Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV Measured with the ATLAS Detector

The ATLAS Collaboration

Abstract

A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb$^{-1}$. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the Standard Model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% CL; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.
The barrel and extended barrels are sampling calorimeter axes in events with high dijet invariant mass (pT) resulting in two energetic jets of particles transfer. Collisions of protons at the Large Hadron Collider (LHC) are scattering experiments with large momentum transfer. The jets are measured using a calorimeter system composed of liquid-argon sampling calorimeters using lead as absorber, and is split into a barrel (|η| < 1.475) and two end caps (1.375 < |η| < 3.2). The hadronic calorimeter is divided into a barrel and two extended barrels (|η| < 1.75), and two endcaps (1.5 < |η| < 3.2). The barrel and extended barrels are sampling calorimeters with steel as absorber and scintillator tiles as the active medium, while the hadronic endcaps are liquid-argon calorimeters with copper as absorber. In the very forward regions (3.1 < |η| < 4.9) there are liquid argon calorimeters with copper and tungsten absorbers.

The data are selected using a trigger that requires a single high-pT jet above one of eight thresholds, ranging from 25 GeV to 220 GeV. Due to the high rate of jets at lower pT, only a fraction of the events from the lower seven thresholds are stored.

Individual jets are reconstructed using the anti-kt jet clustering algorithm with radius parameter R = 0.6. The inputs to this algorithm are clusters of calorimeter cells with energy depositions significantly above the noise. Jet four-momenta are constructed by the vectorial addition of clusters of cells, treating each cluster as a four-momentum with zero mass. The jet four-momenta are then corrected to the jet energy scale as a function of η and pT for various effects, the largest of which are the hadronic shower response, detector material distribution, and pileup events. This is done using a calibration scheme based on samples of simulated data and validated with test-beam studies.

The rapidity of a jet is defined as y = \frac{1}{2} \ln((E + p_z)/(E - p_z)), where E is the jet energy and p_z is the momentum component along the beam axis. The scattering angle between two jets can be expressed using the variable \chi = e^{(y_1 - y_2)} = e^{2y^*}, where y_1 and y_2 are the rapidities of the two jets, and y^* = \frac{1}{2}(y_1 - y_2). The rapidity boost of the dijet system with respect to the center of mass of the colliding protons is calculated as y_B = \frac{1}{2}(y_1 + y_2).

For each trigger, the event is required to have a jet with pT sufficient to achieve a trigger efficiency greater than 99.5%. For the lowest (highest) threshold trigger, this corresponds to \text{pT}_{\text{min}} = 47 (333) GeV. Events are required to have at least two jets, each with \text{pT} > 50 GeV; the dijet system, defined as the two jets with largest \text{pT}, is required to have |y^*| < 1.7, |y_B| < 1.1, and m_{jj} > 600 GeV (where the m_{jj} requirement avoids the kinematic bias in the angular distributions introduced by the minimum \text{pT} requirement).
The detector covers the angular range \(|y^*| < 1.7\), corresponding to \(\chi < 30\). This interval is divided into 11 bins, with boundaries at \(\chi_n = e^{(0.3 \times n)}\) for \(n = 0\) to 10, approximating the segmentation of the calorimeter in \(\Delta y\). The data are further binned coarsely in \(m_{jj}\) with the expectation that low-\(m_{jj}\) bins are dominated by QCD processes and that signals associated with new physics would be found in higher dijet invariant mass bins. The bin edges are chosen to optimize the expected sensitivity to the model of contact interactions. The highest dijet mass observed is 5.5 TeV.

The SM predictions are estimated using the PYTHIA8 [20] v8.160 event generator with the AU2 [27] underlying-event tune and the CT10 [28] parton distribution functions (PDF). The simulated events are propagated through a detector simulation [29] that uses the GEANT4 [30] simulation package. Pileup conditions vary as a function of the instantaneous luminosity and are taken into account by overlaying simulated minimum-bias events generated with PYTHIA8 onto the hard-scattering process such that the observed distribution of the average number of interactions per bunch crossing is reproduced. The same reconstruction and event selection are applied to the simulated events and the data.

