Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV Measured with the ATLAS Detector

The ATLAS Collaboration

Abstract

A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb$^{-1}$. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the Standard Model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% CL; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.
Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV Measured with the ATLAS Detector

ATLAS Collaboration

(Dated: 31 March 2015)

A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb$^{-1}$. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the Standard Model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% CL; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.

The search for an internal structure of fermions and new forces that might govern that structure is a major goal of modern particle physics. The most powerful probes are scattering experiments with large momentum transfer. Collisions of protons at the Large Hadron Collider (LHC) resulting in two energetic jets of particles (dijets) provide the largest momentum transfer currently available, and therefore the deepest probe.

The angular distribution of jets relative to the beam axis in events with high dijet invariant mass (m$_{jj}$) provides stringent tests of perturbative quantum chromodynamics (QCD) as well as theories of new phenomena. QCD calculations predict that dijet production, dominated by t-channel gluon exchange in the kinematic region of proton-proton (pp) collisions at the LHC, features steeply falling m$_{jj}$ distributions and angular distributions peaked at $|\cos(\theta^*)| = 1$, where θ^* is the polar scattering angle in the two-parton center-of-mass frame. New phenomena, such as strong gravity [1, 2] or new interactions [3–6] typically predict angular distributions which are more isotropic.

Previous studies of dijet angular distributions, at the CERN SPS [7, 8], the FNAL Tevatron [9, 10], the CERN LHC at $\sqrt{s} = 7$ TeV [11–13], and by the CMS Collaboration at $\sqrt{s} = 8$ TeV [17], have reported results consistent with the Standard Model (SM). This Letter reports on studies of dijet angular distributions in pp collisions at $\sqrt{s} = 8$ TeV in data with an integrated luminosity of 17.3 fb$^{-1}$ collected with the ATLAS detector in 2012.

A detailed description of the ATLAS detector is published elsewhere [13]. The detector is instrumented over almost the entire solid angle around the collision point, with layers of tracking detectors, calorimeters, and muon detectors.

The jets are measured using a calorimeter system composed of different detector types covering different regions in η [13] and depth. The electromagnetic calorimeter is composed of liquid-argon sampling calorimeters using lead as absorber, and is split into a barrel ($|\eta| < 1.475$) and two end caps ($1.575 < |\eta| < 3.2$). The hadronic calorimeter is divided into a barrel and two extended barrels ($|\eta| < 1.75$), and two endcaps ($1.5 < |\eta| < 3.2$). The barrel and extended barrels are sampling calorimeters with steel as absorber and scintillator tiles as the active medium, while the hadronic endcaps are liquid-argon calorimeters with copper as absorber. In the very forward regions ($3.1 < |\eta| < 4.9$) there are liquid argon calorimeters with copper and tungsten absorbers.

The data are selected using a trigger that requires a single high-p_T ($p_T > 47$ (333) GeV) jet above one of eight thresholds, ranging from 25 GeV to 220 GeV. Due to the high rate of jets at lower p_T, only a fraction of the events from the lower seven thresholds are stored.

Individual jets are reconstructed using the anti-k_t jet clustering algorithm [20, 21] with radius parameter $R = 0.6$. The inputs to this algorithm are clusters [22] of calorimeter cells with energy depositions significantly above the noise. Jet four-momenta are constructed by the vectorial addition of clusters of cells, treating each cluster as a four-momentum with zero mass. The jet four-momenta are then corrected to the jet energy scale as a function of η and p_T for various effects, the largest of which are the hadronic shower response, detector material distribution, and pileup events [23]. This is done using a calibration scheme based on samples of simulated data and validated with test-beam [25] and collision data [22] studies.

The rapidity of a jet is defined as $y = \frac{1}{2} \ln ([E + p_z]/[E - p_z])$, where E is the jet energy and p_z is the momentum component along the beam axis [19]. The scattering angle between two jets can be expressed using the variable $\chi = e^{(y_1 - y_2)} = e^{2(y^*)}$, where y_1 and y_2 are the rapidities of the two jets, and $y^* = \frac{1}{2}(y_1 - y_2)$. The rapidity boost of the dijet system with respect to the center of mass of the colliding protons is calculated as $y_B = \frac{1}{2}(y_1 + y_2)$.

