Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at \(\sqrt{s} = 8 \) TeV Measured with the ATLAS Detector

The ATLAS Collaboration

Abstract

A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of \(\sqrt{s} = 8 \) TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb\(^{-1}\). The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the Standard Model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% CL; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.
Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV Measured with the ATLAS Detector

ATLAS Collaboration

(Dated: 31 March 2015)

A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb$^{-1}$. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the Standard Model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% CL; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.

The search for an internal structure of fermions and new forces that might govern that structure is a major goal of modern particle physics. The most powerful probes are scattering experiments with large momentum transfer. Collisions of protons at the Large Hadron Collider (LHC) resulting in two energetic jets of particles (dijets) provide the largest momentum transfer currently available, and therefore the deepest probe.

The angular distribution of jets relative to the beam axis in events with high dijet invariant mass (m_{jj}) provides stringent tests of perturbative quantum chromodynamics (QCD) as well as theories of new phenomena. QCD calculations predict that dijet production, dominated by t-channel gluon exchange in the kinematic region of proton-proton (pp) collisions at the LHC, features steeply falling $|\cos(\theta^*)| = 1$, where θ^* is the polar scattering angle in the two-parton center-of-mass frame. New phenomena, such as strong gravity [1, 2] or new interactions [3–6] typically predict angular distributions which are more isotropic.

Previous studies of dijet angular distributions, at the CERN SPS [7, 8], the FNAL Tevatron [9, 10], the CERN LHC at $\sqrt{s} = 7$ TeV [11, 12], and by the CMS Collaboration at $\sqrt{s} = 8$ TeV [13, 14], have reported results consistent with the Standard Model (SM). This Letter reports on studies of dijet angular distributions in pp collisions at $\sqrt{s} = 8$ TeV in data with an integrated luminosity of 17.3 fb$^{-1}$ collected with the ATLAS detector in 2012.

A detailed description of the ATLAS detector is published elsewhere [15]. The detector is instrumented over almost the entire solid angle around the pp collision point, with layers of tracking detectors, calorimeters, and muon detectors.

The jets are measured using a calorimeter system composed of different detector types covering different regions in η [16] and depth. The electromagnetic calorimeter is composed of liquid-argon sampling calorimeters using lead as absorber, and is split into a barrel ($|\eta| < 1.475$) and two end caps ($1.375 < |\eta| < 3.2$). The hadronic calorimeter is divided into a barrel and two extended barrels ($|\eta| < 1.75$), and two endcaps ($1.5 < |\eta| < 3.2$). The barrel and extended barrels are sampling calorimeters with steel as absorber and scintillator tiles as the active medium, while the hadronic endcaps are liquid-argon calorimeters with copper as absorber. In the very forward regions ($3.1 < |\eta| < 4.9$) there are liquid argon calorimeters with copper and tungsten absorbers.

The data are selected using a trigger that requires a single high-p_T jet above one of eight thresholds, ranging from 25 GeV to 220 GeV. Due to the high rate of jets at lower p_T, only a fraction of the events from the lower seven thresholds are stored.

Individual jets are reconstructed using the anti-k_t jet clustering algorithm [20, 21] with radius parameter $R = 0.6$. The inputs to this algorithm are clusters [22] of calorimeter cells with energy depositions significantly above the noise. Jet four-momenta are constructed by the vectorial addition of clusters of cells, treating each cluster as a four-momentum with zero mass. The jet four-momenta are then corrected to the jet energy scale [23] as a function of η and p_T for various effects, the largest of which are the hadronic shower response, detector material distribution, and pileup events [24]. This is done using a calibration scheme based on samples of simulated events and validated with test-beam [25] and collision data [26] studies.

The rapidity of a jet is defined as $y = \frac{1}{2}\ln[(E + p_z)/(E - p_z)]$, where E is the jet energy and p_z is the momentum component along the beam axis [19]. The scattering angle between two jets can be expressed using the variable $\chi = e^{[y_1 - y_2]} = e^{[y^*]}$, where y_1 and y_2 are the rapidities of the two jets, and $y^* = \frac{1}{2}(y_1 - y_2)$. The rapidity boost of the dijet system with respect to the center of mass of the colliding protons is calculated as $y_B = \frac{1}{2}(y_1 + y_2)$.

For each trigger, the event is required to have a jet with p_T sufficient to achieve a trigger efficiency greater than 99.5%. For the lowest (highest) threshold trigger, this corresponds to $p_T > p_T^{\text{min}} = 47 (333)$ GeV. Events are required to have at least two jets, each with $p_T > 50$ GeV; the dijet system, defined as the two jets with largest p_T, is required to have $|y^*| < 1.7$, $|y_B| < 1.1$, and $m_{jj} > 600$ GeV (where the m_{jj} requirement avoids the kinematic bias in the angular distributions introduced by the minimum p_T requirement).
The detector covers the angular range $|y^*| < 1.7$, corresponding to $\chi < 30$. This interval is divided into 11 bins, with boundaries at $\chi_n = e^{(0.3 \times n)}$ for $n = 0$ to 10, approximating the segmentation of the calorimeter in Δy. The data are further binned coarsely in m_{jj} with the expectation that low-m_{jj} bins are dominated by QCD processes and that signals associated with new physics would be found in higher dijet invariant mass bins. The bin edges are chosen to optimize the expected sensitivity to the model of contact interactions. The highest dijet mass observed is 5.5 TeV.

