Dear Author,

Please, note that changes made to the HTML content will be added to the article before publication, but are not reflected in this PDF.

Note also that this file should not be used for submitting corrections.
\[\delta^{34}S \] values and \(S \) concentrations in native and transplanted \(P. \) \(s. \) \(c. \) in a heavily industrialised area

Grzegorz Kosior \(^a \), Monika Ciężka \(^b \), Maciej Góra \(^b \), Aleksandra Samecka-Cymerman \(^a, * \), Krzysztof Kolon \(^a \), Alexander J. Kempers \(^c \), Mariusz-Orion Jedrysek \(^b \)

\(^a \) Department of Ecology, Biogeochemistry and Environmental Protection, Wrocław University, ul. Kanonia 6/8, 50-328 Wrocław, Poland

\(^b \) Laboratory of Isotope Geology and Geoecology, Department of Applied Geology and Geochemistry, Institute of Geological Sciences, University of Wrocław, Cybulska 32, 50-205 Wrocław, Poland

\(^c \) Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, Huygens building, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

1. Introduction

Bioindication is a very useful way to assess the existence of environmental pollutants by measuring the levels of contaminants in plants (Markert et al., 2011). Mosses may be classified as the most effective organisms with ability to intercept, hold and accumulate xenobiotics (Fernández et al., 2000a, Fernández and Carballéa, 2001). Due to lack of cuticle and the presence of efficient cation exchange sites on their cell walls, shortage of a real root system or water-conducting tissues, they take most of the elements from airborne fallout being therefore a suitable tool for controlling atmospheric pollution (Galsomies et al., 1999; Fernández et al., 2000b; Gerdol et al., 2000, Carballéa and Fernández, 2002; Zechmeister et al., 2003). Mosses may be used in passive biomonitoring, i.e., using native species, and in active biomonitoring, using transplants in case of the absence of native mosses in the study areas (Fernández and Carballéa, 2001; Markert et al., 2003). However, plants have a capacity to adapt to certain environmental conditions. Therefore, it should be expected that native mosses accumulate less metals than the same species transplanted to polluted sites (Fernández and Carballéa, 2000a; Boquette et al., 2014). Thus native mosses may lead to underestimation of pollutant deposition. Complementary biomonitoring with native and transplanted mosses testing their response to sulphur deposition has not been studied so far. Therefore an experiment was set up based on the simplified and modified bioindication method of Fernández and Carballéa (2001) to compare the bioconcentration of sulphur and its stable isotope between the native moss \(P. \) \(s. \) \(c. \) from an industrial area with the bioconcentration in the same species transplanted from uncontaminated sites and equally exposed. Sulphur is one of the elements found in surplus in anthropogenically impacted areas, whose main sources are combustion of fossil fuels, processing of sulphur-containing ores, industry and less so vehicle exhaust.
emissions. Both anthropogenic and natural sources of atmospheric sulphur are distinguished by their stable isotopic signatures and expressed as δ values in units of per mille (‰) with respect to the Canyon Diablo Troilite (CDT or VCDT) international meteorite standard according to the following equation where \(R = \frac{^{34}S}{^{32}S} \):

\[
\delta^{34}S = \left(\frac{R_{\text{Sample}}}{R_{\text{Standard}}} - 1 \right) \times 100
\]

