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Abstract. Considerable amounts of data are continuously generated by
pathologists in the form of pathology reports. To date, there has been
relatively little work exploring how to apply machine learning and data
mining techniques to these data in order to extract novel clinical rela-
tionships. From a learning perspective, these pathology data possess a
number of challenging properties, in particular, the temporal and hierar-
chical structure that is present within the data. In this paper, we propose
a methodology based on inductive logic programming to extract novel
associations from pathology excerpts. We discuss the challenges posed by
analyzing these data and discuss how we address them. As a case study,
we apply our methodology to Dutch pathology data for discovering pos-
sible causes of two rare diseases: cholangitis and breast angiosarcomas.

1 Introduction

The nationwide network and registry of histo- and cytopathology in the Nether-
lands (PALGA) aims to facilitate communication and information flow within
the field of pathology and to provide information to others in health care.
PALGA began collecting pathology reports generated in The Netherlands in
1971 and has complete coverage of all pathology laboratories in both academic
and non-academic hospitals in The Netherlands since 1991 [3]. Currently, its
database contains approximately 63 million excerpts of pathology reports, which
are coded using a variant of the SNOMED classification system that was origi-
nally developed by the College of American Pathologists [5]. Each year, approx-
imately three million excerpts are added.

The pathology database provides a rich data source for answering medically
relevant questions, usually in the form of testing associations between concepts
in the data like diagnoses, morphology, etc. This currently leads to roughly 25
to 30 publications per year. Typical examples that use the PALGA data include
studying incidence of rare diseases (e.g., Brenner tumours of the ovary), as well
as mortality of diseases, co-morbidities, and cancer. However, using data mining



and machine learning techniques to find completely novel associations, instead
of testing predefined hypotheses, is completely unexplored with this data. The
sheer size of the data presents significant opportunities to find medically relevant
associations by mining the data.

It is well recognized in the literature that medical data is one of the most chal-
lenging types of data to analyze [4]. Typical challenges associated with medical
databases include their sheer volume and heterogeneity, inconsistencies, selec-
tion biases, and significant amounts of missing data. In this paper, we discuss
the specific challenge of how to effectively cope with the specific structure (e.g.,
relationships, time dependencies, hierarchies, etc.) present in pathology data.
Structure within data can be beneficial as it may be exploited during learning,
however, standard data analysis techniques typically assume the data are flat.

In this paper, we focus on discovering novel associations within pathology
data using inductive logic programming (ILP) techniques. Using an inductive
logic programming approach provides several benefits compared to both propo-
sitional machine learning approaches (e.g., decision trees, rules sets, etc.) and
traditional pattern mining approaches (e.g., association rule mining, sequence
mining, etc.). Propositional machine learning approaches require that each ex-
ample is defined by a fixed-length feature vector. For the PALGA data, it is
non-trivial to define such a feature set because different patients can have differ-
ent numbers of entries in the database. The relational nature of ILP allows us
to avoid this problem by simply creating one fact for each entry in the database.
Furthermore, it is well known that by introducing the appropriate background
knowledge, ILP can more naturally capture the hierarchical organization of the
codes [14, 16] compared to both propositional learners and pattern mining.

2 Description of the Data

In this section, we present two case studies and the structure of the data.

2.1 Case Studies

The goal of this work is to investigate whether it is possible to automatically
extract useful relationships between pathologies. In particular, we are interested
in finding possible causes of certain pathologies. In collaboration with pathol-
ogists, we selected two case studies to evaluate the techniques proposed in the
remainder of this paper. The first case study deals with cholangitis, which is an
inflammation of the bile ducts. The second case study aims to learn associations
with breast angiosarcomas, which is a tumour in the walls of blood vessels. For
both cases studies, we obtained data from patients who were diagnosed with
these diseases. As controls, we obtained data from patients with colitis ulcerosa
and Crohn’s disease for cholangitis, and patients with angiosarcomas not in the
breast and neavus mamma for breast angiosarcomas. We also acquired data
representing a general population to avoid a selection bias.
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Fig. 1. Hierarchy of the primary sclerosing intrahepatic cholangitis (PSC) code.

