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ABSTRACT 

The stochastic calculus of non-minimal variance quantum Brownian motion is 

developed by means of a representation in terms of integral-sum kernels. This 

representation permits a direct definition of stochastic integrals; a clear view 

of the structure of martingales; a unified approach to linear quantum stochastic 

differential equations with explicit expression for their solution; and further 

insight into the structure of adapted cocycles with direct means of finding 

their generators. Quantum sde's are means by which dynamical equations for 

dissipative quantum systems may be solved. The stationary Markov processes 

resulting from their solution are characterised in terms of quantum detailed 

balance. Finally an elementary example is treated and the physical interpreta­

tion of its constituents is given. 
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Introduction 

Quantum stochastic calculus has flowered from its fundamental papers [HP 1 ], 

[BSW 1] into a subject rich, both in structure and applications, with two books 

on the subject appearing this year ([Par], [Me 3]). The wider subject of quan­

tum, or non-commutative, probability continues to be intensively developed, 

from the diverse view-points of probability, physics and analysis (see e.g. 

[QP I-VII]). The present paper is based on an earlier preprint ([LM]). We 

hope that it is more-or-less self-contained, but our intention is to complement 

Meyer' s lecture notes, where one of the central themes is the interplay 

between algebraic structures on Hilbert space (especially Fock space) and pro­

babilistic interpretations. 

The Barnett-Streater-Wilde theory is based on the Clifford process, which is 

a precise fermionic analogue of classical Brownian motion ([LM 2]). 

Barnett's extension ([Bar]) of Segal's non-commutative integration theory 

([Seg]) is applied to the Clifford algebra of L2(1R+) with its natural trace and 

filtration of sub-algebras. The Hudson-Parthasarathy calculus is based on a 

(minimal variance) quantum Brownian motion ([CoH]). Loosely speaking, 

this consists of a pair of classical Brownian motions (Q, P) satisfying the 

canonical commutation relations (with probabilists' normalisation): 

(0.1) 

Equivalently, quantum Brownian motion may be considered as a non­

commutative complex Brownian motion A= (Q+iP)/2, whose real and ima­

ginary parts satisfy (0.1). 

How can classical processes fail to commute? Each process must be 

represented as a family of commuting self-adjoint operators on a Hilbert space 

H, with a unit vector 1f1 determining the law of the process Q +iP. The pair 

(Q,P) is then a quantum Brownian motion (qBm), of variance u2, if the fol­

lowing algebraic, probabilistic and non-degeneracy conditions are satisfied: 
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(0.2) 

{ ei(xP,+yQ,)l/f: x, y E IR, s, t ~ 0} generates Je. (0.3) 

As usual, we are working in units in which Planck's constant is 27t. The Wey! 
relations (0.2), which are a mathematically convenient form for the commuta­
tion relations, impose a constraint on the variance of a quantum Brownian 
motion: a 2 ~ I. This is a manifestation of Heisenberg's uncertainty principle. 

There is a qualitative difference between the calculus of minimal, and non­
minimal, variance qBm. The degeneracy of minimal variance qBm is dis­
cussed in [HL 2] from physical, probabilistic and mathematical points of view. 
The crucial mathematical point is that the state which determines the law of 
the Brownian motion is not faithful. It is therefore not sufficient to know only 
how operators act on the single vector l/f - one must work with a convenient 
dense subspace of J{ such as the exponential domain ([HP I]). The algebra 
generated by minimal variance qBm is the full algebra of all operators on Je. 
One consequence of this is that the quantum Brownian filtration admits mar­
tingales quite different in character to (quantum) Brownian motion, such as 
the preservation, or number, process and both classical and quantum Poisson 
processes ([HP I], [FrM]). 

The non-minimal variance (or quasi-free) theory was developed by Barnett, 
Streater and Wilde ([BSW 21), Hudson and one of the present authors 
([HL 1,2,3], [L 1,2]). Here the state is faithful, so that as well as being cyclic 
(0.3), the vector vr is also separating for the algebra J(u generated by the 
qBm: 

T1, T2 E J(u, T1 l/f = T2 l/f => T1 = T2 . 
This allows operator questions to be tackled by vector considerations, and 
leads to a tighter theory. For example, there is a Kunita-Watanabe type 
representation theorem for square-integrable martingales ([HL I], [L 2]), which 
follows from an orthogonal decomposition of the Hilbert space. This fails in 
the minimal variance case, even when the preservation process is included 
([JoM]); and so far there are only partial results ([PS 1,3]). 
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Symmetric Pock space (over L2(1R+)) may be identified with Guichardet 

space, which is an L2-space of functions defined on the finite power set of IR+ 

([Gui]). This representation was used by one of us to formulate quantum Ito 

calculus in terms of integral-sum kernel operators ([M 1,2]). An advantage of 

this approach is that solutions of linear quantum stochastic differential equa­

tions appear in a very explicit form. The key idea is the multiple quantum 

stochastic integral representation 

(0.4) 

* 
where U, 'r c IR +' A-r = n, HA, and Aa = (Aq )* (adjoint), for operators x on 

H. This combines with (quantum) Ito relations to reveal x as an integral-sum 

kernel for the operator X, and also to represent the product of operators in 

terms of a convolution-like product of kernels. Meyer extended this idea to 

incorporate the preservation process ([Me 2]). The integral-sum representation 

also helps to clarify the relationship between quantum stochastics and the cal­

culus of classical, but anticipating, stochastic processes ([L 3]). The idea of 

obtaining algebraic structure from multiple (quantum) stochastic integrals, 

commutation relations and Ito relations is further discussed in [Me 1 ], [Me 3], 

[LM 1] and [LiP]. 

The non-minimal variance theory is even better suited to a development in 

terms of integral-sum kernels. Part of the reason for this is that in this theory 

every L2-operator is represented by (0.4). In this paper we develop the whole 

theory from the kernel point of view. New features include a direct definition 

of the stochastic integrals (Definition 3.2.4); a very simple proof of the sto­

chastic integral representability of martingales (Proposition 7 .5.1 ); a unified 

approach to linear quantum stochastic differential equations (Section 7 .6); 

explicit expression for the solutions of such equations (Theorems 4.1.1 and 

7 .6.1 ); further insight into the structure of adapted cocycles, and a direct 

means of finding their generators (proofs of Propositions 4.3.2 and 8.1.2). 