(Wiseman and Wadleigh, 2002; Wadleigh, 2003). Approximately 95% of S in the environment occurs as the stable \(^{32}S\) isotope, while 4.2% occurs as the heavier stable \(^{34}S\) isotope. If an artificial source of S, such as air pollution, differs from the natural background levels in the relative amounts of these two isotopes, it provides a distinctive signature of this source when combined with the measured concentration of sulphur (de Caritat et al., 1997; Wadleigh, 2003; Sanborn et al., 2005; Derda et al., 2006). Therefore, the analysis of stable S isotope supply is a powerful tool for studying various aspects of the biogeochemical cycling of this element (de Caritat et al., 1997). Wadleigh (2003) studies illustrate the potential of combining stable isotopes with concentration measurements for lichen biomonitoring of atmospheric sulphur. Since mosses receive the bulk of their nutrients directly from wet and dry deposition, their sulphur isotopic composition should reflect that of the atmosphere (Krouse and Case, 1981). The present study compares the concentrations of total sulphur and the \(^{34}S\) isotope values of \(P. \) schreberi transplanted from a control site to rural, urban and industrial sites and the same species growing naturally at the same sites. According to Ares et al. (2012) the technique where live moss samples are exposed is frequently used to estimate the level of adaptation of native mosses to contaminated environments with modified tissue concentrations of xenobiotics. We tested the hypothesis that the concentration of S in \(P. \) schreberi transplanted from an unpolluted control site to an industrial area reflects the level of deposited sulphur more closely than the same parameter in the native \(P. \) schreberi.

2. Materials and methods

2.1. Description of the investigated area

Investigations were carried out in one of the most polluted urban regions of Poland, in Upper Silesia (Fig. 1) characterised by...
Terrestrial, pleurocarpous and ectohydic *P. schreberi* (Brid.) Mitt. was selected because of its widespread occurrence in the Northern Hemisphere, including Poland. This species has proved to be a suitable bioindicator of metals (Samecka-Cymerman et al., 2002). The primary aim of the present investigation was to test whether these massive sulphur emissions from those areas have left a recognisable, and thus traceable, sulphur isotopic signal in the environment, a task which, to our knowledge, has not been accomplished in this region before.

2.2. Collection of samples

Samples of native and transplanted *P. schreberi* were collected within a rectangular area with a size of 27 × 48 km². The coordinates of the four corners of this rectangle are: northwest corner: 50°28′23″N; 19°11′14″E; northeast corner: 50°28′23″N; 19°34′16″E; southwest corner: 50°02′11″N; 19°11′14″E; southeast corner: 50°02′11″N; 19°34′16″E. The area was divided into 48 5 × 5 km² squares as recommended by Amblard-Gross et al. (2004). Of these 48 squares 14 were selected at random of which five from urban areas (no 1, 2, 6, 8 and 12), four from rural areas (no 3, 5, 10 and 11) and five from industrial areas (no 4, 7, 9, 13 and 14). Within the central part (5 × 5 km²) of each of the 14 selected squares, three 2 × 2 m² subsquares, covered with *P. schreberi*, were selected at random for the collection of native moss samples (green parts of *P. schreberi* were taken only). Each plant sample consisted of a mixture of 3 subsamples. In each of the three 2 × 2 m² subsquares, three randomly chosen sites were cleared of vegetation, after which patches (20 × 20 cm²) of *P. schreberi* (originating from an unpolluted control site) with a few millimetres of soil layer were transplanted (giving a total of 14 × 3 = 42 transplant replicates. The remaining part of the 2 × 2 m² subsquare was left covered by native *P. schreberi*. The moss carpet was recognised as protection which did not allow pollutants to infiltrate/pass through into and accumulate in soils (Case and Krouse, 1980). The unpolluted control site had 42 *P. schreberi* transplants, originating from a clearcut of a forest with *Pinus sylvestris* as the predominant tree, between Sieniawa and Adamówka, 200 km east of Katowice and 112 km south of Lublin (50°13′03″N; 22°43′53″E, Fig. 1). The experimental sites were selected in rural, urban and industrially influenced areas. No physiological damage was observed in the transplanted mosses in this study, either macroscopic or microscopic, over the duration of the experiment. The transplanted mosses were visually indistinguishable from those growing naturally in the control site (Wiseman and Wadleigh, 2002). The experiment lasted 90 days as in a preliminary investigation this exposure appeared to be long enough to allow comparison of bioconcentration in transplanted and native *P. schreberi*. The number of replicates was sufficient for proper statistical data interpretation. As required by Markert et al. (1996) and ICP Vegetation (2005), the collected mosses had not been exposed directly to canopy throughfall. Dead material, soil particles and litter were manually removed from the moss samples.