The PYTHIA8 calculations are primarily to leading order (LO) in QCD with simulation of higher-order contributions included in the shower modeling. Events generated by PYTHIA8 are reweighted using a correction factor calculated based on the ratio of the next-to-leading-order (NLO) cross-section calculation from NLOJET++ [31–33] v4.1.2 to the LO+shower calculation from PYTHIA8:

\[
K(\chi, m_{jj}) = \frac{\sigma_{\text{NLO}}(\chi, m_{jj})^{\text{NLOJET++}}}{\sigma_{\text{LO+shower}}(\chi, m_{jj})^{\text{PYTHIA8}}}.
\]

The \(K\)-factors decrease with \(\chi\) and thus modify the shape of the angular distributions; the impact ranges from a few percent at low \(m_{jj}\) to approximately 15\% for the highest \(m_{jj}\) region. Additional processes accounting for electroweak (EW) effects not included in PYTHIA8 (virtual weak boson exchange and Sudakov-type logarithms) are included as EW corrections [34]. The effect is most pronounced at high \(m_{jj}\) and low \(\chi\), and the correction factors range from unity at low \(m_{jj}\) to 0.98 – 1.12 in the highest \(m_{jj}\) region. The EW corrections and the NLO \(K\)-factors are applied as a function of \(\chi\) and \(m_{jj}\) to the PYTHIA8 prediction.

Figure 1 shows the distributions of the data as a function of \(\chi\). The distribution in each \(m_{jj}\) region is normalized to unity, as the sensitivity to new phenomena is due to the angular distribution rather than normalization. The predicted SM distributions are also shown in Fig. 1 and describe the data well. The EW corrections substantially improve the agreement of the SM prediction with data at high \(m_{jj}\), as can be appreciated from the comparison of the predictions with and without these corrections shown in Fig. 1.

Models of quark compositeness are probed by searching for evidence of new interactions between quarks at a large characteristic energy scale, \(\Lambda\). At energies below this scale, the details of the new interaction and potential mediating particles can be integrated out to form a four-fermion contact interaction model [5, 6] described by an effective field theory:

\[
L_{qq} = \frac{2\pi}{\Lambda^2} \left[\eta_{LL}(\bar{q}_L\gamma_\mu q_L)(\bar{q}_L\gamma^\mu q_L) + \eta_{RR}(\bar{q}_R\gamma_\mu q_R)(\bar{q}_R\gamma^\mu q_R) + 2\eta_{LR}(\bar{q}_R\gamma_\mu q_L)(\bar{q}_L\gamma^\mu q_R) \right],
\]

where the quark fields have L and R chiral projections and the coefficients \(\eta_{LL}\), \(\eta_{RR}\), and \(\eta_{LR}\) turn on and off various interactions.

In this Letter, a contact interaction (CI) model with a left-chiral color-singlet coupling (\(\eta_{LL} = \pm 1\)) is used as...
a benchmark model, as many other models of new phenomena have similar predictions for the dijet scattering angle χ at large m_{jj}. Interference of the signal model with the SM process $q\bar{q} \to q\bar{q}$ is also included.

Event samples were simulated with both QCD and contact interactions, taking interference into account and using the same event generator, underlying-event tune and PDF as for the SM simulations. Events were generated for both constructive and destructive interference with $\Lambda = 7$ TeV and $\Lambda = 10$ TeV. The $\Lambda = 7$ TeV sample is then used for extrapolation to other values of Λ, using the fact that the interference term is proportional to $1/\Lambda^2$ and the pure CI cross section is proportional to $1/\Lambda^4$. This procedure is validated with the $\Lambda = 10$ TeV sample. As with the QCD prediction, a K-factor correction is computed to correct the Pythia LO+shower prediction to an NLO calculation. Calculations at NLO are provided by Cjett [35] v1.0.

Uncertainties in the SM and signal predictions include theoretical uncertainties and experimental uncertainties on the measured angular distributions. Theoretical uncertainties in the SM and signal predictions are due to the choice of PDF, renormalization and factorization scales, choice of event generator as well as statistical uncertainties due to limited simulation sample sizes. The impact of the uncertainty in the PDF is estimated using Nlojet++ with three different PDF CT10, MSTW2008 [39] and NNPDF23 [37]. These uncertainties are negligible (<1%), as the choice of PDF largely impacts the total cross section rather than the angular distributions. The uncertainty due to the choice of renormalization and factorization scales were estimated by varying those independently up and down by a factor two in Nlojet++. The resulting uncertainty varies with m_{jj} and χ, rising to 4% at the smallest χ values at high m_{jj}. The uncertainty due to the choice of generator is estimated by comparing the predictions from the NLO generator Powheg [38] v1.0 with those of Pythia8 with K-factors applied. The largest uncertainty due to choice of generator is at the lowest m_{jj} values, where it approaches 20%, while for the highest m_{jj} values and smallest χ, it ranges from 10% to 14%. The uncertainty due to the choice of the showering model is estimated through comparison of Powheg samples showered and hadronized with Pythia8 v8.175 to HERWIG [39] v6.520.2 samples using Jimmy [10, 11] v4.31. The largest value of this uncertainty is less than 1% at the highest m_{jj} values and smallest values of χ. Finally the statistical uncertainties on the K-factors due to limited simulation sample size are small and set to 1%.

