The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/143107

Please be advised that this information was generated on 2018-11-21 and may be subject to change.
Proceedings of the

INTERNATIONAL SYMPOSIUM ON GAS CHROMATOGRAPHY

MASS SPECTROMETRY

Isle of Elba, Italy 1972

Edited by Alberto Frigerio

TAMBURINI EDITORE MILANO - 1972
CANNABINODIOL, A NEW HASHISH CONSTITUENT, IDENTIFIED BY GASCHROMATOGRAPHY-MASS SPECTROMETRY

C.A.M. VAN GINNEKEN, T.B. VREE,
D.D. BREIMER, H.W.H. THIJSSSEN
and J.M. VAN ROSSUM

Department of Pharmacology,
University of Nijmegen,
Nijmegen, The Netherlands
SUMMARY:

In extracts of Nepalese hashish and Brazilian marihuana a hitherto unknown cannabinoid component was found. On the basis of its behaviour in gaschromatography and mass-spectrometry and in comparison with a number of cannabinölike substances, the aromatic cannabidiol, with the trivial name 'cannabinodiol' is proposed as the most probable structure for the new compound.
I. INTRODUCTION.

Although much attention has been paid to the analysis and identification of the constituents of Cannabis preparations like hashish and marihuana (see for reviews: Mechoulam (1970), Neumeyer and Shagoury (1971)), the use of new techniques of combined gaschromatography-mass spectrometry recently enabled us to demonstrate the occurrence in hashish and marihuana of several (until then unknown) analogues of the major cannabinoid constituents (Vree, Breimer, Van Ginneken, Van Rossum, De Zeeuw and Witte, 1971; Vree, Breimer, Van Ginneken and Van Rossum, 1972; Breimer, Vree, Van Ginneken and Van Rossum, 1972; De Zeeuw, Wijsbeek, Breimer, Vree, Van Ginneken and Van Rossum, 1972).

The method consists in taking mass-spectra at various electron energies, ranging from 20 to 10 electronvolt (eV), and plotting the relative intensities of particular massfragments versus the electron energies used. Characteristic graphs are obtained in that way for each cannabinoid (electronvoltage-massfragment intensity graphs).

The fragmentation behaviour of the cannabinoids appears to be mainly determined by the alicyclic ringsystem (Budzikiewicz, Alpin, Lightner, Djerassi, Mechoulam and Gaoni, 1965; Claussen, Fehlhaber and Korte, 1966).
Variations in the length of the side chains of the aromatic ring on the other hand do not have important consequences for the fragmentation pattern in the electron-voltage range we use (10-20 eV), but they seem to be crucial for the gas chromatographic behaviour of the various cannabinoids (unpublished observations in our laboratory).

Another aspect is the rate of fragmentation of a molecular ion into certain massfragments. It is reasonable to assume that differences in the electron energy, at which the same massfragment originates from different molecular ions, reflect in some way the stability of the parent compounds. Actually the term 'stability' is used here from a kinetic point of view, so the differences mentioned refer to the activation energy of a certain fragmentation, and not to a strictly thermodynamic property of the parent compound.

Comparing for instance the electronvoltage-massfragment intensity graphs for cannabicyclol, cannabichromene, cannabidiol, Δ^1-tetrahydrocannabinol and Δ^1-tetrahydrcannabinol, which have the same molecular weight (314) and which have the same fragment of mass 231 in common, we find that massfragment 231 reaches a relative intensity of 50% at 10, 12, 13, 16, and 20 eV respectively.
This means that the activation energy for the different mechanisms of fragmentation from molecular mass 314 to massfragment 231 is increasing in the order: cannabicyclol, cannabichromene, cannabidiol, Δ^1-6 tetrahydrocannabinol and Δ^1-2 tetrahydrocannabinol. These findings afford some interesting features: While the relative instability of cannabicyclol and cannabichromene is hardly surprising on the basis of molecular structure, it is suggested that fragmentation of cannabidiol to massfragment 231 does not proceed via tetrahydrocannabinol. The difference between the two tetrahydrocannabinols is fully explicable by the fact that unlike the Δ^1-2 isomer, Δ^1-6 tetrahydrocannabinol is subject to a rather easily occurring intramolecular Diels Alder reaction (Budzikiewicz, Alpin, Lightner, Djerassi, Mechoulam and Gaoni, 1965; Claussen, Fehlhaber and Korte, 1966).

It should be emphasized that we are dealing with overall activation energies, so we cannot get any information about the complexity of the fragmentation and the relative importance of the various processes involved. Comparison of the several fragmentation reactions, structures and energies may give an answer to the differences in internal energies of the molecules.

Obviously comparisons are much less complicated, as far as simple unambiguous transitions are concerned.
II MATERIALS AND METHODS

A. Sample preparation

Nepalese hashish and Brazilian marihuana were powdered and extracted with n-hexane. After filtration, part of the solvent was evaporated in order to obtain suitable concentrations for gaschromatography and mass-spectrometry.

