data sets of ATLAS and CMS are combined. Figure [1] shows the negative log-likelihood ratio scans as a function of m_H, with all nuisance parameters profiled (solid curves), and with the nuisance parameters fixed to their best-fit values (dashed curves).

The signal strengths at the measured value of m_H are found to be $\mu_{ggF+HH} = 1.15^{+0.28}_{-0.25}$, $\mu_{VBF+VH} = 1.17^{+0.58}_{-0.53}$, and $\mu_{4\ell} = 1.40^{+0.30}_{-0.25}$. The combined overall signal strength μ (with $\mu_{ggF+HH} = \mu_{VBF+VH} = \mu_{4\ell} \equiv \mu$) is $\mu = 1.24^{+0.18}_{-0.16}$. The results reported here for the signal strengths are not expected to have the same sensitivity, nor exactly the same values, as those that would be extracted from a combined analysis optimized for the coupling measurements.

The combined ATLAS and CMS results for m_H in the separate $H \to \gamma\gamma$ and $H \to ZZ \to 4\ell$ channels are

$$m_H = 125.07 \pm 0.29 \text{ GeV}$$

$$= 125.07 \pm 0.25 \text{ (stat.)} \pm 0.14 \text{ (syst.)} \text{ GeV}$$

(4)
Figure 1: Scans of twice the negative log-likelihood ratio $-2 \ln \Lambda(m_H)$ as functions of the Higgs boson mass m_H for the ATLAS and CMS combination of the $H \rightarrow \gamma\gamma$ (red), $H \rightarrow ZZ \rightarrow 4\ell$ (blue), and combined (black) channels. The dashed curves show the results accounting for statistical uncertainties only, with all nuisance parameters associated with systematic uncertainties fixed to their best-fit values. The 1 and 2 standard deviation limits are indicated by the intersections of the horizontal lines at 1 and 4, respectively, with the log-likelihood scan curves.

and

$$m_H^{\text{prefit}} = 125.15 \pm 0.40 \text{ GeV}$$

$$= 125.15 \pm 0.37 \text{ (stat.)} \pm 0.15 \text{ (syst.) GeV.} \quad (5)$$

The corresponding likelihood ratio scans are shown in Fig. 1.

A summary of the results from the individual analyses and their combination is presented in Fig. 2.

The observed uncertainties in the combined measurement can be compared with expectations. The latter are evaluated by generating two Asimov data sets [26], where an Asimov data set is a representative event sample that provides both the median expectation for an experimental result and its expected statistical variation, in the asymptotic approximation, without the need for an extensive MC-based calculation. The first Asimov data set is a “prefit” sample, generated using $m_H = 125.0$ GeV and the SM predictions for the couplings, with all nuisance parameters fixed to their nominal values. The second Asimov data set is a “postfit” sample, in which m_H, the three signal strengths $\mu_{\gamma\gamma}^g, \mu_{\gamma\gamma}^{VBF}, \mu_{VH}$, and $\mu_{4\ell}$, and all nuisance parameters are fixed to their best-fit estimates from the data. The expected uncertainties for the combined mass are

$$\delta m_{H\text{prefit}} = \pm 0.24 \text{ GeV} = \pm 0.22 \text{ (stat.)} \pm 0.10 \text{ (syst.) GeV} \quad (6)$$
Figure 2: Summary of Higgs boson mass measurements from the individual analyses of ATLAS and CMS and from the combined analysis presented here. The systematic (narrower, magenta-shaded bands), statistical (wider, yellow-shaded bands), and total (black error bars) uncertainties are indicated. The (red) vertical line and corresponding (gray) shaded column indicate the central value and the total uncertainty of the combined measurement, respectively.

for the prefit case and

$$\delta m_{H_{\text{postfit}}} = \pm 0.22 \text{ GeV} = \pm 0.19 \text{ (stat.)} \pm 0.10 \text{ (syst.) GeV}$$

(7)

for the postfit case, which are both very similar to the observed uncertainties reported in Eq. (5).