The experimental uncertainty is dominated by the η-dependence of the jet energy scale calibration. This uncertainty varies from approximately 15% at small values of χ for the highest m_{jj} values, to a few percent at lower m_{jj} values and higher χ values. The uncertainty in the beam energy is found to introduce a negligible contribution. The total uncertainty at the lowest χ, highest m_{jj} amounts to 20%, decreasing to a few percent at high χ. The total theoretical and experimental uncertainties are shown in Fig. I.

The p-value for the SM hypothesis is (0.25) 0.30 for the (second) highest m_{jj} bin. In the absence of significant deviations from the SM prediction, upper bounds on CI contributions are calculated using a one-sided profile likelihood ratio and the CL$_S$ technique [12, 43], evaluated using the asymptotic approximation [44] on events with $m_{jj} > 3.2$ TeV; the validity of asymptotic approximation was confirmed using toy simulations. These bounds exclude a compositeness scale below 8.1 TeV in a destructive interference scenario and below 12.0 TeV in a constructive interference scenario. The median expected limits are 8.9 (14.1) TeV for the destructive (constructive) interference scenario.

In summary, dijet angular distributions have been measured by the ATLAS experiment in 17.3 fb$^{-1}$ of 8 TeV pp collisions at the LHC. Over a wide angular range and dijet invariant mass spectrum, the data are well described by QCD predictions at NLO. A model of quark compositeness is used as a benchmark for theories of new phenomena that include new forces and mediating particles; such theories predict deviations at small values of χ. A compositeness scale below 8.1 (12.0) TeV in a destructive (constructive) interference scenario is excluded at 95% confidence level, similar to results from the CMS Collaboration [17] and representing a significant enhancement in sensitivity relative to the previous limit (at 7.6 TeV for destructive interference) from the ATLAS Collaboration [11].

We would like to thank S. Dittmaier and A. Huss for providing us with the electroweak correction factors. We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINEVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNISW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.
The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (c) Istanbul Aydin University, Istanbul; (d) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, University of Belgrade, Belgrade, Serbia
11 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
12 Department for Physics and Technology, University of Bergen, Bergen, Norway
13 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
14 Laboratory of Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
15 Department of Physics, Carleton University, Ottawa ON, Canada
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Bogazici University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, Universit of Bonn, Bonn, Germany
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 Department of Physics, University of California, Berkeley CA, United States of America
24 (a) Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
85 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
86 Department of Physics, University of Massachusetts, Amherst MA, United States of America
87 Department of Physics, McGill University, Montreal QC, Canada
88 School of Physics, University of Melbourne, Victoria, Australia
89 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
90 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
91 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
92 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
94 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
95 Group of Particle Physics, University of Montreal, Montreal QC, Canada
96 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
97 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
98 National Research Nuclear University MEPhI, Moscow, Russia
99 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
100 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
101 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
102 Nagasaki Institute of Applied Science, Nagasaki, Japan
103 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
104 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
105 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
106 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
108 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
110 Department of Physics, New York University, New York NY, United States of America
111 Ohio State University, Columbus OH, United States of America
112 Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
114 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
115 Palacký University, RCPTM, Olomouc, Czech Republic
116 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
117 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
118 Graduate School of Science, Osaka University, Osaka, Japan
119 Department of Physics, University of Oslo, Oslo, Norway
120 Department of Physics, Oxford University, Oxford, United Kingdom
121 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
122 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
123 Petersburg Nuclear Physics Institute, Gatchina, Russia
124 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
126 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
128 Czech Technical University in Prague, Praha, Czech Republic
129 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
130 State Research Center Institute for High Energy Physics, Protvino, Russia
131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
132 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
g Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal
h Also at Tomsk State University, Tomsk, Russia
i Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
j Also at Università di Napoli Parthenope, Napoli, Italy
k Also at Institute of Particle Physics (IPP), Canada
l Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
m Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
n Also at Louisiana Tech University, Ruston LA, United States of America
o Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
p Also at Department of Physics, National Tsing Hua University, Taiwan
q Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
r Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
s Also at CERN, Geneva, Switzerland
t Also at Georgian Technical University (GTU), Tbilisi, Georgia
u Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
v Also at Manhattan College, New York NY, United States of America
w Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
x Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
y Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
z Also at School of Physics, Shandong University, Shandong, China
aa Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
ab Also at Section de Physique, Université de Genève, Geneva, Switzerland
ac Also at International School for Advanced Studies (SISSA), Trieste, Italy
ad Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
ae Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
af Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
ag Also at National Research Nuclear University MEPhI, Moscow, Russia
ah Also at Department of Physics, Stanford University, Stanford CA, United States of America
ai Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
aj Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
ak Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
al Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased