PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/143048

Please be advised that this information was generated on 2018-12-31 and may be subject to change.
Spin-Triplet Cobalt Complexes of Biuret and Related Ligands

P. J. M. W. L. BIRKER, J. J. BOUR, and J. J. STEGGERDA

Received October 3, 1972

A number of planar CoIII(N) complex have been prepared with biuret and N-substituted biurets. They are shown to have triplet electronic ground states in the temperature range 6.4–293°K. The zero-field splitting is estimated to be about 40 cm⁻¹. The triplet ground state is consistent with molecular orbital energies obtained from extended Huckel calculations. The dₓz and dᵧz² orbitals both have the same energy and are both occupied by one electron. Polarographic measurements show that these complexes can be reversibly reduced in a one-electron step. With amines, diamagnetic six-coordinated mixed-ligand species are obtained, whose uv-vis spectra can be interpreted as for Co(III) in an octahedral environment.

Introduction

In previous communications from our laboratory the rather unique properties of biuret as a ligand were discussed. It was shown that the well-known Cu(II) and Ni(II) complexes could be oxidized with various oxidizing agents yielding the corresponding Cu(III) and Ni(III) compounds.¹,² With cobalt the very remarkable planar bis(biuretato)cobalt-

ate(III) ion could be synthesized having a spin-triplet ground state.\(^1\)\(^3\) The crystal structure of the 3-n-propyl-substituted biuret complex of Co(III) was recently published.\(^4\) We now report more details about the properties of a series of cobalt complexes with biuret and related ligands.

Experimental Part

Syntheses. Biuret (30 g) and KOH (36 g, dissolved in 50 ml of water) were added for the preparation of 3-phenylbiuret and ethylenebis(biuret). These ligands were obtained in a way analogous to the method used for the preparation of 1-alkyl-substituted biuret\(^5\) starting with a 2:1 mixture of nitrobiuret and o-phenylenediamine or ethylenediamine, respectively. KCo(bi). Cobalt acetate (25 g) was dissolved in 25 ml of water. Biuret (30 g) and KOH (35 g, dissolved in 50 ml of water) were added to this solution and the resulting blue slurry was oxidized with air during 24 hr. The insoluble material was then removed by filtration and upon careful neutralization with 6 N HCl to pH 7 KCo(bi), precipitated as a yellow compound. It was filtered off, washed with water, and dried in a vacuum desiccator. The compound is insoluble in any solvent.

Anal. Calcd for KCo(bi): K, 13.03; Co, 19.65; C, 16.00; H, 2.00; N, 28.00. Found: K, 13.4; Co, 19.5; C, 15.7; H, 2.2; N, 27.2.

KCo(bi)(O-n-C3H7)2. DMSO = dimethyl sulfoxide and Bu₄NOH = tetra-n-butylammonium hydroxide.

KCo(bi)(O-n-C3H7)2. DMSO. 3-Phenylbiuret was prepared according to Weith.\(^6\) CoCl₂·6H₂O (2.4 g) and 3-phenylbiuret (5.1 g) were dissolved in 100 ml of water. KOH (3.6 g dissolved in 5 ml of water) was added to this solution and the resulting blue slurry was oxidized with air during 24 hr. The insoluble material was then removed by filtration and upon careful neutralization with 6 N HCl to pH 7 KCo(bi), precipitated as a yellow compound. It was filtered off, washed with water, and dried in a vacuum desiccator. The compound is insoluble in any solvent.

Anal. Calcd for KCo(bi): K, 13.03; Co, 19.65; C, 16.00; H, 2.00; N, 28.00. Found: K, 13.4; Co, 19.5; C, 15.7; H, 2.2; N, 27.2.

KCo(3-Ph(bi))₂·2DMSO. KCo(3-Ph(bi))₂·2DMSO is a complex of Co(III) with biuret and the resulting mixture was oxidized with air during 24 hr. Then the insoluble material was washed with chloroform and ether. It was filtered off and washed with alcohol. The complex is soluble in DMSO, alcohol, and acetone.

Anal. Calcd for KCo(3-Ph(bi))₂·2DMSO: C, 31.11; H, 5.59. Found: C, 30.9; H, 5.9.