The original physical motivation for quantum stochastic calculus was to 

integrate dynamical equations describing dissipative quantum systems 

([HP 1,2]); in other words, to dilate quantum dynamical semigroups to 
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(stationary) quantum Markov processes ([Kiim], [M 1,2], [Fri]). This is done 
by solving a quantum stochastic differential equation whose coefficients are 
related to the generator of the semigroup, and may be done with non-minimal 
variance qBm if and only if the semigroup satisfies detailed balance ([Ali], 
[KFGV]). This is shown in Section 9, where physical parameters are re­
introduced. In the final section a simple example is described, and the physical 
interpretation of each of the constituents is explained. For a field test of the 
theory described here see [RoM], where it is used to calculate the dynamical 
Stark effect. This spectacular phenomenon in quantum optics was predicted 
on theoretical grounds in the late 60's and observed a few years later. The 
approach using integral-sum kernels neatly unifies two opposing viewpoints 
on the phenomenon; one coming from the master equation, and the other from 
perturbative methods using Feynman diagrams. 

The Ito-Clifford theory ([BSW 1 ]), and the generic variance Fermi theory 
([BSW 2], [L 2]), are amenable to a very similar treatment. The formula for 
the product of Clifford (respectively fermionic) random variables is obtained 
simply by introducing a ±I-valued signature function into the Wiener (resp. 
bose) product (see [Me3], [LM l]). The Fock Fermi theory ([ApH]), which 
has to some extent been subsumed by the Bose theory (see [HP 3], [PS 2]), 
may be described in terms of kernels too. 

Before beginning with a brief heuristic discussion of classical Brownian 
motion from the present point of view, we mention some of the standard nota­
tions and conventions used here. :1,0 and :t,P will denote the linear spaces of 
measurable, respectively p-summable functions on a measure space; 1J in 
(X, fJJ, µ) the Borel a-algebra of a topological space X; C 0 (X) the space of 
continuous functions, on a locally compact space, which vanish at infinity; and 
C ~(/) the space of once continuously differentiable functions of compact sup­
port on an interval /. The indicator function of a set S will be denoted xs; 
bold symbols always denote n-tuples and inner products follow Dirac's con­
vention of linearity in the second argument. A list of special symbols, and 
where they are introduced, is given at the end. 
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1. Commutative kernel calculus. 

1.1 Wiener-Fock space. 

Let IP be the Wiener measure on {r: I H IR s.t. r is continuous and r(O) = O} 

where I is the unit interval [0, 1] and B the coordinate (Wiener) process. It is 

well known that any complex-valued random variable F e L 2(1P') can be 

expanded as an infinite sum of iterated stochastic integrals: 

(1.1) 

where.an is then-dimensional simplex {te/: t1 < t2 < ... < tn}· For n > 0, 

In denotes a square integrable function on .an, and /o is the constant IE[F]. 

The sequence f = Uo./1, •.• ) will be called the integral-sum kernel of F. We 

have the relation 

indicating that the correspondence between F and f is a unitary equivalence 

between Wiener space W := L2(1P) and fl := @;=O L2(.Qn), called the sym­

metric (or boson) Fock space of L2(I) in the physics literature. This isomor­

phism invites several questions. For instance, what algebraic structure is 

induced on fl by the multiplication of random variables in W? How is this 

structure connected to stochastic integration? 

In this section we answer these questions on a formal level. In the remaining 

sections we treat in detail the situation which arises when, in the above, the 

Wiener process is replaced by a quantum Brownian motion. 

1.2 Set notation. 

The n-dimensional ordered simplex .an can be naturally identified with the set 

{co e I : #co = n} and hence the infinite union .Q = u; =O .Qn may be regarded 

as the finite power set of the interval /: 

.Q(l) = {co c I: co is finite} 

For this section (only) the measure on .Q(/) which on .Qn(l) is given by the 

Lebesgue measure dt1 ••. dtn, and which has 0 as an atom of weight 1 will be 
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denoted by dm. We may now write the space of kernels as L2(Q, dm) and 

rewrite (1.1) as 

F =I.a f(m) dB(l). 

1.3 An algebraic structure on Fock space. 

Let f and g be the kernels of F and GE W respectively, we calculate formally 

the kernel of the product FG: 

FG =I.a f(m) dB(l)· I.a g(v) dBv 

Because of the Ito rule (dB)2 = dt, the integral over (m, v) E .QxQ contains 

non-zero contributions from those regions where points of m and v coalesce: 

y := mn v ;1:. 0. Performing a change of variable a= m\y and /3 = v\y one 

obtains 

FG = JJJ, f(auy)g(/3uy) dBadBpdy. 
anp = 0 

Next, the integrals over a and fJ may be replaced by a single integral over 

CT = au {3, followed by a sum over a c CT: 

where /3 = ii, the complement of a in CT. 

The expression in brackets is thus the integral-sum kernel of FG and (in this 

section only) will be denoted f* g. For details of the proof of this correspon­

dence see [LM 2]. 

1.4 Kernel calculus. 

Taking the product (f, g) H f * g as a starting point one may build up a sto­

chastic calculus. After specifying a class X of kernels on which this product 

is well defined, one introduces X-valued processes {Ji} 1e 1 which are non­

anticipating in the sense that f 1(m) = 0 as soon as maxm > t. By the nature of 

formula (I. I) one easily derives the form of the kernel (/f)1 of the stochastic 
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integral /; Fs dB s of an L 2-process F : 

(lf),(u) = {liomaxO"(u\{maxu}) if u * 0 and t ~ maxu 

otherwise 

and similarly, the inverse operation of stochastic differentiation, is given by: 

(.df),(u) = f,(uu {t}) 

Apart from these operations there are the pathwise integration and differentia­

tion of processes: 

d 
(Df)1(u) = dtf,(u). 

This is the kernel of the forward derivative ([Nel]) of the process F. The 

following relations hold: 

.dlf = f ; D ( fs ds = f ; 

and also, 
t 

f, - lo = (IL1f), + J0 ( Dfs) ds 

which decomposes the semimartingale (f,) into a martingale part and a 

bounded variation part. The connection between the algebraic and the dif­

ferential structure of kernel processes is given by the Leibnitz formula for L1 

and Ito formula for D: 

L1(f* g) - .df* g - f*.dg = 0 

D(f*g) - Df*g - f*Dg = L1f*L1g. 
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2. Bose chaos 

In the next two sections we describe the algebraic part of non-commutative 
kernel calculus. 