2.2 Hierarchical Coding

The data consist of diagnoses from excerpts of pathological reports that are
coded based on the SNOMED classification system. Each diagnosis consists of
multiple codes including at least the topography (i.e., location), the procedure
for obtaining the material, and a finding (i.e., pathological morphology or diag-
nosis). For example, a particular instance of colitis ulcerosa may be coded by
the following code: colon,biopsy,colitis ulcerosa.

The coding poses significant challenges. First, the number of codes per di-
agnosis varies. For example, there may be multiple topographies such as colon
and duodenum as well as multiple morphologies within the same diagnostic rule.
Combinations of codes are also relevant. For example, skin (T01000) and breast
(TY2100) should be interpreted as skin of the breast. Also, combinations of to-
pographies and morphologies are important. For example, angiosarcoma of the
breast may be coded by TY2100, T01000 (skin of breast) and M91203 (angiosar-
coma). Moreover, a code itself can contain a hierarchical structure as is illus-
trated in Figure 1. Exploiting the structure within a code is a key challenge.

3 Background on Inductive Logic Programming

In this section, we give some background on sequential data mining using ILP.

3.1 First-Order Logic and Logic Programming

First-order logic (FOL) is a formalism to represent objects and their relations in
a structured format. Due to its expressiveness, FOL is widely used in machine
learning applications. This project only requires a subset of FOL, limiting the
alphabet to three types of symbols. Constants (e.g., a diagnosis di), referring
to specific objects in the domain, start with a lower-case letter. Variables (e.g.,
Patient), ranging over objects in the domain, are denoted by upper-case letters.



Predicates p\n, where n is the arity (i.e., number of arguments) of the predicate,
represent relations between objects.

Given these symbols, several constructs can be defined: atoms p(t1, ..., tn),
where each ti is either a constant or a variable; literals, i.e., an atom or its nega-
tion; clauses, a disjunction over a finite set of literals; and definite clauses, i.e.,
clauses that contain exactly one positive literal. Definite clauses can be written
as an implication B ⇒ H. The body B consists of a conjunction of literals, whereas
the head H is a single literal. Variables in definite clauses are presumed to be
universally quantified. For example, the rule diagnosed(Patient, carcinoma) ⇒
diagnosed(Patient, angiosarcoma) states that if a Patient has been diagnosed
with a carcinoma, he or she has also been diagnosed with an angiosarcoma.

In the following, clauses are given a logic programming semantics. In brief,
a logic programming engine first replaces each variable by an object of the vari-
able’s domain. Then, the engine checks whether the resulting instantiation of
the head of the rule is true if the instantiation of the body is true. In this case
the rule is said to cover an example (i.e., a set of variable instantiations). The
coverage of the rule is the number of examples covered.

3.2 Inductive Logic Programming

Inductive logic programming (ILP, [9]) aims to learn hypotheses for a given
concept. More formally, we define ILP as follows:

Given: A concept C, a background knowledge K, a language specification L, an
optional set of constraints I, a non-empty set of positive examples E+ of C
(i.e., examples of C), and a set of negative examples E− of C (i.e., examples
of not C).

Learn: A set of clauses S, in the form of a logic program, that respects the
constraints I and covers all of the positive examples in E+ and none of the
negative examples in E−.

ILP is well-suited to be used in this medical setting as it yields interpretable
rules and allows a user to iteratively narrow down the search space by defining
background knowledge K and constraints I on acceptable hypotheses.

3.3 Aleph

We use the Aleph ILP system to learn the hypotheses [12]. The system iteratively
learns first-order definite clauses from positive and negative examples.

To learn a clause, Aleph proceeds as follows. First, it randomly picks a pos-
itive example, which is called the seed example, and searches the background
knowledge for facts known to be true about the seed (saturation step). The
system combines these facts to construct the most-specific clause that covers
the seed (i.e., the bottom clause). Second, Aleph generalizes these facts as the
generalizations of facts explaining the seed might also explain other examples
(search step). Typically, Aleph employs a breadth-first search that considers the
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Fig. 2. Overview of our method for extracting knowledge from PALGA data using ILP.

shortest clauses first. From these clauses, the system works its way through the
search space in a general-to-specific manner towards the bottom clause. The
search process can be further constrained by bounding the clause length and the
number of clauses that should be tested.