Constraining all signal yields to their SM predictions results in an m_H value that is about 70 MeV larger than the nominal result with a comparable uncertainty. The increase in the central value reflects the combined effect of the higher-than-expected $H \rightarrow ZZ \rightarrow 4\ell$ measured signal strength and the increase of the $H \rightarrow ZZ$ branching fraction with m_H. Thus, the fit assuming SM couplings forces the mass to a higher value in order to accommodate the value $\mu = 1$ expected in the SM.

Since the discovery, both experiments have improved their understanding of the electron, photon, and muon measurements [16, 30–34], leading to a significant reduction of the systematic uncertainties in the mass measurement. Nevertheless, the treatment and understanding of systematic uncertainties is an important aspect of the individual measurements and their combination. The combined analysis incorporates approximately 300 nuisance parameters. Among these, approximately 100 are fitted parameters describing the shapes and normalizations of the background models in the $H \rightarrow \gamma\gamma$ channel, including a number of discrete parameters that allow the functional form in each of the CMS $H \rightarrow \gamma\gamma$ analysis categories to be changed [35]. Of the remaining almost 200 nuisance parameters, most correspond to experimental or theoretical systematic uncertainties.

Based on the results from the individual experiments, the dominant systematic uncertainties for the combined m_H result are expected to be those associated with the energy or momentum scale and its resolution: for the photons in the $H \rightarrow \gamma\gamma$ channel and for the electrons and muons in the $H \rightarrow ZZ \rightarrow 4\ell$ channel [14,16]. These uncertainties are assumed to be uncorrelated between the two experiments since they are related to the specific characteristics of the detectors as well as to the calibration procedures, which are fully independent except for negligible effects due to the use of the common Z boson mass [36] to specify the absolute energy and
Table 1: Systematic uncertainties δm_H (see text) associated with the indicated effects for each of the four input channels, and the corresponding contributions of ATLAS and CMS to the systematic uncertainties of the combined result. “ECAL” refers to the electromagnetic calorimeters. The numbers in parentheses indicate expected values obtained from the prefit Asimov data set discussed in the text. The uncertainties for the combined result are related to the values of the individual channels through the relative weight of the individual channel in the combination, which is proportional to the inverse of the respective uncertainty squared. The top section of the table divides the sources of systematic uncertainty into three classes, which are discussed in the text. The bottom section of the table shows the total systematic uncertainties estimated by adding the individual contributions in quadrature, the total systematic uncertainties evaluated using the nominal method discussed in the text, the statistical uncertainties, the total uncertainties, and the analysis weights, illustrative of the relative weight of each channel in the combined m_H measurement.

