The following full text is a publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/14223

Please be advised that this information was generated on 2019-01-30 and may be subject to change.
Dicephalic surfactants

Nico A. J. M. Sommerdijk,† Theo L. Hoeks, Kees Jan Booy, Martinus C. Feiters, Roeland J. M. Nolte* and Binne Zwanenburg§

Department of Organic Chemistry, NSR-Institute for Molecular Structure, Design and Synthesis, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

Two examples of dicephalic surfactants, a new class of two-headed amphiphiles, were prepared and demonstrated to exhibit unexpected aggregation behaviour.

Recently several research groups have studied the aggregation behaviour of surfactants with unusual structural features in order to further understand the relationship between the structure of the amphiphile and the type of aggregates it forms. Examples include surfactants with hyperextended1 and spiro2 hydrocarbon chains, gemini surfactants3 and super surfactants, e.g. block copolymers of polystyrene and poly(propyleneimine) dendrimers.4 Gemini surfactants, a new class of amphilic molecules with two hydrocarbon chains and two polar head groups connected by a linker, display aggregation behaviour that is distinctly different from that of the constituting ‘parent’ surfactants. The interesting properties of gemini surfactants prompted us to design and synthesise another type of amphiphilic molecule for which we propose the name dicephalic (two-headed) surfactant. Molecules of this type consist of a single hydrocarbon chain and two polar head groups (Scheme 1). Both compounds can complex metal ions: the former binds transition metal ions, whereas the latter can form complexes with the nucelophilic attack of sodium imidazole on epichlorohydrin, followed by acylation of the alkoxy intermediate (Scheme 1B).

Reaction of 3 with tetraalkylammonium salts of mono- and di-benzyl phosphate, for similar steric reasons as mentioned above, did not lead to satisfactory yields of the respective desired bis-phosphates. Compound 2 was prepared therefore by phosphorylation of the diiodide 7§ with silver dibenzyl phosphate§ followed by catalytic hydrogenation over Pd/C and subsequent cation exchange (Scheme 1C). This indirect displacement of the halogen atoms by the dibenzyl phosphate ions is promoted by the formation of an AgI complex and the neighbouring group participation of the ester carbonyl function.

Inspection of CPK models of 1 and 2 revealed that both compounds have a very large head group section compared to their lipophilic part. According to the structure–shape concept, the formation of micelles may therefore be expected when these compounds are dispersed in water. Dispersion of 1 in water at pH 7.0 (0.1%, w/w) did not, however, lead to the formation of micelles, but to well defined multilayered platelets of micrometer size [Fig. 1(a)]. Powder diffraction experiments revealed a repetitive distance of 31 Å, indicating a structure in which the hydrocarbon chains are interdigitated. Electron diffraction showed several bands, indicative of the polycrystalline nature of the sample, and a strong phase transition at 58 °C (ΔH = 60 J g⁻¹) was observed by DSC. The pKw values of 1 (3.6 and ca. 7), make it likely that the platelets consist of a mixture of protonated and deprotonated surfactant molecules. The possibility of intermolecular hydrogen bond formation over long distances, may account for the remarkable stability of these lamellar structures.

When 0.25 equiv. of CuSO₄ were added to a dispersion of 1 in water, vesicles with diameters of 50–250 nm were formed [Fig. 1(b)]. EPR and FTIR titration experiments showed that a complex of the type Cu(Imidazole)₂²⁺ had been formed, but it was not possible to differentiate between a monomeric CuCuI₂⁻ and a 2:1 complex of 1 and CuSO₄ (freeze fracture technique) in water. Bars represent 250 nm.

![Fig. 1 Electron micrographs of (a) 1 (negative staining, inset Pt shadowing technique) and (b) a 2:1 complex of 1 and CuSO₄ (freeze fracture technique) in water. Bars represent 250 nm.](image-url)
complex and a polymeric coordination network. According to powder X-ray diffraction these vesicles had an interdigitated bilayer with a thickness of 32 Å. DSC revealed a phase transition at 15 °C (ΔH = 15 J g⁻¹), indicating that copper complex formation caused a dramatic change in the molecular packing.

For 0.1% (w/w) dispersions of 2 in an aqueous buffer of pH 7.0, electron microscopy [Fig. 2(a,b)] revealed the formation of bundles of fibres each with a diameter of 65 Å, (approximately twice the molecular length) and lengths up to 15 μm (aspect ratio > 2000). These fibres showed a faint phase transition at 23 °C (ΔH = 1.5 J g⁻¹) in DSC. The formation of very long structures suggests that intermolecular interactions must also play an important role in stabilising these aggregates. Since at pH 7.0 the phosphate groups will be in their monoprotonated form, a network of hydrogen bonds can be formed between protonated and unprotonated P–OH groups of neighbouring molecules (Fig. 2), which could account for the observed stability of these large structures.

Compound 2 is expected to form a 1:1 complex with calcium, either intramolecularly by chelation or intermolecularly by formation of a linear polymeric complex. Addition of calcium chloride (CaCl₂ = 0.5 mm) to aqueous dispersions of 2 led to the formation of a precipitate consisting of very long structures (200–500 nm) and irregularly shaped multilayered platelets (Fig. 3), which could account for the observed stability of these large structures.

Notes and References
† E-mail: tjödink@sci.kun.nl
‡ Physical data for 1: mp 88 °C (Calc. for C₂H₁₉N₄O₂; C, 70.70; H, 10.11; N, 12.21. Found: C, 70.67; H, 10.20; N, 11.99%; m/e (El) 458 (M⁺); ΔH₁⁰(CDCCl₃) 0.88 (t; J 6.7, 3 H, CH₃); 1.25 (s; 28 H CH₃(CH₂)₂CH₃), 1.56 [m, 3 H, O(OC)(CH₂)₃], 2.31 [t, J 7.5, 2 H, O(CH₂)₂], 4.07 (ABX, 4 H, CH₃N), 5.33 (ABX, 1 H, CH⁻), 6.92 (s, 1 H, 5-imH), 7.11 (s, 1 H, 4-imH), 7.47 (s, 1 H, 2-imH); ν(KBr) cm⁻¹ 3098, 2910, 2840 (C–H); 1740 (C=O).

Physical data for 2: R₂O₄ (silica, BuOH–AcOH–H₂O 4: 1:1) (Calc. for C₅₆H₅₆N₄O₂; C, 72.45; H, 7.61; N, 14.05%; m/e (El) 541 (M + Na⁺); ΔH₁⁰(ΔO) = 4.45; 2.27 (ν(KBr) cm⁻¹ 2910, 2860 (C–H); 1740 (C=O); 1200 (P=O).

‡ 3 and 7 were prepared by acylation of the corresponding alcohols using stearyloxy chloride and a catalytic amount of AlCl₃ (ref. 12). The alcohols were prepared according to literature procedures (refs. 13, 14).

¶ The molecular structure of 3 is such that one of the bulky groups on the C(2) atom, i.e. the stearyloxy group or the methylene imidazole group, blocks the incoming second imidazole group.

|| Tetra-n-butylammonium dibenzyl phosphate (ref. 15) and tetraethylammonium (ref. 16) monobenzyl phosphate were used, respectively, following modified literature procedures.

** The stoichiometry of the complex was determined by monitoring the intensity of a new imidazole vibration at 1521 cm⁻¹ in the FTIR spectrum upon addition of Cu²⁺ ions. In addition a signal attributed to free CuSO₄ was observed in the EPR spectrum when the Cu²⁺:fb ratio exceeded 0.5.

8 L. Zervas, Naturwissenschaften, 1939, 27, 317.