2.1 I',17,p,µC+,C-• t 
For each sub-interval I of IR we introduce I'1 = I'(/), the charged finite power 
set of/, consisting of finite subsets of int(/), the interior of I, each point carry­
ing a "charge" - positive or negative. 

Definition 2.1.1: r 1 := {a: int(/) ~ {O, + 1, -1} I the support of a is finite}. 

We shall write r when the interval I is understood. For (}Er, let 
a± = o-- 1({±1}) and lo-I. la-+I, la-I be the cardinalities of supp O', a+ and 
O'- respectively. We continue to think of elements of I' as sets, using nota­
tions like G'U -c and a\ 'C where there is no danger of confusion. To each 
O'EI' there corresponds a unique element (s,E)Eint(l)lalx{+l,-l}lal such 

that s1 < Sz < ... < sn, where Ej = G'(sj) and n = IG'I. We shall frequently 
make these identifications, and write p 1 ,p2 for the projections 

G' = (s,E) H s; G' = (s,E) H £, (Pi(0) = 0), 

respectively. Note the following partitions of I': 

r = U"." rj,k = Uoo r", J,k=O n=O (2.1) 

where rj,k = {G'EI': 10-+1=j,1(/-1 = k} and r" = {O'EI': lul = n}. Let 

Po : I'xI' ~ IR+ be the map given by 

0 

(o-,<) >-> l : A mrls,-1, I 
if (J = 'C = 0 
if pz(CT) = p2(-c) 

otherwise 

then (I',p0 ) is a metric space, and we denote its completion by (17,p). 17 = 171 
may be identified with the set 

and its elements considered as (charged) generalised subsets of/, in the sense 
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that it includes elements of the form 

+ 
+ 

+ + 

in which sites are occupied by more than one "particle". Under this 

identification, the union map 

(er, 't') E f7xf7 ~ O"U 't' E {7 

is measurable. The partitions (2.1) carry over to f7 and we shall write f7~N 

for Uj+k~Nf7J.k. Now fix, constants C+ ;::: c_ > 0. A Borel measure µ = 

µc+,c- on (f7,p) is defined as follows. First define a Borel measure A. on 

(f7,p) by 

where An is n-dimensional Lebesgue measure and dj,k is the counting measure 

on {e e { +, - }J+k: exactly j + 's and k - 's occur}. Then letµ be defined by 

dµ = mdA where m(cr) = cJu+ I clu-1 , 

in other words m(s,e) = nicE;· Clearly f71\I'1 is µ-null and, if I is bounded, 

(2.2) 

The measure therefore simply counts the positive charges and the negative 

charges, and weights accordingly, whereas the metric is sensitive to the way 

in which the charges are distributed. 

Now let ..4 be an involutive Banach algebra with unit I and involution *. 

Definition 2.1.2: Let t: f71 ~ f71 be the charge ch.1.nging map 

(s,e) ~ (s,-e), 

µ t the induced measure 

and, for x: f7 ~ ..4, let x t be its involute: 
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2.2 Smooth kernels. 

We now introduce the class of A-valued functions on r which will fonn the 

basis of the present treatment of the kernel calculus. The choice of class is 

motivated by our requirement that it support both an algebraic and a stochas­

tic differential structure. 

Definition 2.2.1: For x: r1 ~A, consider the properties 

Xi: 3 J x a compact sub-interval of I such that x vanishes outside I'1,; 

Xii 3 Kx ~ 1 such that llx(c;)ll ~ K)crl+I Vc;e I'1; 

Xiii 3 K x ~ 1 such that II x( c;) - x( 'l') II ~ p0 (Ci, -r) K) er I+ 1 as soon as 

Po(Ci, 'l') < 1. 

Denote the class of functions satisfying Xi, Xii and Xiii by~(/), or X 0 , and 

call the elements of X 0 smooth kernels. Also denote the class of strongly 

A-measurable functions ([Yos]) satisfying Xi and Xii by Jet(!). Each of the 

properties is clearly preserved under the involution t . For subintervals J of 

/, ~(J) is naturally included in Jet(!) but not in ~(/). By Xiii, any smooth 

kernel has a unique extension to /71, now satisfying Xi, Xii and Xiii with r 
replaced by /7 and Po by p, and with the same lx and Kx. Smooth kernels 

will therefore frequently be defined only on I'1 but will thereafter be con­

sidered as functions on the whole of /71 with no notational change. 

Example 2.2.2: For f e C~(/), the following are smooth {>valued kernels 

WJ = {L(f)rcf; (2.3) 

rcf'k = Xri·krcf; 

{
f(t) if a= {t-} e r 0• 1 

a:CJH ; 
f 0 otherwise 

where fL: C~(/) ~ ~+ is the map f H exp{-!Cc+ +c_) llflllzcn}· The w/s, 

a} 's and a/s will be called respectively the (smooth) Wey/, creation and 
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annihilation kernels. For w0 = 7t0 we shall sometimes write 00. 

2.3 The Bose product. 

We next introduce the product on Xb whose form is dictated by the non­

commutative duality transform (see section 6); For x e Xb, the maps 

co i-+ x(coua) and co H x(cot ua) are strongly measurable for each subset a 

of u, so the next definition is a good one. 

Proposition 2.3.1: For x, ye JCt(I) the following map also belongs to Xb: 

z: u i-+ J ~ x(cot ua) y(coua) dco 
£..ia c Cl 

where the sum is over disjoint partitions aua of u. Moreover if x,yeX0 

then z e X 0 also. 

Note that the sum is a finite one, and we have abbreviated dµ(co) to dco. 

Proof: Let J be a compact sub-interval of I containing J x and J y. Notice that 

for each a e I'1, 

. so that z is well-defined as a Bochner integral. Nex.t, since 

z satisfies Xii so that z e Xb. Now suppose that x and y are smooth. Then if 

p0 (u, 'f) < 1- u = (s, e), 'f = (t, e), say - let 1t: 2" ~ 2"' be the bijective 

map between power sets induced by the pointwise map Sj H tj (j = 

1, 2, ... I ul), then 

llz(u)-z('f)ll ~ ( ~ llx(cot ua)y(coua)-x(cotu1t(a))y(cou7t(li))ll dco 
lr1 £..iaca 

- 109 -



which is bounded by 2p0 (c:r,-r)(Kx+Ky)lulexp((c++c_)KxKyA.1(J)} so that z 
also satisfies Xiii. Hence ze ~(/). 

