The following full text is a publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/142252

Please be advised that this information was generated on 2018-11-30 and may be subject to change.
REARRANGEMENT OF 2-ARYLSULFONYL-\(\Delta^3\)-1,3,4-THIADIAZOLINE-1-OXIDES BY A NEW 1,3-MIGRATION REACTION

B. Zwanenburga* and A. Wagenaarb

a Department of Organic Chemistry, University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands
b Department of Organic Chemistry, University of Groningen, Zernikelaan, Groningen, The Netherlands

(Received 15 October 1973; accepted for publication 2 November 1973)

In recent reports2,3,4 on the chemistry of sulfines we described the reaction of different types of sulfines with 2-diazopropane which gave \(\Delta^3\)-1,3,4-thiadiazoline-1-oxides in a regio- and stereospecific cyclo-addition reaction. In the course of this study the reaction of the arylsulfonyl substituted sulfine5 \textit{Ia} with diazomethane was investigated.

Admixture of 0.2 mmole of sulfine \textit{Ia} in 0.5 ml of \(\text{CDCl}_3\) and a slight excess of diazomethane in ether at 0\(\text{o}\) gave a rapid discharge of the yellow colour. The NMR spectrum of this reaction mixture showed besides aromatic absorptions the methylene AB quartet of the anticipated \(\Delta^3\)-1,3,4-thiadiazoline-1-oxide \textit{IIa} (Scheme I) at \(\delta\) 6.08 and 6.40 ppm with \(J_{AB} = 18\) Hz. However, after standing overnight at

\begin{equation}
\text{Scheme I}
\end{equation}

\textit{Ia}ab

\(a: R^1 = \text{C}_6\text{H}_5; R^2 = \text{C}_6\text{H}_5\)

\(b: R^1 = \beta\text{-CH}_3\text{OC}_6\text{H}_4; R^2 = \beta\text{-CH}_3\text{C}_6\text{H}_4\)

\textit{IIa}ab

\textit{IIIa}ab
the spectrum of the slightly turbid solution had changed significantly, *viz.* the signal of the methylene group was no longer present.

By performing the reaction on a 5 mmole scale (solvent benzene/ether 4:1, temperature 0°C, reaction time 2 days) a product which analyzed correctly for C_{14}H_9N_2O_2S_2 could be isolated in 53% yield by chromatography on neutral alumina and subsequent crystallization from ethanol (m.p. 161.5-162.5°C).

Structure IIIa (Scheme I) was assigned to this product on the basis of the spectral features (NMR in CDCl₃; two broad multiplets of aromatic protons at δ 7.35-7.8 and 7.8-8.3 ppm with a peak ratio of 6:4; IR (KBr), ν_{SO₂} 1165, 1340 cm⁻¹, no typical sulfoxide absorption), but particularly on the comparison with a sample which was synthesized by an independent route as follows: Reaction of phenyl chlorodithioformate (ClC(-S)SC₆H₅) with phenyldiazomethane in ether in the presence of one equivalent of triethylamine gave 2-phenyl-5-phenylthio-1,3,4-thiadiazole (yield 50%) in analogy with the formation of phenyl-1,3,4-thiadiazole from thiobenzoyl chloride and diazomethane. Oxidation of the thus obtained thiadiazole derivative with m-chloroperbenzoic acid in dichloromethane/ether at 0°C for 3 days gave the corresponding sulfone in 77% yield. However, the regiospecificity of the cyclo-addition reaction of diazo compounds and thiocarbonyl compounds must be considered with some reserve. Therefore, 2-phenyl-5-phenylthio-1,3,4-thiadiazole was also synthesized by a longer, but unambiguous, route, *viz.* by reaction of thiosemicarbazide with benzoyl chloride followed by ring closure with sulfuric acid to 2-amino-5-phenyl-1,3,4-thiadiazole, conversion of the amino group into a chlorine *via* a Sandmeyer-type reaction and subsequent nucleophilic displacement of the halogen by thiophenolate. These independent syntheses not only prove structure IIIa, but also confirm the regiospecificity of the cyclo-addition reaction of the phenylsulfonyl sulfine Ia and diazomethane.