Several metrics exist to evaluate each generated clause. Usually, these metrics
try to capture how well the clause discriminates between positive and negative
examples. A commonly used metric for this purpose is the m-estimate [8], which
is a smoothed ratio between the number of positive examples covered and the
total number of examples covered (i.e., the precision of the clause).

Aleph’s global search strategy affects how it proceeds from one iteration to
another. One commonly used strategy is the “cover-removal” approach which
removes all positive examples that are covered by a previously learned clause
from the set of positive examples. Hence, successive iterations focus on learning
rules that apply to currently uncovered examples (i.e., none of the learned rules
covers them). Another approach is to use every positive example as a seed once
such that more rules are learned.

4 Empirical Evaluation

4.1 Methodology

More formally, we address the following learning task in this paper:

Given: A disease of interest dt, SNOMED-structured patient records, and hi-
erarchical domain knowledge.

Learn: Novel associations in the data that provide clinical experts with new
insights about disease dt.

In the following, we discuss the steps taken to address this task. Figure 2
provides a schematic overview.

Sampling the medical database. Our approach requires two samples of the
database. We extract positive examples from a sample Sp, which are patients
who suffer from the target disease dt, and negative examples from a sample
Sn, which are patients who have not been diagnosed with dt. While Sp mainly



Table 1. The records of a patient X.

Patient ID Date Diagnosis

X 06/06/2011 T67000—P11400—T67000M40030

X 22/06/2011 T56000—P11400—P30700—T56110M45000E00010—M55800

consists of patients who have been diagnosed with dt or a strongly related disease,
Sn represents the general population. This approach avoids a selection bias that
could make it harder to discriminate between positive and negative examples.

Extracting examples. An example corresponds to a patient pi’s records. If a
patient pi was diagnosed with dt at a time ti, we label the example as positive
and add a ground fact dt(pi, ti) to the set of positive examples. We add all
diagnoses di of pi at time tj < ti (i.e., before the first diagnosis of the target
disease) as background knowledge as ground facts diagnosis(pi, normDi, tj).

While each diagnosis di is a highly-structured sequence of codes, we need to
normalize the sequence to normDi. Our normalization procedure sorts the codes
alphabetically and ensures they were entered consistently. While not essential,
this procedure allows to more easily detect duplicate diagnoses, which avoids
learning hypotheses consisting of multiple atoms describing the same diagnosis.

We construct the negative examples in a similar way. We search Sn for patients
pj who have never been diagnosed with the target disease dt and add a ground
fact for each such patient to the set of negative examples.

We now illustrate this process for the records of a patient X, which are shown
in Table 1, to learn rules about cholangitis. We search X’s records chronologically
for codes corresponding to cholangitis. The second record, which dates from 22
June 2011, mentions the code T56110M45000E00010 referring to primary scle-
rosing cholangitis. Hence, we label X as a positive example and add the following
fact to the set of positive examples: cholangitis(x, 22/06/2011). In addition,
we add all X’s records that were recorded before 22 June 2011 as background
knowledge. For this example, we generate the following three ground facts:
diagnosis(x, M40030T67000, 06/06/2011), procedure(x, P11400, 06/06/2011),
and topography(x, T67000, 06/06/2011).

Adding background knowledge. To exploit the structure of the data during
learning, we add a hierarchy of codes as background knowledge, which we provide
as a set of clauses (see Figure 1). For example, the clause diagnosis(P, normDj, T)
⇒ diagnosis(P, normDi, T) specifies that diagnosis di is more general than di-
agnosis dj. This approach allows us to learn more generally applicable rules.

Configuring and running Aleph. Aleph has many parameters that influence
the number of learned clauses. If configured too strictly, it learns no clauses at
all. If configured too loosely, it learns many uninteresting clauses which makes
manually inspecting the learned clauses a slow and tedious process.



Table 2. The top-five rules for cholangitis with their coverage of positive and negative
examples, and m-estimate. The abbreviated notation is explained in the text.