Ill 

Definition 2.3.2: For x, ye Jet(!) we denote the kernel z defined above by 

X*Y· 

Some immediate properties are listed next. 

1. X0 is also closed under the point-wise product (x, y e X 0 => a ~ 

x(a)y(a) e X 0 ). 

2. WhenX = C, (x,y)L2(P,µ) = (xt *Y)(0). 

1 3. For f, g e C K(l), 

a1*a}(0)-a}*aj(0) = (aj,a})-(a8 ,a1 ), = c+(f,g)L2(1)-c_(g.J)i2(1) 

== (c+ -c_)(f,g)Lz(l), 

whereas, 

Since a1 * aJ and aJ * a1 are supported by v0 u/7 1·1 these kernels satisfy the 

canonical commutation relations 

(2.4) 

We next state two combinatorial facts, the first of which will be repeatedly 

used in the sequel. 

Lemma 2.3.3: (a) For an integrable Banach space valued function g on I'xI' 

ff g(a,{3) dad/3 = j {Lacw g(a,a)} dm. 

(b) For a vector space valued function f on I'xI' 

" " f(au{3,auP) =" f(y,y) .l.Jacu .l.Jpc~ .l.Jrcuu~ 

whenever a and 'Z" are disjoint. 
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Proof: (a) For n e N, let 2n denote the power s~t of n := {1, 2, ... , n} con-

sidered as a measure space with the counting measure, and 

(t,E) E rn>, a c (.Q, let S(a,ro) = {j En: tj E supp(a)}. The 

z : (a,/J) --+ (au p, S(a, au /J)) defines a bijection between 

for <.a = 
mapping 

the set 

{(a,/J)eI'xI': arip = 0}, which has full measure in rxr, and the set 

00 

U rx2n. Since z is measure preserving, the result follows. 
n=O 

(b) Immediate. • 
Proposition 2.3.4: <Jet(!), *) and (~(/), *) are associative involutive alge­

bras with unit 1..460 and involution t . 

Proof: For x,y, z E xb define a function k on r by. 

where the sum is over partitions of u into a disjoint union of a, p and r. 

Applying Lemma 2.3.3 (a) to (<.ai.~) and then Lemma 2.3.3 (b) to (<.a,a), 

where <.a is the new variable roi u ro3, gives the following expression for k(u): 

= j dro ~ x(aurot>f d<.a1~ y(ro{ uo) z(ro1 uS) 
.i..Jacu £.Jo emu a 

= X* (y* z)(u). 

On the other hand, applying Lemma 2.3.3 (a) to (ro1, ro2 ) and then Lemma 

2.3.3 (b) to (rot, y), where <.a is the new variable m1 u~. yields k(u) = 

(x * y) * z(u), establishing the associativity of *. Since the involution on .A. is 

conjugate linear and isometric, 

x(aumt)y(aum) dro} 
* 
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So t is an involution. Since 1..480 is obviously a unit the result follows. 

• 
Remark: 1. If "'4 1 is a sub-algebra of "'4 2 then in a natural way ~1 (/) is a 

subalgebra of ~2(/). 

2. X 0 i~ non-commutative unless C+ = c_. 

2.4 The Weyl Relations. 

For a,b,c-:1:0 Jet ra,b:f71 -+C be the map a-+alO"+lbl0"-1, and kt 

re= re,e- 1 • 

Lemma 2.4.1: For a,p e 171 , x,y e ~(/) 

(i) ra,b(au p) = ra,b(a)ra,b<P> 

(ii) Ya,bX E ~(/) 
( ... ) t 
m Ya,b = Yb,a 

(iv) Ye(X * y) = YeX * YeY 

Proof: The estimate lra,b(a)I ~ (lal+lb!)IO"I and the identity 

re( au ii.I t)re(a u ii.I) = re( a) 

for a c a, we /7, suffice to establish the-lemma. 

We shall writer for re when c = c_ /C+. Thus r = m t Im and m = Yc+,C-. 

Definition 2.4.2: Define the following maps on X~(/): 

Dy: x H X*Y (ye X~(/)). 
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Proposition 2.4.3: The following relations obtain 

(iii) 10 is L2-isometric 

(v) GyDz = DzGy 

(vi) J 0 Gyl 0 = D J0 y, (y, z e ~(/)) 

Proof: (i) follows from Lemma 2.4.1, and (ii) follows from (i). Since 

(iii) follows. (iv) and (v) are a consequence of the associativity of *, and (vi) 

of the identities 

10 Gyl0 X = l 0(y*fixt) 

= ~ ix*yt) = X*loY = D1oyX· 

• 
Definition 2.4.4: Let'= 'c+,c-: C~(/)xC~(/) ~ IR be the symplectic form 

(f,g) i-+ -(c+-c~)lm £Jg dA..1. 

For f e C~ let 

Proposition 2.4.S: For f, g e C ~(/}, x e ~(/): 
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Proof: 

(i) 1tf*1tg(o') = ~ 1tj(a)1tg(a)j 1t_J1tg dµ 
LJacu 

(ii) 

(iii) 

= 1tf+g(CT)exp{-c+ J Jg cU1 -c_J Ii cUi} 

= 1tf+g(CT)exp{-Cc++c_)Re/ Jg cU1-i(c+-c_)lm/Jg cU1} 

= eit;(f,g)[ ji(f +g) ]1t (u). 
ji(f)ji(g) f+g 

vg*vg = .Yrw-8 *.Yrw-1 

= {Yeit;(f,g)W _ J-g = eit;(f,g)Vj+g 

V t - J:rw: t_ - 1 w- - r- lv f - Yr - I - -:rr f - -/· 

J lw1*xl 2 dµ = (xt *w-1*w1*x)(0) 

= (Xt*X)(0) = f lxl 2 dµ, 

and since Du = l 0 Gw 10 , the L2-isometry of Du follows from that of 10 8 l II 

(Proposition 2.4.3) and of Gw-· 
g 

(iv) is immediate. 