KCo(o-phen(bi))₂. Ethylenebis(biuret) (1.2 g) and cobalt acetate (1.2 g) were dissolved in 40 ml of DMSO. To this solution 1.2 g of KOH was dissolved in 4 ml of water. The resulting mixture was oxidized with air during 24 hr. Then the insoluble material was washed with chloroform and ether, filtered off, and washed with chloroform. The compound is insoluble in DMSO, alcohol, and acetone.

Anal. Calcd for KCo(o-phen(bi))₂·2DMSO: C, 31.11; H, 5.59. Found: C, 30.9; H, 5.9.

Spin-Triplet Cobalt Complexes of Biuret

221 (1972). Oxidized with air during 24 hr. Then the insoluble material was removed by filtration. To the red filtrate about the same volume of a solution of KCO₃ was added and the resulting mixture was oxidized with air during 4 hr. The insoluble material was filtered off and the red filtrate was concentrated with alcohol and ether as described above until a volume of about 10 ml of the red solution was left. To this solution 50 ml of DMSO was added and 1 N HCl was dropped into the solution until the color of the solution was orange-yellow. The complex was precipitated by adding alcohol and ether and filtered off. Purification by distillation was impossible in DMSO, the solution was filtered, and the complex was again precipitated with chloroform and ether, filtered off, and washed with chloroform.

Anal. Calcd for Bu₄NCo(3-Ph(bi))₂·2H₂O: C, 46.0; H, 8.4; N, 18.8. Found: C, 45.6; H, 7.9; N, 18.8.

KCo(3-Ph(bi))₂(1-Pr(bi)H₂). When the method of Weith\(^6\) for the preparation of 3-phenylbiuret is used for the preparation of alkylbiurets, a mixture of 1-alkylbiuret and 3-alkylbiuret is always obtained. So when a mixture of 0.1 mol of very dry propyleneurea and 0.1 mol of PCl₃ is refluxed during 4 hr, a acid solution containing 1-propylbiuret and 3-propylbiuret is obtained after hydrolysis of the reaction mixture with ice. In such a solution excess CoCl₂·6H₂O was dissolved. KOH was added until a blue slurry was formed, which was oxidized with air during 24 hr. The precipitate was filtered off and upon careful neutralization of the red solution with 6 N HCl to pH 7, the yellow complex precipitated. It was filtered off and washed with water. The complex is soluble in DMSO, alcohol, and acetone.

Anal. Calcd for KCo(3-Pr(bi))₂(1-Pr(bi)H₂)₂: C, 35.71; H, 5.98; N, 24.92. Found: C, 35.2; H, 5.8; N, 25.0.

In an analogous way other compounds of composition KCo(3-alkyl(bi))₂(1-alkyl(bi)H₂)₂ could be prepared. KCo(3-Pr(bi))₂·2H₂O. From a solution of KCo(3-Pr(bi))₂(1-Pr(bi)H₂)₂, in moist DMSO the compound KCo(3-Pr(bi))₂·2H₂O precipitated upon addition of chloroform and ether. It was filtered off and washed with chloroform.

Anal. Calcd for KCo(3-Pr(bi))₂·2H₂O: C, 40.1; H, 4.28; N, 5.3; H, 19.9. Found: C, 13.9; H, 28.6; N, 5.9. Found: C, 15.9; H, 4.9; N, 18.8.

KCo(3-Pr(bi))₂·2DMSO. In dry DMSO KCo(3-Pr(bi))₂(1-Pr(bi)H₂)₂ was dissolved. A few hours KCo(3-Pr(bi))₂·2DMSO could be precipitated by adding dry chloroform. The precipitate was filtered off and washed with chloroform in dry air as it is sensitive to moisture.

Anal. Calcd for KCo(3-Pr(bi))₂·2DMSO: C, 31.11; H, 5.59. Found: C, 30.9; H, 5.9.

KCo(3-Pr(bi))₂. Cobalt acetate (1.2 g) was dissolved in 40 ml of DMSO. To this solution 1.2 g of KOH was dissolved in 4 ml of water. The resulting mixture was oxidized with air during 24 hr. Then the insoluble material was washed with chloroform and ether, filtered off, and washed with chloroform. The compound is insoluble in DMSO, alcohol, and acetone.

Anal. Calcd for KCo(3-Pr(bi)): C, 32.09; H, 2.15; N, 22.46. Found: C, 31.6; H, 2.3; N, 22.1.