The SM predictions are estimated using the Pythia 8 [20] v8.160 event generator with the AU2 [27] underlying-event tune and the CT10 [28] parton distribution functions (PDF). The simulated events are propagated through a detector simulation [29] that uses the Geant4 [30] simulation package. Pileup conditions vary as a function of the instantaneous luminosity and are taken into account by overlaying simulated minimum-bias events generated with Pythia 8 onto the hard-scattering process such that the observed distribution of the average number of interactions per bunch crossing is reproduced. The same reconstruction and event selection are applied to the simulated events and the data.

The Pythia 8 calculations are primarily to leading order (LO) in QCD with simulation of higher-order contributions included in the shower modeling. Events generated by Pythia 8 are reweighted using a correction factor calculated based on the ratio of the next-to-leading-order (NLO) cross-section calculation from NLOJET++ [31–33] v4.1.2 to the LO+shower calculation from Pythia 8:

$$K(\chi, m_{jj}) = \frac{\sigma_{\text{NLO}}(\chi, m_{jj})^{\text{NLOJET++}}}{\sigma_{\text{LO+shower}}(\chi, m_{jj})^{\text{Pythia8}}}.$$

The K-factors decrease with χ and thus modify the shape of the angular distributions; the impact ranges from a few percent at low m_{jj} to approximately 15% for the highest m_{jj} region. Additional processes accounting for electroweak (EW) effects not included in Pythia 8 (virtual weak boson exchange and Sudakov-type logarithms) are included as EW corrections [34]. The effect is most pronounced at high m_{jj} and low χ, and the correction factors range from unity at low m_{jj} to 0.98–1.12 in the highest m_{jj} region. The EW corrections and the NLO K-factors are applied as a function of χ and m_{jj} to the Pythia 8 prediction.

Figure 1 shows the distributions of the data as a function of χ. The distribution in each m_{jj} region is normalized to unity, as the sensitivity to new phenomena is due to the angular distribution rather than normalization. The predicted SM distributions are also shown in Fig. 1 and describe the data well. The EW corrections substantially improve the agreement of the SM prediction with data at high m_{jj}, as can be appreciated from the comparison of the predictions with and without these corrections shown in Fig. 1.

Models of quark compositeness are probed by searching for evidence of new interactions between quarks at a large characteristic energy scale, Λ. At energies below this scale, the details of the new interaction and potential mediating particles can be integrated out to form a four-fermion contact interaction model [5, 6] described by an effective field theory:

$$L_{qq} = \frac{2\pi}{\Lambda^2} \left[\eta_{LL}(\Bar{q}_L \gamma_\mu q_L)(\Bar{q}_L \gamma^\mu q_L) + \eta_{RR}(\Bar{q}_R \gamma_\mu q_R)(\Bar{q}_R \gamma^\mu q_R) + 2\eta_{LR}(\Bar{q}_L \gamma_\mu q_R)(\Bar{q}_R \gamma^\mu q_L) \right],$$

where the quark fields have L and R chiral projections and the coefficients η_{LL}, η_{RR}, and η_{LR} turn on and off various interactions.

In this Letter, a contact interaction (CI) model with a left-chiral color-singlet coupling ($\eta_{LL} = \pm 1$) is used as...
a benchmark model, as many other models of new phenomena have similar predictions for the dijet scattering angle χ at large m_{jj}. Interference of the signal model with the SM process $q\bar{q} \rightarrow q\bar{q}$ is also included.

Event samples were simulated with both QCD and contact interactions, taking interference into account and using the same event generator, underlying-event tune and PDF as for the SM simulations. Events were generated for both constructive and destructive interference with $\Lambda = 7$ TeV and $\Lambda = 10$ TeV. The $\Lambda = 7$ TeV sample is then used for extrapolation to other values of Λ, using the fact that the interference term is proportional to $1/\Lambda^2$ and the pure CI cross section is proportional to $1/\Lambda^4$. This procedure is validated with the $\Lambda = 10$ TeV sample. As with the QCD prediction, a K-factor correction is computed to correct the Pythia LO+shower prediction to an NLO calculation. Calculations at NLO are provided by CLFET [35] v1.0.