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>ATLAS</th>
<th>CMS</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → $\gamma\gamma$</td>
<td>0.14 (0.16)</td>
<td>0.10 (0.13)</td>
<td>0.10 (0.13)</td>
</tr>
<tr>
<td>H → ZZ → 4ℓ</td>
<td>0.07 (0.07)</td>
<td>0.02 (0.01)</td>
<td>0.02 (0.01)</td>
</tr>
<tr>
<td>Scale uncertainties:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATLAS ECAL non-linearity / CMS photon non-linearity</td>
<td>0.15 (0.13)</td>
<td>0.07 (0.07)</td>
<td>0.07 (0.07)</td>
</tr>
<tr>
<td>Material in front of ECAL</td>
<td>0.12 (0.13)</td>
<td>0.02 (0.01)</td>
<td>0.02 (0.01)</td>
</tr>
<tr>
<td>ECAL longitudinal response</td>
<td>0.09 (0.08)</td>
<td>0.06 (0.06)</td>
<td>0.06 (0.06)</td>
</tr>
<tr>
<td>ECAL lateral shower shape</td>
<td>0.05 (0.01)</td>
<td>0.01 (<0.01)</td>
<td>0.01 (<0.01)</td>
</tr>
<tr>
<td>Photon energy resolution</td>
<td>0.05 (0.05)</td>
<td>–</td>
<td>0.01 (0.01)</td>
</tr>
<tr>
<td>H → $\gamma\gamma$ vertex & conversion reconstruction</td>
<td>0.05 (0.04)</td>
<td>0.03 (0.02)</td>
<td>0.03 (0.02)</td>
</tr>
<tr>
<td>Z → ee calibration</td>
<td>0.05 (0.05)</td>
<td>0.01 (<0.01)</td>
<td>0.01 (<0.01)</td>
</tr>
<tr>
<td>CMS electron energy scale & resolution</td>
<td>0.03 (0.04)</td>
<td>–</td>
<td>0.01 (0.01)</td>
</tr>
<tr>
<td>Muon momentum scale & resolution</td>
<td>0.03 (0.03)</td>
<td>–</td>
<td>0.01 (0.01)</td>
</tr>
<tr>
<td>Other uncertainties:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATLAS H → $\gamma\gamma$ background modeling</td>
<td>0.04 (0.03)</td>
<td>–</td>
<td>0.01 (0.01)</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>0.03 (<0.01)</td>
<td><0.01 (<0.01)</td>
<td>0.01 (<0.01)</td>
</tr>
<tr>
<td>Additional experimental systematic uncertainties</td>
<td>0.03 (<0.01)</td>
<td><0.01 (<0.01)</td>
<td>0.01 (<0.01)</td>
</tr>
<tr>
<td>Theory uncertainties</td>
<td><0.01 (<0.01)</td>
<td><0.01 (<0.01)</td>
<td>0.01 (<0.01)</td>
</tr>
<tr>
<td>Systematic uncertainty (sum in quadrature)</td>
<td>0.27 (0.27)</td>
<td>0.04 (0.04)</td>
<td>0.15 (0.17)</td>
</tr>
<tr>
<td>Systematic uncertainty (nominal)</td>
<td>0.27 (0.27)</td>
<td>0.04 (0.05)</td>
<td>0.15 (0.17)</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>0.45 (0.45)</td>
<td>0.52 (0.66)</td>
<td>0.31 (0.32)</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>0.51 (0.52)</td>
<td>0.52 (0.66)</td>
<td>0.34 (0.36)</td>
</tr>
<tr>
<td>Analysis weights</td>
<td>19% (22%)</td>
<td>18% (14%)</td>
<td>23% (17%)</td>
</tr>
</tbody>
</table>

momentum scales. Other experimental systematic uncertainties [14–16] are similarly assumed to be uncorrelated between the two experiments. Uncertainties in the theoretical predictions and in the measured integrated luminosities are treated as fully and partially correlated, respectively.

To evaluate the relative importance of the different sources of systematic uncertainty, the nuisance parameters are grouped according to their correspondence to three broad classes of systematic uncertainty:

- uncertainties in the energy or momentum scale and resolution for photons, electrons, and muons (“scale”),
- theoretical uncertainties, e.g., uncertainties in the Higgs boson cross section and branching fractions, and in the normalization of SM background processes (“theory”),
- other experimental uncertainties (“other”).

First, the total uncertainty is obtained from the full profile-likelihood scan, as explained above. Next, parameters associated with the “scale” terms are fixed and a new scan is performed.
Then, in addition to the scale terms, the parameters associated with the “theory” terms are fixed and a scan performed. Finally, in addition, the “other” parameters are fixed and a scan performed. Thus the fits are performed iteratively, with the different classes of nuisance parameters cumulatively held fixed to their best-fit values. The uncertainties associated with the different classes of nuisance parameters are defined by the difference in quadrature between the uncertainties resulting from consecutive scans. The statistical uncertainty is determined from the final scan, with all nuisance parameters associated with systematic terms held fixed, as explained above. The result is

\[m_H = 125.09 \pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (scale)} \pm 0.02 \text{ (other)} \pm 0.01 \text{ (theory)} \text{ GeV}, \quad (8) \]

from which it is seen that the systematic uncertainty is indeed dominated by the energy and momentum scale terms.

The relative importance of the various sources of systematic uncertainty is further investigated by dividing the nuisance parameters into yet-finer groups, with each group associated with a specific underlying effect, and evaluating the impact of each group on the overall mass uncertainty. The matching of nuisance parameters to an effect is not strictly rigorous because nuisance parameters in the two experiments do not always represent exactly the same effect and in some cases multiple effects are related to the same nuisance parameter. Nevertheless the relative impact of the different effects can be explored. A few experiment-specific groups of nuisance parameters are defined. For example, ATLAS includes a group of nuisance parameters to account for the inaccuracy of the background modeling for the \(H \to \gamma\gamma \) channel. To model this background, ATLAS uses specific analytic functions in each category \[14\] while CMS simultaneously considers different background parameterizations \[35\]. The systematic uncertainty in \(m_H \) related to the background modeling in CMS is estimated to be negligible \[15\].