For each trigger, the event is required to have a jet with p_T sufficient to achieve a trigger efficiency greater than 99.5%. For the lowest (highest) threshold trigger, this corresponds to $p_T^{\text{min}} = 47$ (333) GeV. Events are required to have at least two jets, each with $p_T > 50$ GeV; the dijet system, defined as the two jets with largest p_T, is required to have $|y^*| < 1.7$, $|y_B| < 1.1$, and $m_{jj} > 600$ GeV (where the m_{jj} requirement avoids the kinematic bias in the angular distributions introduced by the minimum p_T requirement).
The detector covers the angular range $|y^*| < 1.7$, corresponding to $\chi < 30$. This interval is divided into 11 bins, with boundaries at $\chi_n = e^{0.3x_n}$ for $n = 0$ to 10, approximating the segmentation of the calorimeter in Δy. The data are further binned coarsely in m_{jj} with the expectation that low-m_{jj} bins are dominated by QCD processes and that signals associated with new physics would be found in higher dijet invariant mass bins. The bin edges are chosen to optimize the expected sensitivity to the model of contact interactions. The highest dijet mass observed is 5.5 TeV.

The SM predictions are estimated using the Pythia8 [28] v8.160 event generator with the AU2 [27] underlying-event tune and the CT10 [28] parton distribution functions (PDF). The simulated events are propagated through a detector simulation [29] that uses the Geant4 [30] simulation package. Pileup conditions vary as a function of the instantaneous luminosity and are taken into account by overlaying simulated minimum-bias events generated with Pythia8 onto the hard-scattering process such that the observed distribution of the average number of interactions per bunch crossing is reproduced. The same reconstruction and event selection are applied to the simulated events and the data.

The Pythia8 calculations are primarily to leading order (LO) in QCD with simulation of higher-order contributions included in the shower modeling. Events generated by Pythia8 are reweighted using a correction factor calculated based on the ratio of the next-to-leading-order (NLO) cross-section calculation from NLOJET++ [31] v4.1.2 to the LO+shower calculation from Pythia8:

$$K(\chi, m_{jj}) = \frac{\sigma_{NLO}(\chi, m_{jj})^{NLOJET++}}{\sigma_{LO+shower}(\chi, m_{jj})^{Pythia8}}.$$

The K-factors decrease with χ and thus modify the shape of the angular distributions; the impact ranges from a few percent at low m_{jj} to approximately 15% for the highest m_{jj} region. Additional processes accounting for electroweak (EW) effects not included in Pythia8 (virtual weak boson exchange and Sudakov-type logarithms) are included as EW corrections [34]. The effect is most pronounced at high m_{jj} and low χ, and the correction factors range from unity at low m_{jj} to 0.98 – 1.12 in the highest m_{jj} region. The EW corrections and the NLO K-factors are applied as a function of χ and m_{jj} to the Pythia8 prediction.

Figure 1 shows the distributions of the data as a function of χ. The distribution in each m_{jj} region is normalized to unity, as the sensitivity to new phenomena is due to the angular distribution rather than normalization. The predicted SM distributions are also shown in Fig. 1 and describe the data well. The EW corrections substantially improve the agreement of the SM prediction with data at high m_{jj}, as can be appreciated from the comparison of the predictions with and without these corrections shown in Fig. 1.

Models of quark compositeness are probed by searching for evidence of new interactions between quarks at a large characteristic energy scale, Λ. At energies below this scale, the details of the new interaction and potential mediating particles can be integrated out to form a four-fermion contact interaction model [5, 6] described by an effective field theory:

$$L_{qq} = \frac{2\pi}{\Lambda^2} \left[\eta_{LL}(\bar{q}_L \gamma_\mu q_L)(\bar{q}_L \gamma^\mu q_L) + \eta_{RR}(\bar{q}_R \gamma_\mu q_R)(\bar{q}_R \gamma^\mu q_R) \right. + \left. 2\eta_{LR}(\bar{q}_L \gamma_\mu q_R)(\bar{q}_R \gamma^\mu q_L) \right],$$

where the quark fields have L and R chiral projections and the coefficients η_{LL}, η_{RR}, and η_{LR} turn on and off various interactions.