Uncertainties in the SM and signal predictions include theoretical uncertainties and experimental uncertainties on the measured angular distributions. Theoretical uncertainties in the SM and signal predictions are due to the choice of PDF, renormalization and factorization scales, choice of event generator as well as statistical uncertainties due to limited simulation sample sizes. The impact of the uncertainty in the PDF is estimated using the PDF uncertainties due to limited simulation sample sizes. The impact of the uncertainty in the PDF is estimated using the Pythia n-jet++ with three different PDF: CT10, MSTW2008 [30] and NNPDF23 [37]. These uncertainties are negligible (<1%), as the choice of PDF largely impacts the total cross section rather than the angular distributions. The uncertainty due to the choice of renormalization and factorization scales were estimated by varying those independently up and down by a factor two in n-jet++.

The resulting uncertainty varies with m_{jj} and χ, rising to 4% at the smallest χ values at high m_{jj}. The uncertainty due to the choice of generator is estimated by comparing the predictions from the NLO generator Powheg [38] v1.0 with those of Pythia8 with K-factors applied. The largest uncertainty due to choice of generator is at the lowest m_{jj} values, where it approaches 20%, while for the highest m_{jj} values and smallest χ, it ranges from 10% to 14%. The uncertainty due to the choice of the showering model is estimated through comparison of Powheg samples showered and hadronized with Pythia8 v8.175 to Herwig [39] v6.520.2 samples using Jimmy [10] v4.31. The largest value of this uncertainty is less than 1% at the highest m_{jj} values and smallest values of χ. Finally the statistical uncertainties on the K-factors due to limited simulation sample size are small and set to 1%.

The experimental uncertainty is dominated by the n-dependence of the jet energy scale calibration. This uncertainty varies from approximately 15% at small values of χ for the highest m_{jj} values, to a few percent at lower m_{jj} values and higher χ values. The uncertainty in the beam energy is found to introduce a negligible contribution. The total uncertainty at the lowest χ, highest m_{jj} amounts to 20%, decreasing to a few percent at high χ. The total theoretical and experimental uncertainties are shown in Fig. 1.

The p-value for the SM hypothesis is (0.25) 0.30 for the (second) highest m_{jj} bin. In the absence of significant deviations from the SM prediction, upper bounds on CI contributions are calculated using a one-sided profile likelihood ratio and the CL$_S$ technique [12, 43], evaluated using the asymptotic approximation [44] on events with $m_{jj} > 3.2$ TeV; the validity of asymptotic approximation was confirmed using toy simulations. These bounds exclude a compositeness scale below 8.1 TeV in a destructive interference scenario and below 12.0 TeV in a constructive interference scenario. The median expected limits are 8.9 (14.1) TeV for the destructive (constructive) interference scenario.

In summary, dijet angular distributions have been measured by the ATLAS experiment in 17.3 fb$^{-1}$ of 8 TeV pp collisions at the LHC. Over a wide angular range and dijet invariant mass spectrum, the data are well described by QCD predictions at NLO. A model of quark compositeness is used as a benchmark for theories of new phenomena that include new forces and mediators of particles; such theories predict deviations at small values of χ. A compositeness scale below 8.1 (12.0) TeV in a destructive (constructive) interference scenario is excluded at 95% confidence level, similar to results from the CMS Collaboration [17] and representing a significant enhancement in sensitivity relative to the previous limit (at 7.6 TeV for destructive interference) from the ATLAS Collaboration [11].

We would like to thank S. Dittmaier and A. Huss for providing us with the electroweak correction factors. We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; HGF, MPG, and AvH Foundation, Germany; GSI and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINerva, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RSN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.
The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[19] The ATLAS Collaboration uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $η = −\ln \tan(θ/2)$. The transverse energy and transverse momentum are defined by $E_T = E \sin \theta$ and $p_T = |p| \sin \theta$, respectively.
A. Yurkevicz108, I. Yusuff28al, B. Zabinski39, R. Zaidan62, A.M. Zaïtsev130,aa, J. Zalieckas14, A. Zaman148, S. Zambito57, L. Zanello132a,132b, D. Zanuzi88, C. Zeitnitz175, M. Zeman128, A. Zemla88a, K. Zenge23, O. Zenin130, T. Ženiš144a, D. Zerwas117, D. Zhang29, F. Zhang173, J. Zhang9, L. Zhang48, R. Zhang33b, X. Zhang33d, Z. Zhang117, X. Zhao40, Y. Zhao33d,117, Z. Zhao33b, A. Zhemchugov65, J. Zhong120, B. Zhou89, C. Zhou45, L. Zhou35, L. Zhou40, N. Zhou163, C.G. Zhu33d, H. Zhu33a, J. Zhu89, Y. Zhu33b, X. Zhuang33a, K. Zhukov96, A. Zibelli174, D. Ziemska61, N.I. Zimine85, C. Zimmermann83, S. Zimmermann45, Z. Zinonos83, M. Ziolkowski41, L. Živković13, G. Zobernig71, A. Zoccoli29a,29b, M. zur Nedden16, G. Zurzolo104a,104b, L. Zwalinski39.

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Department Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (c) Istanbul Aydin University, Istanbul; (d) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, Universität of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rey; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidade de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
34 Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America