The impact of groups of nuisance parameters is evaluated starting from the contribution of each individual nuisance parameter to the total uncertainty. This contribution is defined as the mass shift \(\delta m_H \) observed when re-evaluating the profile-likelihood ratio after fixing the nuisance parameter in question to its best-fit value increased or decreased by 1 standard deviation (\(\sigma \)) in its distribution. For a nuisance parameter whose PDF is a Gaussian distribution, this shift corresponds to the contribution of that particular nuisance parameter to the final uncertainty. The impact of a group of nuisance parameters is estimated by summing in quadrature the contributions from the individual parameters.

The impacts \(\delta m_H \) due to each of the considered effects are listed in Table 1. The results are reported for the four individual channels, both for the data and (in parentheses) the prefit Asimov data set. The row labeled “Systematic uncertainty (sum in quadrature)” shows the total sums in quadrature of the individual terms in the table. The row labeled “Systematic uncertainty (nominal)” shows the corresponding total systematic uncertainties derived using the subtraction in quadrature method discussed in connection with Eq. (3). The two methods to evaluate the total systematic uncertainty are seen to agree within 10 MeV, which is comparable with the precision of the estimates. The two rightmost columns of Table 1 list the contribution of each group of nuisance parameters to the uncertainties in the combined mass measurement, for ATLAS and CMS separately.

The statistical and total uncertainties are summarized in the bottom section of Table 1. Since the weight of a channel in the final combination is determined by the inverse of the squared uncertainty, the approximate relative weights for the combined result are 19% (\(H \to \gamma\gamma \)) and 18% (\(H \to ZZ \to 4\ell \)) for ATLAS, and 40% (\(H \to \gamma\gamma \)) and 23% (\(H \to ZZ \to 4\ell \)) for CMS. These weights are reported in the last row of Table 1 along with the expected values.
Figure 3 presents the impact of each group of nuisance parameters on the total systematic uncertainty in the mass measurement of ATLAS, CMS, and the combination. For the individual ATLAS and CMS measurements, the results in Fig. 3 are approximately equivalent to the sum in quadrature of the respective δm_H terms in Table 1 multiplied by their analysis weights, after normalizing these weights to correspond to either ATLAS only or CMS only. The ATLAS and CMS combined results in Fig. 3 are the sum in quadrature of the combined results in Table 1.

The results in Table 1 and Fig. 3 establish that the largest systematic effects for the mass uncertainty are those related to the determination of the energy scale of the photons, followed by those associated with the determination of the electron and muon momentum scales. Since the CMS $H \rightarrow \gamma\gamma$ channel has the largest weight in the combination, its impact on the systematic uncertainty of the combined result is largest.

Figure 3: The impacts δm_H (see text) of the nuisance parameter groups in Table 1 on the ATLAS (left), CMS (center), and combined (right) mass measurement uncertainty. The observed (expected) results are shown by the solid (empty) bars.

The mutual compatibility of the m_H results from the four individual channels is tested using a likelihood ratio with four masses in the numerator and a common mass in the denominator, and thus three degrees of freedom. The three signal strengths are profiled in both the numerator and denominator as in Eq. (1). The resulting compatibility, defined as the asymptotic p-value of the fit, is 10%. Allowing the ATLAS and CMS signal strengths to vary independently yields a compatibility of 7%. This latter fit results in an m_H value that is 40 MeV larger than the nominal result.