• 
2.5 L 2-density of kernels 

In this subsection we establish some density results for X~ (/) and the smooth 
Weyl kernels. Let Wand V be respectively the linear spans of w1 and v1 with 
f running through C~(/). let W1 = (xe'W: suppx c J71} and let wfk = 
x17i.kW1 where l is a compact interval. 

- 114 -



Lemma 2.5.1: For f e C~(/) 

(i) 

(ii) 

Proof: 

(i) For s e IR, 

and (i) follows. 

(ii) For c EC, 

thus 

from which (ii) follows. 

Proposition 2.5.2: w"· c C0 (171) (uniform closure). 

• 

Proof: Since wf'k is an algebra under pointwise multiplication the Stone­

Weierstrass theorem implies that C(ll'}'k) is the uniform closure of wf k. 

Moreover Lemma 2.5.1 yields Wf kc w;·, thus w"· :'.' C(ll'fN) for each N 

and compact J. But any compact set in /7 is a subset of some 17/N, therefore 

w"· :'.' C/((17)"° = C0 (f7). • 
Corollary 2.5.3: Wand 1J are dense in L 2(171, v), where v = µ + µ t. 

For f e L 2(1) the Wey! kernel w1 given in (2.3) is still a well-defined element 

of L 2(171, µ ), but not necessarily an element of X~(/), i.e. not necessarily a 

smooth kernel. 
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Proposition 2.5.4: The map w: L2(1,A.i)--+ L2(f71 , v) is continuous. 

Proof: Since 

(1tf, 'Ttg )L2(v) = 2e<c++c_)Re(f,g)cos{(c+-c-)Im(f,g)}, 

ll1tJ-1tgllhv) = 2[e<c++c_)ll/ll 2 +e<c++c_)llall 2 

- 2e<c+ +c_)Re(f,g)cos{ (c+ - c_) Im(/, g)}] 

which tends to 0 as f approaches g. Since fl is clearly continuous, the result 

follows. 

• 
Corollary 2.5.5: If D is dense in L 2(1), then the linear span of {w1 : f e D} is 

dense in L 2(171, v). 

3. Adapted processes 

In this section subintervals I of the real line will be assumed to have a left end 

point 0. In order to discuss processes we introduce the adapted power set. 

I'ad.(/) := { (u, t) E I'1xl: maxu < t or u = 0}. 

Thus (u,t) e I' ad.(/) when supp(u) c /I) := I("\ (-oo, t). Notice that the maps 

l±: (O', t) H O'U {t±} are injective I'ad. --+ I' with images 

I'± := {O'E I': O' 'i:- 0, maxO' has charge±} 

and, that if r 0 = {0} then 

(3.1) 

is a disjoint partition of r. 

3.1 Smooth adapted processes. 

Any map x : I'ad. --+ .Jd. determines a map kx : I' --+ .Jd. by 

kx( u) = { x( u\ { maxu}, maxu) if u 'i:- 0, 
0 if O' = 0. 

(3.2) 
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Definition 3.1.1: x: I'ad.(l) ~ .'4 is a smooth adapted (kernel) process if for 

each compact sub-interval J of/, kf := zr,kx belongs to x:(J). We denote 

the class of smooth adapted processes by ~(/). 

Each smooth adapted process x will be considered as a function on the whole 

of f7!xl as follows: 

{ 
lim X(O"n, t) if 3 O"n e I'(/1) s.t. p(O"n, O") ~ 0, 

X(O", t) = n ~oo 

0 otherwise. 

(3.3) 

For x e ~(/), t e /, O"E 171, let x1,xu denote the functions x( ·, t), x(u, ·) on 171 

and I respectively. Thus, for each O" e 171, xu is a locally Lipschitz function on 

lcmaxcr and, for each te/, x1 e~(/11 ). In particular, since I'({O}) ( = 

/7({0})) = {0}, x0 = ao0 for some ae.'4. If x,ye~(/), then for each te/, 

x1 *y1 e~(l,1 )-infact, * extendsto5'0 : 

(O", t) H X1 * y1(0"), (O", t) E I'ad.(/) 

determines an element of~(/), denoted x * y. 

3.2 Kernel differential and integral operators 

We are now in a position to introduce the differential operators of the kernel 

calculus. 

Definition 3.2.1: For x e ~(/) let L1+x, L1-x: I'ad.(/) ~ .'4 be given by 

where for each t the continuous extension of x1 to 17111 is invoked (see (3.3)). 

Proposition 3.2.2: For x e ~(/), L1±x e ~(/). 

Proof:: Let O" e r 1 , O" -:t. 0, then 

= x( u', maxu) where u' = u\ { maxu} v { maxui+ 
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so for a e r 1 , J a compact subinterval of /, 

If a, -re I'1 and p0 (a, -r) < 1 then 

llkLl±x(a)-kLl±x(-r)ll = llkx(a'u{maxa}±)-kx(-r'u{mau±ll < p0 (a,-r)(Kj)l 17 l+2 

~ p0 (a, -r)([Kjf)lul+I 

and the proof is complete. 

• 
Definition 3.2.3: Let 5' d = {x E 5'o: x17 is differentiable on /(maxu 'v'ae r!} 

and, for x e 5' d let L1°x : I'ad. ~ .i4 be given by 

L1°x(a,t) = (x17)'(t). 

Let 5J1 = {x e Pd: L1°x e P0 }- the domain of the pathwise derivative operator 
.do. 

We next introduce the integral operators. 

Definition 3.2.4: For x E ~(/), (a, t) Er ad.(/) let 

I ± ( ) - {x(a\{maxa},maxa) if ae r±' x a,t -
0 · otherwise ; 

t 

/ 0x(a, t) = l x17(s) ds. 

These define smooth adapted processes 1+ x, r x,I 0x and the relations 

are immediate. Moreover, the following fundamental theorem holds: 

Proposition 3.2.S: For x e ~(/), t e I 
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Proof: On r> (3.5) is an immediate consequence of the fundamental theorem 

of calculus since the first two terms on the right hand side vanish. On r+, 

r..rx(er,t) = o, 1+.1+x(er,t) = x(er,maxer) and 

t t 

I 0L1°x( er, t) = 1 (x0 )' (s) ds = J (x0 )' (s) ds = x( er, t) - x( er, maxer) 
0 maxcr 

again by the fundamental theorem of calculus. Since .to vanishes on r+, (3.5) 

holds there. Similarly the identity is valid on r-. 