Bu₄NCo(en(bi))₂. Cobalt acetate (1.2 g) was dissolved in a mixture of 20 ml of water and 10 ml of DMSO. Ethylenebis(biuret) (1.2 g) and 12.5 ml of a 40% Bu₄NOH solution in water were added and the resulting blue slurry was oxidized with air during 12 hr.
The precipitate of the crude red complex was then filtered off. It was dissolved in DMSO, the solution was filtered, and small purple needles of the pure complex were obtained when chloroform was added to this solution. The presence of chloroform was confirmed by the mass spectrum of the compound at 120°.

All these complexes do not have good melting points but decompose in general above 170°.

Physical Measurements. Magnetic susceptibilities were measured with Gouy type equipment with HgCo(NCS)₄ as a reference over a temperature range of -150 to +20°. A vibrating-sample magnetometer (Princeton Applied Research Type 155) equipped with a standard PAR temperature control unit was used in the temperature range of 4.2-120°K. The field strengths was 16563 G. Polarographic data were obtained with a Metrohm Polarecord E261. Dry vacuum-distilled DMSO was used as solvent with 0.1 M Bu₄NClO₄ as supporting electrolyte. A dropping mercury electrode was used vs. a saturated calomel electrode. Ultraviolet and visible spectra were measured with a Unicam SP 700C; transmission spectra were measured in solid KBr with a Cary Model 14.

Results and Discussion

Paramagnetic compounds in which Co(III) is coordinated with four atoms in an essentially planar geometry are very rare. Except for some cobalt(III) dithiolate complexes no good examples are known. Apparently the electron-donating capacity of the biuretato and the dithiolato ligands is so strong that the relatively large electron density on the central cobalt atom makes coordination of strong electron-donating ligands (e.g., amines) unfavorable, while there is in the case of the biuretato complexes no indication of coordination with weak electron donors (e.g., H₂O, DMSO, alcohol). Sometimes, however, the solid compounds contain DMSO, H₂O, or 1-alkylbiuret. It has been shown by crystallographic structure determination⁴ that the 1-alkylbiuret molecules are not coordinated with the cobalt atom and that the cobalt atom is in planar coordination with four nitrogen atoms of deprotonated 3-alkylbiurets. Through formation of H bridges the 1-alkylbiuret molecules are incorporated in the crystal lattice around the potassium ions, yielding compounds which can at best be formulated as [K(1-alkyl(bi)H₂)]₂[Co(3-alkyl(bi))₂]. Compounds of this composition are insoluble in water, so the coincidental presence of 1-alkylbiuret in the reaction mixture from which these complexes are prepared (see Experimental Part) enabled us to prepare these compounds from aqueous solutions. The Co₃N₄ complexes that are soluble in water (e.g., KCo(3-Pr(bi))₂-2DMSO) are decomposed in neutral or acid solution, due to protonation of the ligand, so they have to be prepared in nonaqueous solvents such as DMSO. We believe that the cobalt atom in the solid compounds containing DMSO or H₂O is also four-coordinated, as the spectral and magnetic properties of these compounds are similar to those of the compound containing 1-alkylbiuret (see Table I and Figure 1).

These complexes could be studied in solutions of rather weak electron-donating solvents such as alcohol, DMSO, and acetone, as they do not take up weak electron donors as further ligands. The magnetic moments of KCo(3-Pr(bi))₂-2H₂O and KCo(3-Pr(bi))₂(1-Pr(bi)H₂)₂ in DMSO solution indicate that the triplet ground state is not affected and the positions of the uv-vis absorption bands of KCo(3-Pr(bi))₂(1-Pr(bi)H₂)₂ measured in DMSO, alcohol, and the solid compound are quite the same, indicating that the solvent molecules are not interacting with the planar Co₃N₄ species.

Table I. Spectral and Magnetic Data of Triplet Cobalt Complexes

<table>
<thead>
<tr>
<th>Compd</th>
<th>Meas temp range over which Curie-Weiss law is obeyed, °C</th>
<th>Θ, °C</th>
<th>ν₃ν, kK</th>
<th>ν₄ν, kK</th>
<th>ν₁ν, kK</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCo(bi)₃</td>
<td>-150 to +100</td>
<td>0</td>
<td>13.2</td>
<td>12.7</td>
<td>11.2</td>
<td>Solid KBr</td>
</tr>
<tr>
<td>Bu₄NCo(bi)₃</td>
<td></td>
<td></td>
<td>13.3 sh</td>
<td>12.6 (100)</td>
<td>11.6 (50)</td>
<td>C₂H₅OH</td>
</tr>
<tr>
<td>KCo(3-Pr(bi))₂(1-Pr(bi)H₂)₃</td>
<td>-150 to +20</td>
<td>-16</td>
<td>13.2</td>
<td>12.8</td>
<td>11.5</td>
<td>DMSO</td>
</tr>
<tr>
<td>KCo(3-Pr(bi))₂-H₂O</td>
<td>3.4 (DMSO)</td>
<td></td>
<td>13.4</td>
<td>12.8</td>
<td>11.5</td>
<td>C₂H₅OH</td>
</tr>
<tr>
<td>KCo(3-Pr(bi))₂-2DMSO</td>
<td>3.5 (DMSO)</td>
<td></td>
<td>13.7</td>
<td>13.3</td>
<td>11.4</td>
<td>Solid KBr</td>
</tr>
<tr>
<td>KCo(3-Pr(bi))₂-2DMSO</td>
<td>3.5 (DMSO)</td>
<td></td>
<td>13.8</td>
<td>13.8</td>
<td>11.2</td>
<td>DMSO</td>
</tr>
</tbody>
</table>

b Only bands with small extinction coefficients given. Extinction coefficients in parentheses. c At room temperature. Measured on solid samples, unless solvent is indicated. d Not exactly determined due to inaccurate in measurement.

Figure 1. Electronic spectrum of KCo(3-Pr(bi))₂(1-Pr(bi)H₂)₂ in DMSO.
Table II. UV Spectral Data of Some Mixed-Ligand Complexes

<table>
<thead>
<tr>
<th>Compd</th>
<th>(\nu_1), kK</th>
<th>(\nu_2), kK</th>
<th>10Dq, kK</th>
<th>B, kK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(3-Pr(bi))_2(NH_3)_2^-</td>
<td>20.4 (70)</td>
<td>27.4 sh</td>
<td>21.4</td>
<td>500</td>
</tr>
<tr>
<td>Co(3-Pr(bi))_2(C_3H_7NH_2)_2^-</td>
<td>18.5 (45)</td>
<td>27.8 sh</td>
<td>19.0</td>
<td>730</td>
</tr>
<tr>
<td>Co(3-Pr(bi))_2(pyridine)_2</td>
<td>17.4 (42)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(3-Pr(bi))_2(py)_2</td>
<td>18.2 (47)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Electronic spectrum of KCo(3-Pr(bi))_2(C_3H_7NH_2)_2 in ethanol.

Figure 3. Plot of \(1/\chi_M \) vs. \(T \) of KCo(3-Pr(bi))_2H_2O (corrected for diamagnetism).

When excess of an amine is added to an alcoholic solution of these paramagnetic cobalt complexes, diamagnetic six-coordinated adducts are formed.\(^3\) They can be isolated by adding ether to such a solution. These adducts are thermally unstable in the solid phase. They lose two amine molecules as was indicated by a gravimetric determination at 80° and the parent four-coordinated paramagnetic complex is left.

The uv-vis spectra of these CoN_4L_2 compounds can readily be interpreted as for Co(III) in an octahedral environment (see Table II and Figure 2).

The magnetic moments of all the planar CoN_4 compounds indicate a triplet ground state. Their magnetic susceptibilities obey the Curie-Weiss law over a temperature range of -150 to +20°K. The susceptibility of KCo(3-Pr(bi))_2H_2O has been measured from 6.45 to 300°K. Below 40°K the magnetic susceptibility clearly deviates from the Curie-Weiss behavior (see Figure 3).