B. Gaschromatography

A Hewlett-Packard 402 gaschromatograph with flame-ionisation detector was used. Glass columns, 1.5 m, inner diameter 3 mm, were packed with 3 % UCW98 on Gas Chrom Q 60-80 mesh. Temperature of oven 180°C, injection block 230°C, detector 230°C. Nitrogen flow-rate 30 ml/min; hydrogen flow 30 ml/min; air flow 150 ml/min.

C. Gaschromatography-mass spectrometry

An LKB 9000 combined gaschromatograph-mass spectrometer was used. Same columns used as described under Gaschromatography. Helium flow 30 ml/min. The oven temperature was 180°C, temperature of the separator 220°C and temperature of the ion source 250°C.

The trap current was maintained at 60 μA, the accelerating voltage at 3.5 kV. Repetitive mass spectra were taken at different electron energies between 20 and 10 eV during the elution of a component from the gaschromatograph, as recorded by the total ion current at 20 eV.

Mass spectra were normalized (base peak = 100 %) and electron-voltage-mass-fragment intensity graphs were constructed.
Figure 1.
Electron voltage-massfragment intensity graphs for a number of cannabinol like compounds. The 'eV' refers to the crossing point of the intensity lines for the molecular ion (M) the massfragment M-15.
III. RESULTS AND DISCUSSION

In the normal, well-known cannabis constituent cannabionol (see figure 1, R = 3C₆H₁₁', N' = H) fragmentation is at the electron energies used practically restricted to the loss of a geminal methyl group, so the compound shows a highly 'characteristic' mass spectrum: molecular ion M=310, massfragment M-15 = 295 and a metastable peak at mass 281. Only one further massfragment is observed, mass 254, which originates from the loss of a C₄H₈ fragment in the pentyl side chain. Stepwise fragmentation of the side chain does practically not occur. This holds true for all known natural cannabinoids and from unpublished experiments it was found that also for olivetol (4-n-pentyl-resorcinol) stepwise fragmentation of the pentyl side chain accounts for only 1-6% of the total fragmentation. However this pathway is of minor importance at the electron energies used and accounts for a few percent maximally. When the relative intensities of the masses 310 and 295 were plotted versus the electron energies used, a typical graph was obtained (figure 1), the 'crossing point' of the lines for mass 310 and 295 being at about 14 eV. This crossing point reflects in some way the activation energy for the reaction resulting in the loss of a geminal methyl group, as was pointed out in the introduction. Totally analogous graphs are obtained for the cannabinol-like compounds, in which the pentyl side chain is replaced by a propyl or methyl side chain. (Vree, Breimer, Van Ginneken, and Van Rossum, 1972; Vree, Breimer, Van Ginneken, Van Rossum, De Zeeuw and Witte, 1971).
Figure 2.
Total ion current diagram for an extract of Nepalese hashish and the electronvoltage-massfragment intensity graph for the new compound, which elutes just after cannabinol. The depicted structure (aromatic cannabinol or cannabinodiol) is explained in the text.
The observation that no fragmentation of the ringsystem takes place is interesting in view of the difference in mass spectrometric behaviour of Δ⁰²⁴ and Δ⁰⁶ tetrahydrocannabinol. In contrast to its Δ⁰⁶-isomer, Δ¹⁻² THC shows a relatively high intensity for massfragment 299 (Vree, Breimer, Van Ginneken, Van Rossum, De Zeeuw and Witte, 1971). This is caused by the fact that in Δ¹⁻⁶ THC fragmentation of the ringsystem is predominant.

So when only the mass fragments of the molecular ion M and M-15 are observed in the mass spectra, this has to be explained by a high stability of the ringsystem of the molecule.