3.3 Ito relation. 

Lemma 3.3.1: Let x e ~(/), t e /, then 

Proof: 

t ' 

1 J Xs dµ ds = c.; 1J (l+x)1 dµ = c~ 1J (rx)1 dµ. 
or, r, r, 

J (l+x), dµ = 1 + (l+x)(er, t) der 
r, r, 

•l 

= ( x(er\(maxer},max(er))der 
lr+ 

1,1 

t 

= C+ J J x('r, s) di" ds, 
o r, 

which gives the first equality. For the second replace + by - . 

• 

• 
Proposition 3.3.2: For x e JYf (l), t H ( x1 dµ is differentiable on I with 

lr, 

derivative 
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but 

so that the result follows by an application of Fubini's theorem. 

• 
Proposition 3.3.3: The operators Li± are derivations on (~(/), * ): 

L1±(x * y) = L1±x * y+x * Li±y. (3.6) 

Moreover, if x, y e :P 1 then x * y e 5' d and Li 0 satisfies the Ito rule 

In particular (5' 1, *) is a subalgebra of (:P 0 , * ). 

Proof: For x,y e :1'0 and (u, t) er AIJ .• 

Li+(x*y)1(u) = x*y(uu{t+},t) 

= J ~ + x1(auwt)y,(auw) dw 
"-acuu(t } 

and since the same holds for Li-, (3.6) follows. To prove the Ito relation, let 

x,ye:P1, and (u,t0 )eI'ad.· Since t0 > maxu there is an interval / 1 := 

[t0 -e, t0 +e) not containing any point of u. Let /2 := (0, t0 -e) denote the 

remaining part of / 101 and, for a, [J e I'(/2) let the process za,p e ;JJ1 (11) be 
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given by 

za,/J: (w1 ,t)-+ x1(auwhy1(/Juw1) 

so that .1±z,a,/J(w1) = .1.=r-x,(auwh.1.±y1(/Juw1). Now for a,p,<J>i e I'(/2) 

and t e /i. put 

Then by the previous proposition, t -+ f,a./J(O>i) is differentiable at t0 with 

derivative 

+ c_.1+x,0(au~ uw/),1-y10(/JU<J>iUW1) 

+ .1°x1 (au~uwhy, (/JU<J>iUW1) 
0 0 

Since this derivative (considered as a function of a>i) is dominated by an 

(integrable) function of the form °'2 -+ xlt»il+I, we may conclude that (x* y)" 

is differentiable at t0 with derivative 

in other words (3.7). Each term on the right hand side of (3.7) being SJ0 , the 

process x * y must be SJ1. 
• 
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4. Kernel differential equations. 

We now demonstrate the ease with which linear stochastic differential equa­

tions may be treated in this kernel calculus-moreover we obtain an explicit 

form for the solutions of such equations (4.3). Again let I have left end point 

0. We first extend the definition of Li+ and Li- as follows. Let 

17ad.(/) = { (u, t) e l71xl: t ~ maxu or <J = 0} 

and, for a function x on /7 ad.(/), let 

with the convention that if for example 

+ 
+ + 

+ + + + 
<J= , then CTU {t+} = 

By an adapted (kernel) process we simply mean an A-valued function on 

l7ad.(/). 

4.1 Existence and uniqueness. 
A linear kernel differential equation is a system 

Ax, = L(t)x,, (4.1) 

where L: t -+ (L +(t),L -(t), L 0(t)) e .:l(A)X.:l(A)X.:l(A), and a solution of (4.1) 

is an adapted process x for which the left-hand side is defined (i.e. each path 

xcr is differentiable on Icmaxcr and L1Kx(u,t) = L"(t)[x(u,t)] for all 

(u, t) e 17ad.(/)). Thus an adapted process x satisfies (4.1) if and only if 

(i) xcr(maxu) = L±(maxu)[x(u\{maxu},maxu)], ue 17±; (4.2) 

(ii) :/cr(t) = L 0(t)[xcr(t)] fort~ maxCT, <JE 17. 

Note that x satisfies (4.1) if and only if xt satisfies the adjoint k.d.e.: 
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where (L t)±(t)[b] = (L 'F(t)[b*])* and (L t)0 (t)[b] = (L 0 (t)[b*J)* (be .J.). 

Theorem 4.1.1: Let L 0 : I --+ :£(.J.) be strongly continuous and locally uni­

formly bounded. Then for each b e.J. there is a unique solution to (4.1) for 

which x(0,0) =b. 

Proof: Let y : Pad.(/) --+ .J. be given by 

y(u,t) = V(t,sn)L£11(sn)V(sn,Sn-1) ... Le1V(s,O)[b] (4.3) 

if u = (s,£) e pn, .where V: /x/ --+ :£(.J.) is the solution of the ordinary dif­

ferential equation 

d 
-V(t,s) = L(t)V(t,s) 
dt 

V(s,s) =id,.., (s,re/). 

y defines a pathwise differentiable process satisfying ( 4.2) and y(0, 0) = b. 

Moreover it is clearly the unique such process. • 
One could define and solve non-linear kernel differential equations, however, 

these would appear to be uninteresting from the point of view of correspond­

ing operator stochastic differential equations. We next isolate sufficient con­

ditions for the solution to be a smooth adapted process. 

Theorem 4.1.2: Let L: I --+ :£(.J.)3 be locally Lipschitz. Then the unique 

solution to (4.1) belongs to 9'f(l). 

Proof: For a compact subinterval J of I let 

and let M1 be a Lips.chitz constant for Lon J, so that 

II V(t, s)ll ~ V1 ; II V(t, s)- V(t', s') II ~ 217L1 v] , (s, t, s', t' e J), 

as soon as lt-t'I, ls-s'I < 17. The estimate 

llkv(i-)11 ~ vj1"1L~~l-l llbll. (ref'1\{0}), 

ensures that k! satisfies Xii. Now suppose that p(i-, i-') < 1J ~ 1 and let 
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wherej = 1, ... ,n and f' = (t,E), 1:' = (t',e') e /7n(J). Then 

= II~; 1 z2n-l ···zj+1(zrzJ>zf-1 ···zibl 

::;; {217nLjvj+ 1+11(n-l)Lr1vjM1}llbll. 

so that kt also satisfies Xiii. Thus v e ~(/), but since L 0 is locally Lipschitz 

it maps 5' 0 into itself and L1°x = L 0x e 5' 0 , that is x e 5'1. 

• 
4.2 Unitarity. 

Now consider the following important special case. Let q": I ~ ."4 be locally 

Lipschitz and let x e 5'1 satisfy the k.d.e. 

(4.4) 

Then one calculates, using the Ito rule (3.7) that for all be ."4, 

t t ..d(x * bx)1 = x1 * Lq(t)[b ]x1 (4.5) 

and 

(4.6) 

where Lq and Mq are given by 

Li(t)[b] = q'f'(t)*b+bq±(t), 

L~(t)[b] = q 0(t)*b + bq 0(t) + c + q+(t)*bq+(t) + c_q-(t)*bq-(t); (4.7) 

Mq±(t)[b] = q±(t)b+bq'f'(t)*, 

Mq0 (t)[b] = q 0(t)b+bq 0(t)*+c+q-(t)bq-(t)*+c_q+(t)bq+(t)*. (4.8) 

Proposition 4.2.1: Let x e 5'1 satisfy the k.d.e. ( 4.4) with initial conditions 

xo = u0 00 for some unitary u0 e ."4. Then the following are equivalent: 
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Moreover, if t ~ q(t) is constant, then these are equivalent to 

Proof: First note that for all t: L(t)[J] = 0 <=> M(t)[l] = 0. 

(i) =>(ii): If x•xt = l~o0 then M(t)[l] = O ":It by (4.6). 

(ii) =>(iii): If L(-)[J] = 0 then, by (4.5), xt •x-100 satisfies Lly = O; Yo= 0 

and, by (4.6), x•xt -lo0 satisfies Lly, = M(t)y,; Yo= 0, but the unique solu­

tion of these is 0. 

(iv)=> (ii): If xt •x = lo0 then, by (4.5), xt •L(·)[l]x = 0. If q is constant 

then, since Xo is unitary, L[l] = Xo*(xd •L[l]XQ)*xd = 0. 

Since (iii) obviously implies (i) and (iv) the proof is complete. 

• 
Remark: Under the equivalent conditions of the above proposition 

v(t) 

q(t) = ( -v(t)* ) 

-! [c+v(t)*v(t) + c_v(t)v(t)*] + ih(t) 

for certain Lipschitz functions h, v : I ~ ~ such that h(t) = h(t)*. In particu­

lar, if q is constant, L~ is given by 

L~(b) = L11(b)-i[h,b],. (4.9) 

where 

L11 (b) = c+{v*bv-!(v*vb+bv*v)} + c_(vbv*-!(vv*b+bvv*)} (4.10) 

4.3 Adapted kernel cocycles 

Let lllr (t e IR) denote the right shift on functions defined on J7(1R): 

(lllrf)((J)) = j((J)- t), 
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where (s, E)-t := (s- t, E). The following class of kernel processes will play a 
role in the construction of quantum Markov processes. 

Definition 4.3.1: x = {x1 : t ~ 0) is an adapted kernel cocycle if 

(akc i) x e ~(IR+ ); 

Remark: If x is an adapted kernel cocycle then the two parameter family 
{xs,t := ms(x,_s), s :t;; t} satisfies 

(i)' supp Xr, 1 e Per, tJ , 

(iii)' m ( ) u Xs,t = Xs+u,t+u; 

(iv)' t ~ x0,, e ~(IR+), for all (r :t> s :t> t, u e IR). 

Conversely a two parameter family of kernels {xs,t: s :t> t} satisfying (i)' -(iv)' 
determines an adapted cocycle: (xo, 1 : t ~ O}. 

Proposition 4.3.2: For a family of kernels x := (x, : t ~ O} the following are 
equivalent: 

(a) x is an adapted kernel cocycle; 

(b) x satisfies a kernel differential equation of the form 

.dx = qx, (q e ..t3); 

(c) 

(4.11) 

x,(u) = { e<t-sn)q qe" e<sn-sn-1)q .•• q£1 esiq if O' = ~S,E) e P"c~zth'2) 
0 otherwise. 

Proof: The equivalence of (b) and ( c) is contained in the proof of Theorem 
4.1.1 while if x satisfies ( 4.11) then, by Theorem 4.1.2, x e 5>1 , and (akc ii) 

follows from the explicit expression for x ( 4.12); it therefore remains to 
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establish the implication (a) ~ (c). 

Let x be an adapted kernel cocycle, and for s ~ t let Xs,t = Ills(X1-s)· Then 

t ~ x1(0) is continuous, by (akc i), and a semigroup since 

Xs+1(0) = x1,s+t • xo, 1(0) by (ii)' 

= X1,s+1(0)XQ,1(0) by (i)' 

= Xs(0)x1(0) (since 0-t = 0). 

Let q be its generator. For 0 < 17 < t, 

Xt-1J,t+1J((t±}) = (Ill,_ 11 x211 )((t±}). 

So, by (iv)', q± = ~ifoXt-11 , 1+ 11((t±}) exists and is independent of t. By 

repeated application of (ii)', if (u, t) e I' ac1.(IR+) then 

x,( O') = P(t-s,.-17)Xs,.-17,s,.+17( {(Sn• En )})P(s,.-s,._,-217) • • • Xs, -17, s1 +17( {(si. ei)})p,1 -11 

for 0 < 17 < min;,jls;-sjl• where u = (s,e). Finally, letting 17 J. 0 we obtain 

(4.12) and the proof is complete. • 
4.4 Generator: 

The generator of an adapted kernel cocycle is the q e .i4 3 which determines its 

explicit expression ( 4.12). 

Proposition 4.4.1: Let x be an adapted· kernel cocycle with generator q, then 

T, : b ~ x/ • bx1(0) (t e IR+) is a one parameter semigroup on .i4 with genera­

tor L:. 
Proof: The third component of (4.5), evaluated at 0, reads 

Since To(b) = b the result follows. • 
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5. Quantum probability. 