In this Letter, a contact interaction (CI) model with a left-chiral color-singlet coupling ($\eta_{LL} = \pm 1$) is used as
a benchmark model, as many other models of new phenomena have similar predictions for the dijet scattering angle χ at large m_{jj}. Interference of the signal model with the SM process $q\bar{q} \rightarrow q\bar{q}$ is also included.

Event samples were simulated with both QCD and contact interactions, taking interference into account and using the same event generator, underlying-event tune and PDF as for the SM simulations. Events were generated for both constructive and destructive interference with $\Lambda = 7$ TeV and $\Lambda = 10$ TeV. The $\Lambda = 7$ TeV sample is then used for extrapolation to other values of Λ, using the fact that the interference term is proportional to $1/\Lambda^2$ and the pure CI cross section is proportional to $1/\Lambda^4$. This procedure is validated with the $\Lambda = 10$ TeV sample. As with the QCD prediction, a K-factor correction is computed to correct the Pythia LO+shower prediction to an NLO calculation. Calculations at NLO are provided by C NUET [35] v1.0.

Uncertainties in the SM and signal predictions include theoretical uncertainties and experimental uncertainties on the measured angular distributions. Theoretical uncertainties in the SM and signal predictions are due to the choice of PDF, renormalization and factorization scales, choice of event generator as well as statistical uncertainties due to limited simulation sample sizes. The impact of the uncertainty in the PDF is estimated using NLOJET++ with those of Pythia v1.0, as the choice of PDF largely impacts the total cross section rather than the angular distributions. The uncertainty due to the choice of renormalization and factorization scales were estimated by varying those independently up and down by a factor two in NLOJET++. The resulting uncertainty varies with m_{jj} and χ, rising to 4% at the smallest χ values at high m_{jj}. The uncertainty due to the choice of generator is estimated by comparing the predictions from the NLO generator Powheg [38] v1.0 with those of Pythia with K-factors applied. The largest uncertainty due to choice of generator is at the lowest m_{jj} values, where it approaches 20%, while for the highest m_{jj} values and smallest χ, it ranges from 10% to 14%. The uncertainty due to the choice of the showering model is estimated through comparison of Powheg samples showered and hadronized with Pythia8 v8.175 to Herwig [39] v6.520.2 samples using Jimmy [10, 11] v4.31. The largest value of this uncertainty is less than 1% at the highest m_{jj} values and smallest values of χ. Finally, the statistical uncertainties on the K-factors due to limited simulation sample size are small and set to 1%.

The experimental uncertainty is dominated by the p-dependence of the jet energy scale calibration. This uncertainty varies from approximately 15% at small values of χ for the highest m_{jj} values, to a few percent at lower m_{jj} values and higher χ values. The uncertainty in the beam energy is found to introduce a negligible contribution. The total uncertainty at the lowest χ, highest m_{jj} amounts to 20%, decreasing to a few percent at high χ. The total theoretical and experimental uncertainties are shown in Fig. [1].

The p-value for the SM hypothesis is (0.25) 0.30 for the (second) highest m_{jj} bin. In the absence of significant deviations from the SM prediction, upper bounds on CI contributions are calculated using a one-sided profile likelihood ratio and the CL$_S$ technique [42, 43], evaluated using the asymptotic approximation [44] on events with $m_{jj} > 3.2$ TeV; the validity of asymptotic approximation was confirmed using toy simulations. These bounds exclude a compositeness scale below 8.1 TeV in a destructive interference scenario and below 12.0 TeV in a constructive interference scenario. The median expected limits are 8.9 (14.1) TeV for the destructive (constructive) interference scenario.

In summary, dijet angular distributions have been measured by the ATLAS experiment in 17.3 fb$^{-1}$ of 8 TeV pp collisions at the LHC. Over a wide angular range and dijet invariant mass spectrum, the data are well described by QCD predictions at NLO. A model of quark compositeness is used as a benchmark for theories of new phenomena that include new forces and mediating particles; such theories predict deviations at small values of χ. A compositeness scale below 8.1 (12.0) TeV in a destructive (constructive) interference scenario is excluded at 95% confidence level, similar to results from the CMS Collaboration [17] and representing a significant enhancement in sensitivity relative to the previous limit (at 7.6 TeV for destructive interference) from the ATLAS Collaboration [11].

We would like to thank S. Dittmaier and A. Huss for providing us with the electroweak correction factors. We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINEVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNISW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.
The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.
A. Yurkevicz108, I. Yusuff28.a ll, B. Zabinski39, R. Zaidan62, A.M. Zaitsev130.aa, J. Zalieckas14, A. Zaman148, S. Zambito57, L. Zanello132.a,132.b, D. Zanuz88, C. Zeitnitz175, M. Zeman128, A. Zemla38.a, K. Zengel23, O. Zenin130, T. Ženiš144.a, D. Zerwas117, D. Zhang49, F. Zhang173, J. Zhang6, L. Zhang48, R. Zhang33b, X. Zhang33d, Z. Zhang117, X. Zhao40, Y. Zhao33d,117, Z. Zhao33b, A. Zhemchugov65, J. Zhong120, B. Zhou89, C. Zhou45, L. Zhou35, L. Zhou40, N. Zhou163, C.G. Zhu33d, H. Zhu33a, J. Zhu89, Y. Zhu33b, X. Zhuang33a, K. Zhukov96, A. Zibelli174, D. Ziemska61, N.I. Zimine65, C. Zimmermann83, S. Zimmermann48, Z. Zinonos48, M. Ziolkowski141, L. Živković13, G. Zobernig171, A. Zoccoli35b,35a, M. zur Nedden116, G. Zurzolo104.a,104.b, L. Zwalinski39.

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (c) Istanbul Aydin University, Istanbul; (d) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, Universität von Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
Niels Bohr Institute, University of Copenhagen, København, Denmark
36

(a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
37

(a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Dipartimento di Fisica, Università del Sannio, Benevento, Italy
38

Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
40

Physics Department, Southern Methodist University, Dallas TX, United States of America
41

Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42

DESY, Hamburg and Zeuthen, Germany
43

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45

Department of Physics, Duke University, Durham NC, United States of America
46

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47

INFN Laboratori Nazionali di Frascati, Frascati, Italy
48

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49

Section de Physique, Université de Genève, Geneva, Switzerland
50

(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51

(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56

Department of Physics, Hampton University, Hampton VA, United States of America
57

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58

(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60

(a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
61

Department of Physics, Indiana University, Bloomington IN, United States of America
62

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63

University of Iowa, Iowa City IA, United States of America
64

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67

Graduate School of Science, Kobe University, Kobe, Japan
68

Faculty of Science, Kyoto University, Kyoto, Japan
69

Kyoto University of Education, Kyoto, Japan
70

Department of Physics, Kyushu University, Fukuoka, Japan
71

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
72

Physics Department, Lancaster University, Lancaster, United Kingdom
73

(a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
74

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
75

Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
76

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
77

Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
78

Department of Physics and Astronomy, University College London, London, United Kingdom
79

Louisiana Tech University, Ruston LA, United States of America
80

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
81

Fysiska institutionen, Lunds universitet, Lund, Sweden
82

Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
83

Institut für Physik, Universität Mainz, Mainz, Germany
84

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Énergies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

(a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
Also at TRIUMF, Vancouver BC, Canada

Also at Department of Physics, California State University, Fresno CA, United States of America

Also at Department of Physics, University of Fribourg, Fribourg, Switzerland

Also at Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal

Also at Tomsk State University, Tomsk, Russia

Also at Department of Physics, University of Fribourg, Fribourg, Switzerland

Also at Università di Napoli Parthenope, Napoli, Italy

Also at Institute of Particle Physics (IPP), Canada

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia

Also at Louisiana Tech University, Ruston LA, United States of America

Also at Institucio Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain

Also at Department of Physics, National Tsing Hua University, Taiwan

Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia

Also at CERN, Geneva, Switzerland

Also at Georgian Technical University (GTU), Tbilisi, Georgia

Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan

Also at Manhattan College, New York NY, United States of America

Also at Ochanomizu University, Tokyo, Japan

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at School of Physics, Shandong University, Shandong, China

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia

Also at Section de Physique, Université de Genève, Geneva, Switzerland

Also at International School for Advanced Studies (SISSA), Trieste, Italy

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia

Also at National Research Nuclear University MEPhI, Moscow, Russia

Also at Department of Physics, Stanford University, Stanford CA, United States of America

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia

* Deceased