2.3. Analyses

The collected moss samples were frozen as soon as possible (−20 °C) to prevent bacterial activity. In the laboratory 10 g of wet moss mass was separated. The moss was washed briefly twice with redistilled water (Gałuszka, 2005; Skrzypek et al., 2008) to remove loosely attached dust and soluble sulphur forms deposited on the plant surface. Subsequently, the moss samples were vacuum-dried (freeze-dried in a Labogene ApS CoolSafe 55-4 lyophilizer, Denmark) and weighed. Finally, dry moss samples were homogenised in a mill and sealed in air-tight LDPE containers. Organic sulphur in the mosses was pre-concentrated using high pressure (2.5 MPa of oxygen) explosively combusted mineralisation in a Parr Bomb device (Parr Instrument Company, Moline, Illinois, USA) according to Siegfriedt et al. (1951). The solution was filtered and organic sulphur was recovered by precipitation from the hot solution as BaSO₄ at pH of about 2 (acidified with 18% HCl) by the addition of excess BaCl₂.

2.3.1. Isotopic analysis of organic sulphur in the moss

Stable sulphur isotope analyses were carried out using an offline vacuum preparation technique. BaSO₄ was quantitatively converted to gaseous SO₂ in a reaction with V₂O₅ (Yanagisawa and Sakai, 1983) and then cryogenically purified off-line (Jedrysek et al., 2002). The δ³⁴S values of SO₂ representing organic sulphur were determined using a Delta Plus Advantage mass spectrometer. The resulting δ³⁴S values were presented relative to the international VCDT (Vienna Cañon Diablo Troilite) scale, where the δ³⁴S_{VCDT} value is defined as the relative difference, in parts per thousand (‰), between the isotope ratio of the sample and that of the standard. The isotope data were normalised using international IAEA standards (NBS-127, IAEA-SO-5 and IAEA-SO-6). The error of δ³⁴S determination (estimated from analyses of laboratory standards) was below 0.2‰.

Additionally all replicate samples were analysed for total S using SC 114-DR from LECO Corporation. Stable sulphur isotope analyses were carried out in the Laboratory of Isotope Geology and Geocology of the University of Wroclaw.

2.4. Statistical analysis

Differences among the sampling sites in δ₃⁴S values and sulphur concentrations in mosses were evaluated by one way ANOVA. The normality of the analysed features was checked using Shapiro–Wilks’ W test, and the homogeneity of variances was checked using the Brown–Forsythe test (Brown and Forsythe, 1974, Argac, 2004). A post-hoc LSD test (Zar, 1999) was used to compare the δ₃⁴S values and sulphur concentrations in the moss between the three groups of rural, urban and industrial sites (Sokal and Rohlf, 2003).

A t-test (Sokal and Rohlf, 2003; Zar, 1999) was used to compare δ³⁴S values and S concentrations in the native and transplanted moss after 0 and 90 days of exposure.

Pearson correlation coefficients were calculated (Sokal and Rohlf, 2003) to examine the relationships between the δ³⁴S values and sulphur concentrations in native and transplanted *P. schreberi*.

The calculations were done with Statistica 10 software (StatSoft, 2011).

3. Results and discussion

The ranges of δ³⁴S values and sulphur concentrations in the moss samples are shown in Table 1. The mean concentrations of δ³⁴S and sulphur in mosses from various sampling sites differed significantly (ANOVA *P* < 0.05).

In comparison to the concentrations of sulphur from a relatively pristine environment as observed by Poikolainen (2004) in mosses from Finland (960 mg kg⁻¹) and by Grodińska and Godzik (1991) in mosses from Spitsbergen (561 mg kg⁻¹) S concentrations in all mosses in this investigation were higher (Table 1). Sulphur isotopic composition in mosses investigated by de Caritat et al. (1997) was from 6.0 to 8.4‰. These are data from the
industrial Kola Peninsula region, with high emission loads of \(\text{SO}_2 \) and other xenobiotics in the atmosphere. In this investigation, \(P. \) \textit{schreberi} showed the highest \(\delta^{34} \text{S} \) value at industrial site 7 (4.7‰) east from a steel smelter (in the direction of prevailing winds) and site 13 (4.3‰) affected by a complex of two power stations (Fig. 1). These highest \(\delta^{34} \text{S} \) values corresponded to the \(\delta^{34} \text{S} \) values presented by Gałuszka (2005) and Migaszewski et al. (2010) for \(H. \) \textit{lycomium splendens} as 4.4–7.1‰, and for \(P. \) \textit{schreberi} as 3.7–9.1‰ for an urban area. According to these authors such positive values point that mosses are considerably enriched with the \(\delta^{34} \text{S} \) isotope. This phenomenon in higher plants can be explained either by the uptake of \(\text{SO}_4^{2-} \) enriched in \(\delta^{34} \text{S} \) or by the production of \(\text{H}_2 \text{~S} \) depleted in \(\delta^{34} \text{S} \) in metabolic processes, finally enriched in \(\delta^{34} \text{S} \) residual organic sulphur (Case and Krouse, 1980; Rennenberg, 1991; Migaszewski and Pasławski, 1996; Gałuszka, 2005). Case and Krouse (1980) report excretion of isotopically lighter sulphur by lichens. However, the mechanisms involved in these processes in mosses are unknown, and the problem needs further investigation. Migaszewski et al. (2010) are of the opinion that \(\delta^{34} \text{S} \) values (4.3–8.7‰) for \(P. \) \textit{schreberi} from the Kola Peninsula and much higher (16–32‰) for the species from Alberta, Canada (Winner et al., 1978) suggest that there may be other sources of atmospheric sulphur and an influence of different ecological factors on sulphur accumulation northern Canada compared with those in Europe. A positive \(\delta^{34} \text{S} \) signature of anthropogenic airborne sulphur accumulated by mosses is characteristic for central Europe (Migaszewski et al., 2010). Positive signatures of \(\delta^{34} \text{S} \) for \(P. \) \textit{schreberi} not only from industrial but also from all rural and urban sites may be caused by domestic coal based heating systems and transportation exhausts (Norman et al., 2004; Gałuszka, 2005; Migaszewski et al., 2010; Xiao et al., 2010a). The sulphur isotope was established as −1 to +8‰ (most data are from +3.5 to +7‰) in coal and from +2 to +15‰ in lignite of Polish origin (Chmielewski et al., 2002; Derda et al., 2006). Additionally \(\delta^{34} \text{S} \) in rainfall deposition being a source of sulphur for mosses was from 2.5‰ to 3.0‰ (southwest Poland), 6‰ (south-central Poland), from 4 to 5‰ (southeast Germany) and from 7 to 8‰ (north Czech Republic) (Jędrzejek, 2000; Tichomirowa et al., 2007; Górka et al., 2008; Migaszewski et al., 2010; Górka et al., 2011). The \(\delta^{34} \text{S} \) values reported for gasoline and diesel in Canada varied from +5 to +9‰ for fuel sulphur and exhaust products of its combustion (Norman et al., 2004). In our area depletion in \(\delta^{34} \text{S} \) organic sulphur in \(P. \) \textit{schreberi} compared to the average \(\delta^{34} \text{S} \) values in coal or rain may be caused by desulphurisation units in smelters which change the isotopic ratio of sulphur in the outlet gas streams depleting the heavy 34 isotope (Derda et al., 2006, 2007). These authors established a \(\delta^{34} \text{S} \) value of +1.6‰ before desulphurisation and +4.0‰ after desulphurisation for Belchatów lignite exhaust gases. To add possible fractionation of sulphur in industrial processes if the plant lacks a desulphurisation unit the final sulphur isotopic signal of \(\text{SO}_2/\text{SO}_4^{2-} \) will correspond to a sulphur signal in the fuel. However, a desulphurisation unit can shift the final sulphur isotopic signal and deplete the \(\text{SO}_2/\text{SO}_4^{2-} \) ratio to about 6‰ compared to the fuel used (Derda et al., 2006, 2007).

A post-hoc LSD test \(P < 0.05 \) revealed that in comparison with rural and urban sites the highest \(\delta^{34} \text{S} \) values and \(S \) concentrations were found in industrial sites for both native and transplanted mosses after 90 days of exposure. There was no difference in \(\delta^{34} \text{S} \) values and \(S \) concentrations between rural and urban sites. This is in agreement with Xiao et al. (2010b) and Liu et al. (2011) who observed no significant difference between urban and rural areas indicating that the atmosphere over both types of sites was polluted by \(S \).

There was a significant Pearson correlation between \(\delta^{34} \text{S} \) values and \(S \) concentrations in native \(P < 0.05 \) and transplanted mosses \(P < 0.01 \) after 90 days of exposure which was in agreement with de Caritat et al. (1997) that sulphur isotopic composition in many moss species was related to that of atmospheric \(S \) compounds. According to these authors this relation was probably caused by the direct uptake of sulphur compounds without preference for one of the isotopic forms (de Caritat et al., 1997, Skrzypek et al. (2010) believes that mosses do not have the ability to restrict sulphur uptake. In these plants, sulphur concentration and stable sulphur isotope composition are kept at equilibrium with the concentration and stable sulphur isotope composition in the environment. Mosses keep the source-specific sulphur isotopic signature similar to that of the atmosphere being their main source of sulphur (Xiao et al., 2010a). According to these authors the similar values of stable isotopes in fossil fuels and mosses suggests a considerable contribution of them being burnt locally to the atmosphere. This phenomenon may be used to explain regional \(\delta^{34} \text{S} \) differences (Xiao et al., 2010a). According to Liu et al. (2011) the major source of anthropogenic \(S \) and their \(\delta^{34} \text{S} \) values in the city environment was strongly associated with those in fossil fuels used by industries and residents. Mosses can be used for the evaluation of airborne sulphur because of their very close sulphur and \(\delta^{34} \text{S} \) relation and tissue sulphur being coherent with atmospheric \(\text{SO}_2 \) (Liu et al., 2009).

The \(t \)-test revealed no significant difference in \(\delta^{34} \text{S} \) values and \(S \) concentrations between native mosses at the beginning of the experiment and after 90 days of exposure. However, significantly higher \(\delta^{34} \text{S} \) values and \(S \) concentrations in transplanted mosses were present after 90 days in comparison with the beginning of the experiment (Table 1).

Results of the bioaccumulation of sulphur by \(P. \) \textit{schreberi} were partly different. The \(t \)-test revealed that \(\delta^{34} \text{S} \) values and \(S \) concentrations were higher in native mosses than in transplants from rural \(P < 0.05 \) and urban \(P < 0.01 \) sites (Fig. 2) and an opposite phenomenon was observed in industrial sites \(P < 0.05 \) with \(\delta^{34} \text{S} \) values and \(S \) concentrations higher in transplants than in native mosses (Fig. 2). Our results for rural and urban sites are in contradiction with Fernández et al. (2000b) who were of the opinion that plants have an ability to adjust to environmental conditions. Their investigation on Hg accumulation by \textit{Scleropodium purum} as
positive δ34S values up to 4.7‰ in P. schreberi not only from industrial sites but also from rural and urban sites show that the mosses tested were considerably enriched in 34S. δ34S values and S concentrations were higher in native than in transplanted mosses where higher than in native mosses from industrial sites but also from rural and urban sites show that the mosses tested were considerably enriched in 34S. δ34S values and S concentrations were higher in native than in transplanted mosses from rural and urban sites while those in transplanted mosses where higher than in native mosses from industrial sites.

The transplanted P. schreberi was a better sulphur bioindicator than the native moss in more polluted industrial sites and worse in less polluted rural and urban sites.

These results provide a reference for the future monitoring of sulphur pollution with P. schreberi and explain which method (native or transplants) should be applied taking into consideration the type (rural, urban or industrial) of the area of interest.

Uncited references

Klos et al. (2011); Kosior et al. (2010).

Acknowledgments

This research was supported by University of Wroclaw, Grant nos. 1017/S/ING/14-9/mg and 2173/M/ING/14.

References