Rule |E+| |E−| m-est.

brush ∧ colon ∧ no tumour ⇒ cholangitis 55 0 0.90
extra hepatic bile duct ∧ liver ∧ no abnormalities ⇒ cholangitis 51 0 0.90
brush ∧ liver ∧ no tumour ⇒ cholangitis 50 0 0.89
ductus choledochus ∧ colon ∧ no tumour ⇒ cholangitis 50 0 0.89
ductus choledochus ∧ colon ∧ no abnormalities ⇒ cholangitis 45 0 0.89

The following parameters highly influence the number of generated clauses:
minpos denotes the minimum number of positive examples that a clause must
cover, noise denotes the maximum number of negative examples that a clause
can cover, and minacc denotes the minimum precision (i.e., the percentage of
covered examples that should be positive).

As a global search strategy, the induce max setting is a good choice when
performing knowledge discovery as it picks each positive example as the seed
once. Hence, it generates more clauses and ensures that the order in which the
seeds are picked does not influence the clauses that are learned. The explore

parameter forces Aleph to continue the search until all remaining elements in
the search space are definitely worse than the current best element [12].

Scoring the learned clauses. We sort the clauses according to their coverage
of positive examples. In case of a tie, we sort the clauses according to their m-
estimate. This approach allows us to easily discover and inspect the top clauses.

4.2 Experimental Results

We applied the above methods to both case studies. For cholangitis, we con-
structed 1,292 positive examples from Sp1 containing 402,939 records of 78,911
patients. For angiosarcoma of the breast, we constructed 303 positive examples
from Sp2 containing 28,557 records of 14,424 patients. We constructed 7,958 neg-
ative examples for cholangitis and 7,963 negative examples for angiosarcoma of
the breast from Sn containing 53,439 records of 7,963 patients.

Running Aleph with a minpos of 10, a minacc of 0.5, and noise values of
10, 50, and 100 resulted in a total of 6,775 rules for cholangitis, and 945 rules
for angiosarcoma of the breast. Among the best-scoring rules, there are several
examples where the background knowledge capturing the hierarchical structure
was used to construct rules. For example, a high-scoring rule for cholangitis is:

diagnosis(P, auto-immune disease, T1) ∧ topography(P, liver, T2) ∧
morphology(P, fibrosis, T3) ⇒ cholangitis(P, T )

where T1, T2, T3 < T . While “auto-immune disease” does not explicitly appear in
the data, Aleph used the background knowledge to derive it as a generalization
of the more specific code “auto-immune hepatitis”.



Table 3. The top-five rules for cholangitis after feedback from the pathologist with
their coverage of positive and negative examples, and m-estimate.

Rule |E+| |E−| m-est.

liver ∧ colitis ulcerosa ⇒ cholangitis 91 6 0.87
cholestasis ∧ colon ⇒ cholangitis 30 0 0.87
cirrhosis ∧ external revision ⇒ cholangitis 25 0 0.86
auto-immune hepatitis ⇒ cholangitis 49 3 0.85
cirrhosis ∧ fibrosis ⇒ cholangitis 31 1 0.85

We presented the 50 top-scoring rules containing at least one morphology
or diagnosis to a gastro-intestinal specialist of the Radboud University Medical
Centre in The Netherlands. Table 2 presents the top-five rules for cholangitis
using a shorthand notation. For example, the first rule corresponds to:

procedure(P, brush, T1) ∧ topography(P, colon, T2) ∧
diagnosis(P, no tumour, T3) ⇒ cholangitis(P, T )

where T1, T2, T3 < T .
The specialist confirmed that the high-scoring rules are in accordance with

existing medical knowledge. In particular, as expected, rules for cholangitis are
related to inflammatory bowel diseases and rules for angiosarcoma of the breast
are related to breast cancer. Yet, for finding novel disease associations, we iden-
tified three limitations. First, there is a large number of rules that can be found
within the data, which makes medical validation challenging. Second, some of
the high-scoring rules are irrelevant because they are, for example, an artifact
of diagnosis by exclusion (e.g., no tumour, no abnormalities). For example, the
method of obtaining the sample (e.g., brush) is predictive but medically irrel-
evant. Third, for exploratory data analysis, it is only of interest which other
morphologies occur before the diagnosis of interest. Repetition of the same mor-
phology or diagnosis leads to a large number of rules, which may only differ in,
for example, location.

The interpretability of ILP-learned rules facilitates the interaction with and
feedback from domain experts. Inspired by the above limitations, we added a
post-processing step by removing rules containing particular codes (e.g., no tu-
mour) and rules for which there are higher-scoring rules that contain the same
morphology or diagnosis. For the cholangitis case study, this results in a list of
only 30 rules that cover at least 10 positive examples. Table 3 presents a few of
the best-scoring rules using the same shorthand notation as in Table 2. Some of
the associations, such as the strength of the association between Crohn’s disease
and cholangitis (with 16 positive and no negative examples), were considered
surprising and warrant further investigation.

4.3 Comparison with sequential pattern mining

Sequential pattern mining is an alternative to the proposed ILP approach. We
applied several sequential pattern mining variants to the cholangitis case study



(i.e., CMRules, RuleGrowth, ERMiner, TNS, and TopSeqRules), using the data
mining framework SPMF [6]. To do so, we used sample Sp1 to construct sequences
of diagnoses of patients who have been diagnosed with cholangitis. Each patient
corresponds to one sequence, while each record corresponds to an itemset in the
sequence. We only consider the records up until the first diagnosis of cholangitis.

Running the rule mining algorithms yields 389 distinct rules. However, the
post-processing procedure from the previous section retains none of these rules.
Inspecting the rules before post-processing, allows us to identify three limitations
of propositional mining algorithms: (i) no abstractions are found using these
algorithms, which makes the rules less interpretable, (ii) many of the rules found
are irrelevant for a specific disease of interest (e.g., the rule liver => biopt),
and (iii) no specific rules for cholangitis are discovered.

5 Conclusions

In recent years, there has been considerable interest in extracting knowledge
from the data collected in electronic health records (EHRs), though it is recog-
nized that there are considerable challenges involved [7, 10]. Nonetheless, several
attempts have been made to mine the EHR, typically used for predictive mod-
elling, e.g., in order to support clinical decisions or for the identification of risk
factors [1, 2, 13, 15]. However, exploratory data mining to find novel relationships
between diseases is something which has not been studied as far as we are aware.

This paper presented a case study of applying inductive logic programming
(ILP) to extract interesting rules from a pathology data set. This paper posited
that ILP is particularly suited to this task for three reasons. First, is its ability
to handle structure such as the hierarchical organization of diagnosis codes and
time. This not only allows improving the learning process, as in [11], but also to
abstract from specific codes to more abstract ones. Second, ILP returns inter-
pretable rules which facilitate an iterative mining process with domain experts.
Third, ILP is a discriminative approach so it can focus its discovery efforts on
target variables of interest. In the case studies, we found that ILP was able to
exploit the structure in the data and that it produced more meaningful pat-
terns than sequential pattern mining. Furthermore, we illustrated how we were
able to revise the mining process based on the feedback of a domain expert.
In the future, we will continue to explore adding additional domain knowledge
to further guide the search process. Finally, rules considered interesting by the
medical experts will be verified using traditional statistical methods to make
them acceptable to the medical literature.
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8. Lavrač, N., Dzeroski, S., Bratko, I.: Handling imperfect data in inductive logic
programming. Advances in Inductive Logic Programming 32, 48–64 (1996)

9. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
The Journal of Logic Programming 19, 629–679 (1994)

10. Ramakrishnan, N., Hanauer, D., Keller, B.: Mining electronic health records. Com-
puter 43(10), 77–81 (2010)

11. Singh, A., Nadkarni, G., Guttag, J., Bottinger, E.: Leveraging hierarchy in medical
codes for predictive modeling. In: Proc. of ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics. pp. 96–103. ACM (2014)

12. Srinivasan, A.: The Aleph manual. Machine Learning at the Computing Labora-
tory, Oxford University (2001)

13. Sun, J., Hu, J., Luo, D., Markatou, M., Wang, F., Edabollahi, S., Steinhubl, S.,
Daar, Z., Stewart, W.: Combining knowledge and data driven insights for identi-
fying risk factors using electronic health records. In: Proc. of AMIA Annual Sym-
posium. vol. 2012, p. 901. American Medical Informatics Association (2012)
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