Treatment of the sulfone sulfine Ib dissolved in benzene/ether 1:2 with a slight excess of diazomethane gave after standing at -20°C for 24 h, the separation of a crystalline product, which appeared to be the thiadiazoline-1-oxide IIb (yield 60%; m.p. 95°C dec.; correct C,H,N,S analysis for C_{16}H_{16}N_2O_4S_2; NMR in CDCl₃ at -20°C: AB qu at δ 6.42 + 6.14 ppm, J_{AB} 18 Hz for the methylene protons, s at δ 3.07 ppm for CH₃O, s at δ 2.49 ppm for CH₂C₆H₄⁻, AB qu at δ 6.96 + 7.70 ppm, J_{AB} 9 Hz for CH₃OC₆H₄⁻, s at δ 7.30 ppm for CH₃C₆H₄⁻; IR_Nujol v_{N=N} 1565, v_{S=O} 1050 cm⁻¹). From the mother liquor the thiadiazole IIIb (yield 13%) was isolated by chromatography on neutral alumina (m.p. 126-127°C, NMR in CDCl₃; δ 3.86, s, CH₃O; δ 2.42, s, CH₂C₆H₄⁻; δ 6.99 + 8.01, AB qu, J_{AB} 9 Hz, CH₃OC₆H₄⁻; δ 7.40 + 7.87 ppm, AB qu, J_{AB} 8.5 Hz, CH₃C₆H₄⁻; IR_KBr ν_{SO₂} 1155, 1340 cm⁻¹, no ν_{S=O}.

When the thiadiazoline-1-oxide IIb was chromatographed on silica with ether as eluent, smooth conversion into the thiadiazole IIIb took place (yield 65%). Also upon standing in solution IIb rearranges slowly to IIIb.

The results described above reveal that the thiadiazoles IIIa and IIIB do a-
rise from the thia-diazoline-1-oxides IIa and IIb, respectively. Two mechanisms can be envisaged to rationalize this rearrangement. Firstly, an intramolecular 1,3-shift of an arylsulfonyl group with a simultaneous loss of water as depicted in Scheme II would explain the conversion of II to III.

Scheme II
Intramolecular Mechanism

Secondly, an elimination-addition mechanism (Scheme III) via an initial isomerization of the Δ^3- to the Δ^2-thia-diazoline-oxide with a subsequent elimination and re-addition of sulfinic acid, followed by a spontaneous loss of water in a Pummerer-type aromatization reaction, can account for the observed product transformation.

Scheme III
Elimination – Addition Mechanism
In order to differentiate between these two possibilities the following experiment was designed: A 1:1 mixture of the sulfines Ia and Ib dissolved in dichloromethane was treated with a 10% excess of diazomethane in ether at -5° and allowed to react for 2 days at room temperature. After removal of the solvents the product mixture was chromatographed on neutral alumina. The respective fractions were analyzed by means of glc and NMR. It was found that the main products were 2-phenyl-5-phenylsulfonyl-1,3,4-thiadiazole and 2-anisy1-5-tolylsulfonyl-1,3,4-thiadiazole, but in addition 2-phenyl-5-tolylsulfonyl-1,3,4-thiadiazole and 2-anisy1-5-phenylsulfonyl-1,3,4-thiadiazole were present, each in about 6% of the total amount of thiadiazole formed. This result shows that there is some "crossing-over" of sulfinic acid and thus provides evidence for the elimination-addition mechanism as given in Scheme III.

REFERENCES AND NOTES

4. Part 22 in these series, see ref. 1.
10. Prepared by Mr. G.E. Veenstra by stepwise oxidation of the corresponding dithioester, see ref. 5.
11. Phenyl migration is unlikely because it would give an unfavourable electron deficiency adjacent to the sulfone function; moreover, the migratory aptitude of the phenyl-sulfonyl group is larger than that of the phenyl group.
12. This easy elimination of sulfinic acid from an α-amino sulfone resembles the facile dissociation, particularly in slightly acidic media, of hydroxymethyl aryl sulfones13 into arylsulfinic acid and formaldehyde.