Another important finding is that the cannabinol like mass spectrum is largely independent of the substituents R and R' (figure 1). The shape of the electronvoltage-mass fragment intensity graphs remains the same and only minor shifts in the crossing point between the M and M-15 lines appear (14 eV ± 1 eV). When studying extracts of Brazilian marihuana and Nepalese hashish we found in the gaschromatogram an unknown peak eluting just after cannabinol (figure 2), which at first sight had the same mass spectrum as cannabinol: mol ion 310 and mass fragments 295, 254 and a metastable peak at mass 281. In contrast with cannabinol, the crossing point of the lines M and M-15 was at 19.5 eV, about 5 eV higher than for cannabinol.
Figure 3.
Electron voltage-mass fragment intensity graphs for synhexyl, cannabinol (CBN) and cannabinoiol (CBND). See text for further explanation.
From the gaschromatographic and mass-spectrometric be-
haviour we conclude that the new compound should have a
cannabinoid-structure. The molecular weight of 310 in-
dicates that the compound has 4 H atoms less than tetra-
hydrocannabinol, cannabidiol, cannabicyclol and cannabi-
chromene.
The possibility that the pentyl side chain has lost 4 H
atoms can be ruled out, since variations in the side chain
do not change the mass-spectrum of the cannabinoids into
a cannabinol like mass-spectrum.
The difference of 5 eV between the crossing-points for the
M and M-15 lines of cannabinol and the new compound must
be due to an increase in conjugation of the ringsystem,
leading to more possible resonance structures and thus to
a higher stability of the new molecule.
The observation that also synhexyl (see figure 3) shows
a cannabinol like mass-spectrum allows us to define more
exactly the structural requirements for cannabinoids to
show this particular mass-spectrometric behaviour.
It must be concluded that the presence of a double bond
in the 3-4 position in conjugation with the aryl-nucleus
endows the molecule with a so much increased stability
that fragmentation is restricted to the loss of one gemi-
mal methylgroup.
Figure 4.
The proposed fragmentation pattern of cannabinodiol.
The fact that the crossing point of the M and M-15 intensity lines is at about the same electron-energy for syn-
hexyl as for the cannabinoids, suggests that further con-
jugation of the cyclohexene-ring does not give a shift in
the crossing points. So the new cannabis constituent should
show a still more extensively conjugated structure.
A structure which will fulfill all the requirements men-
tioned above is the aromatic cannabidiol, for which we
would propose the trivial name cannabinodiol (CBND in fi-
gure 3). It is clear from the structures depicted in figu-
re 3, that this compound has still more resonance struc-
tures than cannabinol and that in all respects this is the
most logical solution to the problem.
Concerning the fragmentation of cannabinodiol, it seems
hardly plausible, that the molecule would lose a methyl
group directly, so we assume that after a primary ioni-
sation, a cyclisation will occur to a cannabinoI-ion
(mass 310), which in turn will lose a geminal methylgroup
leading to the stable massfragment 295. This proposed
fragmentation pattern is depicted in figure 4.
From our previous work we have evidence that each canna-
binoid bearing a pentyl sidechain is accompanied by pro-
pyl- and methyl-analogues (Vree, Breimer, Van Ginneken and
Van Rossum, 1972).
Figure 5.
Total ion current diagram (TIC) and massfragment intensity diagrams (MID) for an extract of Nepalese hashish.

CHR = cannabichromeen, CBD = cannabidiol, THC = Δ^12 tetrahydrocannabinol, CBN = cannabinol and CBDA = aromatic cannabidiol = cannabinoioli.

The appendixes C$_3$ and C$_5$ refer to the number of carbon atoms in the side chain.

See text for further explanation.
The question arose whether the cannabino-diol with a propyl side chain existed and could be detected.

The proof of the existence, but also the relative concentration in the particular hashish extract and the detection-limit were given by means of the method of massfragmentography (see: Hammar, 1971). First the massfragmentogram was made of mass 310, and just after cannabino-diol the second compound with molecular weight 310 eluted. The same was done for mass 295. Also when massfragmentograms were made of mass 282 and 267 a second but small peak of the same mass eluted just after the known propyl-homologue of cannabino-diol (see figure 5). The concentration of the propyl-homologue of cannabino-diol was very low and it was impossible to obtain a mass spectrum with our procedure.

With the technique of massfragmentography the retention-time of the cannabino-diol-propyl-homologue was determined. It was observed with the propyl- and pentyl-homologues of cannabidiol, tetrahydrocannabino-diol and cannabino-diol, as identified by combined gaschromatography-mass spectrometry, that there was a fixed ratio between the retention-times. The ratio is independent of oven-temperature and carrier-gas flow, but dependent upon the column liquid phase. From figure 6 it can be observed that the ratio of the
Figure 6.

Comparative retentions of propyl- and pentyl-cannabinoids. For abbreviations see figure 5.

See text for further explanation.
retention-times of the pentyl and propyl-cannabinodiol fits well in the range of ratios for the other cannabinoids. From both mass-fragmentography and retention-behaviour one might conclude that cannabinodiol indeed is accompanied by its propyl analogue. The existence of a methyl analogue could not be demonstrated, probably because of a too low concentration.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. T. Petrzilka (Dept. Org. Chemistry Eidgn. Hochschule, Zürich, Switzerland) for the kind supply of several of the compounds described in this paper; Dr. L. Hollister (Palo Alto, U.S.A.) for synhexyl and Dr. N.M.M. Nibbering (Dept. Org. Chemistry, University of Amsterdam, The Netherlands) for valuable remarks concerning the interpretation of mass-spectra.

This work was supported by Z.W.O. (Dutch Organisation for pure scientific Research) and the Preventiefonds (from the Dutch Ministry of Health).
REFERENCES

Some New Cannabis Constituents.
In: Biochemical and pharmacological aspects of dependence and
Reports on marihuana research. Edited by H.M. van Praag.

Budzikiewiez, H.; Alpin, R.T.; Lightner, D.A.; Djerassi, C.;
Massenspektroskopische Untersuchung der Inhaltsstoffe von
Haschisch.

Massenspektrometrische Bestimmung von Haschisch. Inhaltsstoffen II.

Massfragmentography and elemental analysis by means of a new
combined multiple ion detector-peak matcher device.
Acta Pharmaceutica Suecica, 8: 129-152.

Marihuana Chemistry.
Science, 168: 1159-1166.