The compatibility of the combined ATLAS and CMS mass measurement in the $H \rightarrow \gamma\gamma$ channel with the combined measurement in the $H \rightarrow ZZ \rightarrow 4\ell$ channel is evaluated using the variable $\Delta m_{\gamma\gamma} \equiv m_{\gamma\gamma}^H - m_{\gamma\gamma}^H$, as the parameter of interest, with all other parameters, includ-
ing m_{H}, profiled. Similarly, the compatibility of the ATLAS combined mass measurement in the two channels with the CMS combined measurement in the two channels is evaluated using the variable $\Delta m^{\text{expt}} = m_{H}^{\text{ATLAS}} - m_{H}^{\text{CMS}}$. The observed results, $\Delta m_{\gamma\gamma}^{\text{expt}} = -0.1 \pm 0.5$ GeV and $\Delta m_{\ell\ell}^{\text{expt}} = 0.4 \pm 0.5$ GeV, are both consistent with zero within 1σ. The difference between the mass values in the two experiments is $\Delta m_{\gamma\gamma}^{\text{expt}} = 1.3 \pm 0.6$ GeV (2.1σ) for the $H \rightarrow \gamma\gamma$ channel and $\Delta m_{\ell\ell}^{\text{expt}} = -0.9 \pm 0.7$ GeV (1.3σ) for the $H \rightarrow ZZ \rightarrow 4\ell$ channel. The combined results exhibit a greater degree of compatibility than the results from the individual decay channels because the Δm^{expt} value has opposite signs in the two channels.

The compatibility of the signal strengths from ATLAS and CMS is evaluated through the ratios $\lambda^{\text{expt}} = \mu^{\text{ATLAS}} / \mu^{\text{CMS}}$, $\lambda_{F}^{\text{expt}} = \mu_{\gamma\gamma}^{\text{ATLAS}} / \mu_{\gamma\gamma}^{\text{CMS}}$, and $\lambda_{\ell\ell}^{\text{expt}} = \mu_{\ell\ell}^{\text{ATLAS}} / \mu_{\ell\ell}^{\text{CMS}}$. For this purpose, each ratio is individually taken to be the parameter of interest, with all other nuisance parameters profiled, including the remaining two ratios for the first two tests. We find $\lambda^{\text{expt}} = 1.21^{+0.30}_{-0.24}$, $\lambda_{F}^{\text{expt}} = 1.3^{+0.8}_{-0.5}$, and $\lambda_{\ell\ell}^{\text{expt}} = 1.3^{+0.5}_{-0.4}$, all of which are consistent with unity within 1σ.

The ratio $\lambda_{V}^{\text{expt}} = \mu_{V\ell\ell}^{\text{ATLAS}} / \mu_{V\ell\ell}^{\text{CMS}}$ is omitted because the ATLAS mass measurement in the $H \rightarrow \gamma\gamma$ channel is not sensitive to $\mu_{V\ell\ell}$. The correlation between the signal strength and the measured mass is explored with 2D likelihood scans as functions of μ and m_{H}. The three signal strengths are assumed to be the same: $\mu_{ggF+ttH} = \mu_{VBF+VH}$, and thus the ratios of the production cross sections times branching fractions are constrained to the SM predictions. Assuming that the negative log-likelihood ratio $-2 \ln \Lambda(\mu, m_{H})$ is distributed as a χ^{2} variable with two degrees of freedom, the 68% confidence level (CL) confidence regions are shown in Fig. 3 for each individual measurement, as well as for the combined result.

In summary, a combined measurement of the Higgs boson mass is performed in the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ channels using the LHC Run 1 data sets of the ATLAS and CMS experiments, with minimal reliance on the assumption that the Higgs boson behaves as predicted by the SM.

The result is

\[
m_{H} = 125.09 \pm 0.24 \text{ GeV}
\]

\[
= 125.09 \pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (syst.)} \text{ GeV}
\]

where the total uncertainty is dominated by the statistical term, with the systematic uncertainty dominated by effects related to the photon, electron, and muon energy or momentum scales and resolutions. Compatibility tests are performed to ascertain whether the measurements are consistent with each other, both between the different decay channels and between the two experiments. All tests on the combined results indicate consistency of the different measurements within 1σ, while the four Higgs boson mass measurements in the two channels of the two experiments agree within 2σ. The combined measurement of the Higgs boson mass improves upon the results from the individual experiments and is the most precise measurement to date of this fundamental parameter of the newly discovered particle.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS and CMS could not be operated efficiently.

We acknowledge the support of ANPCyT (Argentina); YerPhI (Armenia); ARC (Australia); BMWFW and FWF (Austria); ANAS (Azerbaijan); SSTC (Belarus); FNRS and FWO (Belgium);
Figure 4: Summary of likelihood scans in the 2D plane of signal strength μ versus Higgs boson mass m_H for the ATLAS and CMS experiments. The 68% CL confidence regions of the individual measurements are shown by the dashed curves and of the overall combination by the solid curve. The markers indicate the respective best-fit values.

CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); NSERC, NRC, and CFI (Canada); CERN; CONICYT (Chile); CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MSMT CR, MPO CR and VSC CR (Czech Republic); DNRF, DSNRC and Lundbeck Foundation (Denmark); MoER, ERC IUT and ERDF (Estonia); EPLANET, ERC and NSRF (European Union); Academy of Finland, MEC, and HIP (Finland); CEA, CNRS/IN2P3 (France); GNSF (Georgia); BMBF , DFG, HGF, MPG, and AvH Foundation (Germany); GSRT and NSRF (Greece); RGC (Hong Kong SAR, China); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); IF, MINERVA, GIP, I-CORE and Benoziyo Center (Israel); INFN (Italy); MEXT and JSPS (Japan); JINR; MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); CNRST (Morocco); FOM and NWO (Netherlands); MBIE (New Zealand); BRF and RCN (Norway); PAEC (Pakistan); MNiSW, MSHE, NCN, and NSC (Poland); GRICES and FCT (Portugal); MNE/IFA (Romania); MES of Russia, MON, RosAtom, RAS, and RFBR (Russian Federation); MSTD and MESTD (Serbia); MSSR (Slovakia); ARRS and MIZŠ (Slovenia); DST/NRF (South Africa); MINECO, SEIDI and CPAN (Spain); SRC and Wallenberg Foundation (Sweden); ETH Board, ETH Zurich, PSI, SER, SNSF, UniZH, and Cantons of Bern, Genève and Zurich (Switzerland); NSC (Taipei); MST (Taiwan); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC and the Royal Society and Leverhulme Trust (United Kingdom); DOE and NSF (United States of America).

In addition, we gratefully acknowledge the crucial computing support from all WLCG partners, in particular from CERN and the Tier-1 and Tier-2 facilities worldwide.
References

A The ATLAS Collaboration

4 (a) Department of Physics, Ankara University, Ankara; (c) Istanbul Aydin University, Istanbul;
5 (d) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
6 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
7 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
8 Department of Physics, University of Arizona, Tucson AZ, United States of America
9 Physics Department, The University of Texas at Arlington, Arlington TX, United States of America
10 Physics Department, University of Athens, Athens, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics
and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
103 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
104 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
105 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
106 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
108 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
110 Department of Physics, New York University, New York NY, United States of America
111 Ohio State University, Columbus OH, United States of America
112 Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
114 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
115 Palacky University, RCPTM, Olomouc, Czech Republic
116 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
117 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
118 Graduate School of Science, Osaka University, Osaka, Japan
119 Department of Physics, University of Oslo, Oslo, Norway
120 Department of Physics, Oxford University, Oxford, United Kingdom
121 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
122 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
123 National Research Centre “Kurchatov Institute” B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
124 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
126 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
128 Czech Technical University in Prague, Praha, Czech Republic
129 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
130 State Research Center Institute for High Energy Physics, Protvino, Russia
131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
132 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma
Tre, Roma, Italy
135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies
Université Hassan II, Casablanca; (b) Centre National de l’Énergie des Sciences Techniques
Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPEA-
Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e)
Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay
(Commissariat à l’Énergie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz
CA, United States of America
138 Department of Physics, University of Washington, Seattle WA, United States of America
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, United States of America
144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b)
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy
of Sciences, Kosice, Slovak Republic
145 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of
Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the
Witwatersrand, Johannesburg, South Africa
146 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm,
Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook
NY, United States of America
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel
Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The
University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto ON, Canada
159 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University,
Toronto ON, Canada
160 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
161 Department of Physics and Astronomy, Tufts University, Medford MA, United States of
America
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United
States of America
164 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c)
Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana IL, United States of America
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMI), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
g Also at Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal
h Also at Tomsk State University, Tomsk, Russia
i Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
j Also at Università di Napoli Parthenope, Napoli, Italy
k Also at Institute of Particle Physics (IPP), Canada
l Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
m Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
n Also at Louisiana Tech University, Ruston LA, United States of America
o Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
p Also at Department of Physics, National Tsing Hua University, Taiwan
q Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
r Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
s Also at CERN, Geneva, Switzerland
t Also at Georgian Technical University (GTU), Tbilisi, Georgia
u Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
v Also at Manhattan College, New York NY, United States of America
w Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
x Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
y Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
z Also at School of Physics, Shandong University, Shandong, China
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at National Research Nuclear University MEPhI, Moscow, Russia
Also at Department of Physics, Stanford University, Stanford CA, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased
B The CMS Collaboration