With the usual spin Hamiltonian for describing spin-triplet states the energy levels of a spin triplet in a magnetic field are obtained as given by Ballhausen.\(^8\)

Writing square root terms of the type
\[\frac{1}{2}v^2 \left(\frac{D + E}{kT} \right)^2 + \frac{4g_\Sigma^2 \beta^2 H_x^2}{kT} \] all symbols having their usual significance, the energies of these levels can be written as a constant plus a function of \(H^2 \), so in the general form
\[
U_n = U_n(0) + U_n(1)H + U_n(2)H^2
\]
\(U_n(1) \) is always zero in these cases. Now inserting these values into van Vleck's formula
\[
\chi_M = \frac{N\Sigma_n \left[\frac{U_n(1)}{kT} - 2U_n(2) \right] \exp \left(\frac{-U_n(0)}{kT} \right)}{\sum_n \exp \left(\frac{-U_n(0)}{kT} \right)}
\]
it is possible to write down expressions for \(\chi_M \), \(\chi_M^x \), and \(\chi_M^z \) (i.e., \(\chi_M \) when all the molecules have their x, y, or z axis, respectively, parallel with the magnetic field). The bulk susceptibility of the powdered sample will then be
\[
\chi_M = \chi_M^x + \chi_M^y + \chi_M^z = \frac{3}{3}
\]
This results in
\[
\chi_M = \frac{N\beta^2}{3 \left(1 + \exp \left(\frac{2D + E}{kT} \right) \right)} \left[\exp \left(\frac{2D - E}{kT} \right) \right] \left[\exp \left(\frac{D + E}{kT} \right) \right] \left[\exp \left(\frac{D - E}{kT} \right) \right] \frac{g_x^2 - g_y^2 + g_z^2}{D + E} (1 - \exp \left(\frac{D - E}{kT} \right))
\]

At low temperatures this expression for \(\chi_M \) approximates
\[
\chi_M = \frac{2N\beta^2}{3} \left(\frac{g_x^2}{D + E} + \frac{g_y^2 + g_z^2}{D - E} \right)
\]
This means that at low temperatures \(\chi \) is independent of the temperature which is in agreement with our measurements. In order to obtain a rough estimate for the value of \(D \), we set \(E \) equal to zero and take for \(g_x \) and \(g_y \) the value of 2. The measured constant low-temperature \(1/\chi_M \) equals 29.3 so \(D = 81.4 \times 10^{-16} \text{ erg} = 40.9 \text{ cm}^{-1} \).

This zero-field splitting value is of the same order of magnitude as found by Dale\(^10\) for iron(II) phthalocyanine where \(D = 69.9 \text{ cm}^{-1} \). At higher temperatures the expression for \(\chi_M \) approximates
\[
\chi_M = \frac{2N\beta^2}{3(3kT - 2D)} \left(\frac{g_x^2}{D + E} + \frac{g_y^2 + g_z^2}{D - E} \right)
\]
This formula has the Curie-Weiss form \(\chi = C(T - \Theta) \) which is also in agreement with our measurements.

Extended Huckel molecular orbital calculations are consistent with a triplet ground state for these planar CoN_4 complexes. The calculations were carried out using the VSIP's published by Basch, et al.,\(^11\) as diagonal elements \(H_{ii} = (a_{ij}/|H|a_{ij}) \) in the Hamiltonian matrix and using the Wolfsberg-Helmholz\(^12\) approximation for the estimation of energy levels.

Atomic orbitals were described by single-\(\xi\) Slater-type orbitals for \(s\) and \(p\) orbitals with \(\xi\) values taken from Clementi and Raimondi\(^\text{(13)}\) and from Richardson, et al.,\(^\text{(14)}\) and double-\(\xi\) functions were used for the description of the Co 3d orbitals taken from Richardson, et al.\(^\text{(15)}\) The MO diagram of the unsubstituted Co(bi)\(_2\)\(^+\) ion was calculated using intratomic distances as in the alkyl-substituted complex.\(^\text{(4)}\) Assuming \(D_{2h}\) symmetry average values were used for the bond lengths. The cartesian axes system used is given in Figure 4. Iterative calculations were performed using a charge criterion of 0.002. Three different values for the Wolsberg-Helmholz parameter \(K\) were used (2.50, 2.00, 1.75). The \(d\) orbitals show little overlap with ligand orbitals. There are five molecular orbitals which have very large coefficients for the Co 3d atomic orbitals and they can be considered as almost pure \(d\) orbitals (see Table III). The energy difference between these molecular orbitals appeared to be strongly dependent on the value of \(K\). Quantitative correlation between observed spectra and calculated \(d\)-orbital splittings cannot be expected to exist due to the inherent inaccuracy in the Hückel approximation. The most important result of these calculations is that the \(d\) and \(p\) orbitals have almost the same energy for all values of \(K\) (see Table III). The configuration \((d^4)^{(d^2 + p^2)}\) is in excellent agreement with the observed magnetic triplet ground state which is retained even at temperatures as low as 6°K. The calculated \(d\)-orbital sequence is the same as found by Shupack, et al.,\(^\text{(16)}\) for \((\text{N}[\text{mnt}]_2)\)\(^-\) and used by Baker-Hawkes, et al.,\(^\text{(17)}\) to explain the paramagnetism of Co(dtt)\(^+\).

One of the molecular orbitals which is occupied by an unpaired electron has \(xz\) symmetry. It is largely built up from the Co \(d_{xy}\) atomic orbital but there is also a contribution from all the pz orbitals of the ligand atoms. The pz orbital of the nitrogen atom on the 3 position has a coefficient of about 0.1 (see Table IV). In view of this fact it is not surprising that the value of the polarographic half-wave potential is in part determined by the nature of the substituent on the remote 3 position as its influence can be transferred through the delocalized \(\pi\)-electron system up to the cobalt atom (see Table V). The influence of a \(\pi\)-electron-withdrawing substituent on the 1 position has a much more pronounced effect as can be seen in Table V comparing the half-wave potentials of the ethylenebis(biuret) complex with that of the o-phenylenebis(biuret) complex.

As the molecular orbitals in which the unpaired electrons are present have \(xz\) and \(x^2 - y^2\) symmetry, the electronic ground state in \(D_{2h}\) symmetry is \(\text{B}_2g\). All compounds have \(D_{2h}\) symmetry except the o-phenylenebis(biuret) and the ethylenebis(biuret) complex. In the latter no extensive delocalization over the ethylene bridge is possible. In the o-phenylenebis(biuret) complex the \(xz\) molecular orbital, consisting of the Co 3d\(_{xz}\) atomic orbital and all ligand \(p_z\) orbitals, has no center of symmetry in contrast with the situation in any other of the compounds reported here. So some transitions involving this orbital will no longer be Laporte forbidden. This accounts for the larger extinction coefficients found for some of the \(d\)-d transitions in the o-phenylenebis(biuret) complex.

Conclusions

The paramagnetic \((S = 1)\) cobalt(III)-bis(biuretato) complexes show a normal Curie-Weiss magnetic behavior from room temperature down to -150°. Below 50°K deviation from the Curie-Weiss behavior occurs due to zero-field splitting but the triplet ground state is not affected. The unpaired electrons are largely localized in the Co 3d\(_{xz}\) and 3d\(_{x^2 - y^2}\) atomic orbitals. The polarographic half-wave potential for a reversible one-electron transfer.

Table III. Coefficients of Co 3d Atomic Orbitals in the Four Highest Filled and the First Empty Molecular Orbitals, together with the Energies of These Orbitals for Different Values of the Wolsberg-Helmholz Parameter \(K\)

<table>
<thead>
<tr>
<th>(K)</th>
<th>(d) Coeff</th>
<th>Energy, eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50</td>
<td>0.93382</td>
<td>-4.01319</td>
</tr>
<tr>
<td></td>
<td>0.99451</td>
<td>-8.05548</td>
</tr>
<tr>
<td>2.00</td>
<td>0.93914</td>
<td>-9.13753</td>
</tr>
<tr>
<td></td>
<td>0.93858</td>
<td>-11.68261</td>
</tr>
<tr>
<td>1.75</td>
<td>0.98489</td>
<td>-9.13893</td>
</tr>
<tr>
<td></td>
<td>0.97160</td>
<td>-11.80467</td>
</tr>
<tr>
<td></td>
<td>0.92295</td>
<td>-11.83599</td>
</tr>
</tbody>
</table>

Table IV. Coefficients of \(p_z\) Atomic Orbitals of Ligand Atoms in the MO that Largely Consists of Co 3d\(_{xz}\)