1 Yerevan Physics Institute, Yerevan, Armenia
2 Institut für Hochenergiephysik der OeAW, Wien, Austria
3 National Centre for Particle and High Energy Physics, Minsk, Belarus
4 Universiteit Antwerpen, Antwerpen, Belgium
5 Vrije Universiteit Brussel, Brussel, Belgium
6 Université Libre de Bruxelles, Bruxelles, Belgium
7 Ghent University, Ghent, Belgium
8 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9 Université de Mons, Mons, Belgium
10 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12 Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
13 Universidade Estadual Paulista
14 Universidade Federal do ABC
15 Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
16 University of Sofia, Sofia, Bulgaria
17 Institute of High Energy Physics, Beijing, China
18 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
19 Universidad de los Andes, Bogota, Colombia
20 University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
21 University of Split, Faculty of Science, Split, Croatia
22 Institute Rudjer Boskovic, Zagreb, Croatia
23 University of Cyprus, Nicosia, Cyprus
24 Charles University, Prague, Czech Republic
25 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
26 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
27 Department of Physics, University of Helsinki, Helsinki, Finland
28 Helsinki Institute of Physics, Helsinki, Finland
29 Lappeenranta University of Technology, Lappeenranta, Finland
30 DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
31 Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
32 Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
33 Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
34 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
35 Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
36 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
37 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
38 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
39 Deutsches Elektronen-Synchrotron, Hamburg, Germany
40 University of Hamburg, Hamburg, Germany
41 Institut für Experimentelle Kernphysik, Karlsruhe, Germany
42 Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
University of Athens, Athens, Greece
University of Ioánnina, Ioánnina, Greece
Wigner Research Centre for Physics, Budapest, Hungary
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
University of Debrecen, Debrecen, Hungary
National Institute of Science Education and Research, Bhubaneswar, India
Panjab University, Chandigarh, India
University of Delhi, Delhi, India
Saha Institute of Nuclear Physics, Kolkata, India
Bhabha Atomic Research Centre, Mumbai, India
Tata Institute of Fundamental Research, Mumbai, India
Indian Institute of Science Education and Research (IISER), Pune, India
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
University College Dublin, Dublin, Ireland
INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
Università di Bari
Politecnico di Bari
INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
INFN Sezione di Bologna
Università di Bologna
INFN Sezione di Catania, Università di Catania, CSFNSM, Catania, Italy
INFN Sezione di Catania
Università di Catania
CSFNSM
INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
INFN Sezione di Firenze
Università di Firenze
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Università di Genova, Genova, Italy
INFN Sezione di Genova
Università di Genova
INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Milano-Bicocca
Università di Milano-Bicocca
INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy
INFN Sezione di Napoli
Università di Napoli ‘Federico II’
Università della Basilicata
Università G. Marconi
INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy
INFN Sezione di Padova
Università di Padova
Università di Trento
INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
INFN Sezione di Pavia
Università di Pavia
INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
INFN Sezione di Roma, Università di Roma, Roma, Italy
INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
INFN Sezione di Trieste, Università di Trieste, Trieste, Italy

Kangwon National University, Chunchon, Korea
Kyungpook National University, Daegu, Korea
Chonbuk National University, Jeonju, Korea
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Korea University, Seoul, Korea
Seoul National University, Seoul, Korea
University of Seoul, Seoul, Korea
Vilnius University, Vilnius, Lithuania
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Universidad Iberoamericana, Mexico City, Mexico
Benemerita Universidad Autónoma de Puebla, Puebla, Mexico
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
University of Auckland, Auckland, New Zealand
University of Canterbury, Christchurch, New Zealand
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
National Centre for Nuclear Research, Swierk, Poland
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
Joint Institute for Nuclear Research, Dubna, Russia
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Institute for Nuclear Research, Moscow, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
P.N. Lebedev Physical Institute, Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade,
Serbia
98 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
99 Universidad Autónoma de Madrid, Madrid, Spain
100 Universidad de Oviedo, Oviedo, Spain
101 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
102 CERN, European Organization for Nuclear Research, Geneva, Switzerland
103 Paul Scherrer Institut, Villigen, Switzerland
104 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
105 Universität Zürich, Zurich, Switzerland
106 National Central University, Chung-Li, Taiwan
107 National Taiwan University (NTU), Taipei, Taiwan
108 Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
109 Cukurova University, Adana, Turkey
110 Middle East Technical University, Physics Department, Ankara, Turkey
111 Bogazici University, Istanbul, Turkey
112 Istanbul Technical University, Istanbul, Turkey
113 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
114 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
115 University of Bristol, Bristol, United Kingdom
116 Rutherford Appleton Laboratory, Didcot, United Kingdom
117 Imperial College, London, United Kingdom
118 Brunel University, Uxbridge, United Kingdom
119 Baylor University, Waco, USA
120 The University of Alabama, Tuscaloosa, USA
121 Boston University, Boston, USA
122 Brown University, Providence, USA
123 University of California, Davis, Davis, USA
124 University of California, Los Angeles, USA
125 University of California, Riverside, Riverside, USA
126 University of California, San Diego, La Jolla, USA
127 University of California, Santa Barbara, Santa Barbara, USA
128 California Institute of Technology, Pasadena, USA
129 Carnegie Mellon University, Pittsburgh, USA
130 University of Colorado at Boulder, Boulder, USA
131 Cornell University, Ithaca, USA
132 Fermi National Accelerator Laboratory, Batavia, USA
133 University of Florida, Gainesville, USA
134 Florida International University, Miami, USA
135 Florida State University, Tallahassee, USA
136 Florida Institute of Technology, Melbourne, USA
137 University of Illinois at Chicago (UIC), Chicago, USA
138 The University of Iowa, Iowa City, USA
139 Johns Hopkins University, Baltimore, USA
140 The University of Kansas, Lawrence, USA
141 Kansas State University, Manhattan, USA
142 Lawrence Livermore National Laboratory, Livermore, USA
143 University of Maryland, College Park, USA
Massachusetts Institute of Technology, Cambridge, USA
University of Minnesota, Minneapolis, USA
University of Mississippi, Oxford, USA
University of Nebraska-Lincoln, Lincoln, USA
State University of New York at Buffalo, Buffalo, USA
Northeastern University, Boston, USA
Northwestern University, Evanston, USA
University of Notre Dame, Notre Dame, USA
The Ohio State University, Columbus, USA
Princeton University, Princeton, USA
Purdue University, West Lafayette, USA
Purdue University Calumet, Hammond, USA
Rice University, Houston, USA
University of Rochester, Rochester, USA
The Rockefeller University, New York, USA
Rutgers, The State University of New Jersey, Piscataway, USA
University of Tennessee, Knoxville, USA
Texas A&M University, College Station, USA
Texas Tech University, Lubbock, USA
Vanderbilt University, Nashville, USA
University of Virginia, Charlottesville, USA
Wayne State University, Detroit, USA
University of Wisconsin, Madison, USA

a Deceased
b Also at Vienna University of Technology, Vienna, Austria
c Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
d Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
e Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
f Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
g Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
h Also at Universidade Estadual de Campinas, Campinas, Brazil
i Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
j Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
k Also at Joint Institute for Nuclear Research, Dubna, Russia
m Now at British University in Egypt, Cairo, Egypt
n Now at Helwan University, Cairo, Egypt
o Also at Suez University, Suez, Egypt
p Also at Cairo University, Cairo, Egypt
q Now at Fayoum University, El-Fayoum, Egypt
s Now at Ain Shams University, Cairo, Egypt
u Also at Université de Haute Alsace, Mulhouse, France
v Also at Brandenburg University of Technology, Cottbus, Germany
w Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
x Also at Eötvös Loránd University, Budapest, Hungary
y Also at University of Debrecen, Debrecen, Hungary
z Also at Wigner Research Centre for Physics, Budapest, Hungary
aa Also at University of Visva-Bharati, Santiniketan, India