<table>
<thead>
<tr>
<th>(K)</th>
<th>Co</th>
<th>N(_1)</th>
<th>C(_p)</th>
<th>O</th>
<th>N(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50</td>
<td>0.98489</td>
<td>0.08416</td>
<td>0.05172</td>
<td>0.04716</td>
<td>0.08425</td>
</tr>
<tr>
<td>2.00</td>
<td>0.98419</td>
<td>0.08792</td>
<td>0.04938</td>
<td>0.04549</td>
<td>0.08744</td>
</tr>
<tr>
<td>1.75</td>
<td>0.98419</td>
<td>0.10043</td>
<td>0.03690</td>
<td>0.04324</td>
<td>0.09744</td>
</tr>
</tbody>
</table>

\(\text{Compd} \quad E_{1/2}, \text{V} \quad E_{1/2} - E_{1/4} , \text{b mV} \)

<table>
<thead>
<tr>
<th>(K)</th>
<th>Co(Co(3-Pr(bi)) -2H(_2)O</th>
<th>Co(Co(3-Ph(bi)) -2 DMSO</th>
<th>Bu(_4)NCo(bi)(_3)</th>
<th>Bu(_4)NCo(en(bi))(_3_)</th>
<th>CoCo(o-phen(bi))(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50</td>
<td>-0.71</td>
<td>-0.64</td>
<td>-0.65</td>
<td>-0.63</td>
<td>-0.47</td>
</tr>
<tr>
<td>2.00</td>
<td>60</td>
<td>58</td>
<td>64</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>1.75</td>
<td>58</td>
<td>64</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

\(\text{Compd} \quad E_{1/2}, \text{V} \quad E_{1/2} - E_{1/4} , \text{b mV} \)

<table>
<thead>
<tr>
<th>(K)</th>
<th>CoCo(o-phen(bi))(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50</td>
<td>-0.11</td>
</tr>
<tr>
<td>2.00</td>
<td>0.02</td>
</tr>
<tr>
<td>1.75</td>
<td>0.02</td>
</tr>
</tbody>
</table>

\(\text{Compd} \quad E_{1/2}, \text{V} \quad E_{1/2} - E_{1/4} , \text{b mV} \)

<table>
<thead>
<tr>
<th>(K)</th>
<th>CoCo(o-phen(bi))(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50</td>
<td>-0.71</td>
</tr>
<tr>
<td>2.00</td>
<td>60</td>
</tr>
<tr>
<td>1.75</td>
<td>58</td>
</tr>
</tbody>
</table>

All potentials were measured with 0.1 \(N\) Bu\(_4\)NClO\(_4\) as supporting electrolyte. All waves were of the reduction type.

b Theoretical value: \((RT/\text{F}) \ln (9)\). At 20° this value is 55.3 mV for a reversible one-electron transfer.
tentials are dependent on the nature of substituents on the biuret ligand probably due to electron donating or withdrawing through the delocalized π-electron system which overlaps with the Co 3dz2 orbital.

Registry No. KCo(bi)2, 38637-46-6; KCo(3-Ph(bi))2·2DMSO, 38637-47-7; Bu4NCO(3-Ph(bi))2, 38637-48-8; Bu4NCO(bi)2·H2O, 38637-49-9; KCo(3-Pr(bi))2(1-Pr(bi)H2)2, 38647-84-1; KCo(3-Pr(bi))2·2H2O, 38637-51-3; KCo(3-Pr(bi))2·2DMSO, 38637-52-4; KCo(en(bi))2, 38637-53-5; KCo(o-phen(bi))2, 38637-54-6; Bu4NCO(en(bi))2, 38637-55-7; Bu4NCO(o-phen(bi))2·CHCl3, 38637-56-8; KCo(3-Pr(bi))2·(NH3)2, 31282-33-4; KCo(3-Pr(bi))(C3H7NH2)2, 31282-34-5; KCo(3-Pr(bi))(pyrrolidine)2, 31249-56-6; KCo(3-Pr(bi))(pyridine)2, 31240-71-8.

Acknowledgment. The investigations were supported by The Netherlands Foundation for Chemical Research (SON) with financial aid from The Netherlands Organization for the Advancement of Pure Research. We wish to thank Mr. J. Diersmann for performing the analyses, Dr. C. P. Keijzers for providing the computer program for the Hückel calculations, and Professor L. L. van Reijen for giving us the opportunity to perform magnetic measurements below 150°C. We thank Dr. P. van der Put for help with the interpretation of magnetic data.