We now describe some theory from operator algebras, associated unbounded 

operators and quantum dynamical semigroups. Takesaki's books [Ta 1,3] are 

standard references for the operator algebra theory. We also present 

Kiimmerer's formulation of quantum dynamical semigroups and their dilations 

(in which invariance of the state is incorporated in the definitions) [Kum]. 

The material of this section will be used to construct a stochastic calculus for 
operator valued processes from the kernel calculus described above, thereby 

streamlining the existing constructions [BSW 2], [HL 1,2], [L 1 ]. 

5.1 Some generalities 

A von Neumann algebra acting on a Hilbert space l) is a unital * -subalgebra 

of .t(l)), the algebra of bounded linear operators on {), which is closed in the 

strong operator topology. For a subset :r of .!l(l)), X' denotes its commutant: 

{Te .!l(l)): TX = XT 'V' X e X}. If :r is self-adjoint then X' is a von Neumann 

algebra, and the von Neumann algebra generated by :r is (X')'. The tensor 

product :11 ®:12 of two von Neumann algebras :B1,:B2 acting on lJi. lJ2 
respectively, is the von Neumann subalgebra {T1 ®T2: Tie :ij}" of .!l(l)1 ®{)2). 

The non-trivial relation (:1 1 ®:12)' =:Bi ®:12 holds. 

An unbounded operator cannot belong to a von Neumann algebra :I, however 

we say that an operator T is affiliated to :I (written T11:B) if :B'Dom(T) c 
Dom(T) and TB' <p = B'T<p 'V' <p e Dom(T), B' e :I' where Dom(T) denotes the 

domain of T. Equivalently if Gr(T), th.e graph of T, is considered as a sub­

space of l) ® C2 = l) $ l), T is affiliated to :I if and only if (:i' ® /)Gr(T) c 

Gr(T). When T is closed this is equivalent to Por(T) e :I ®M2(C) = M2(:B), 

where Por(T) is the orthogonal projection onto the graph of T. If T11if then 

T*11:B, in particular, if T11if is closable then its closure T is also affiliated. 

For operators X and Y, Y is an extension of X (or X is a restriction of Y), 

written X c Y, means that Gr(X) is a subspace of Gr(Y). 

The following result will be useful later. 

Proposition 5.1.1: Let if be a von Neumann algebra and X11if be closed. If 

T c X and '8 0 Dom(T) c Dom(T) for some strongly dense *-subalgebra '8 0 of 
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fil', then T"qfil. 

Proof: Since Dom(T) is invariant under 'f50 and T has an affiliated extension, 

Gr(T) is invariant under 'f5 0 ®/. Hence P0r{f)E('f50 ®/)' = (fil'®C/)' = 

fil®M2(C). • 
5.2 Quantum probability spaces. 

A quantum probability space Q is a triple (b,fil.~) where bis a Hilbert space, 

fil c .'l(b) is a von Neumann algebra and~ e b is a vector which is both 

cyclic : fil ~ is dense in b 

and separating : Te fil, T~ = 0 => T = 0 (5.1) 

for fil. Associated to a quantum probability space Q are three operators: SQ, 

JQ and .dQ. Sis the closure of the conjugate linear operator with domain fil~ 

which maps T~ to T*~ and S = J.d 112 is its polar decomposition-] being a 

conjugate linear isometric involution and .d a positive self-adjoint operator. 

Tomita's fundamental lemma states that 

JfilJ = fil', 

.di'fil.d-it = fil, (t e IR).' 

(5.2) 

(5.3) 

The map uQ: t ~ .dit ·A-it on fil is called the modular automorphism group. 

We shall denote Dom(S), considered as a Hilbert space with the graph norm 

x ~ {lxll 2 + 11Sxll 2}112, by IQ. . 

5.3 •-affiliation. 

Since~ is cyclic for fil' if (and only if) it is separating for :B, the prescription 

Dom(X) = fil' ~. 

XT' ~ = T' x, (T' e B'), (5.4) 

associates to each vector x e b. a densely defined operator i affiliated to fil. In 

general i will fail to be closable, however if ~ e Dom(X*) then, since 

X*T/fil,X* will be densely defined and so i will be closable. Now 
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; e Dom(X*) if and only if x e .EQ in which case X*; = Sx. This is the class 
of operators with which we shall be dealing. 

Definition 5.3.1: Let Q = (~ • .ft,;) be a quantum probability space. A closed 
operator T is *-affiliated to Q if 

(i) T71.ft 

(ii) ; e Dom(T) () Dom(T*) 

(iii) B'; is a core for T. 

The set of *-affiliated operators will be denoted 71*(Q). 

Let Q = (b, .ft, 4) be a quantum probability space. There is a bijective 
correspondence between vectors. x in .EQ and operators X *-affiliated to Q 
which is determined by the relation 

x; = x. 

71*(Q) is a linear space under the strong sum X+Y := (X+Y)l.lll'~ with a con­
jugation given by 

x+ = X*l.lll'e. 

The strong product X · Y = XY I .!I'~ is also defined for pairs of *-affiliated 
operators X, Y for which ; e Dom(SQXY). We shall drop the dots with the 
understanding that sums, differences and products (when defined) are in the 
strong sense. By Proposition 5.1.1 *-affiliated operators have common core 
.it(,; whenever B0 is a strongly dense * -subalgebra .it(, of .it'. 

5.4 Quantum dynamical semigroups. 

If .ft i. .it2 are von Neumann algebras then Te :£(.ft 1, .it2) is completely positive 
if 

is positivity preserving for each n, equivalently if 

"n y;l'T(x:l'x-)y· ~ 0 .l.Ji,j= l l I '} } 
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for each neN, x1, ... ,XnE:ili. and Ylt····YnE:il2. A morphism between 

quantum probability spaces Q; = (f);, :il;, ~;) (i = l, 2) will be an element T of 

.:l(:B i. :B2) satisfying 

(i) T is completely positive; 

If u e :B is unitary then Ad u : b ~ u*bu is a morphism of Q if and only if 

u,a(u) = u, V t e IR. (5.5) 

A morphism T on Q satisfying 

T(bc) = T(b)c (be :B, c e ~). 

where ~ = Range (T), is called a conditional expectation onto ~. Clearly the 

range of a conditional expectation is an algebra. Given a subalgebra ~ of :il, a 

conditional expectation onto ~ exists if and only if uP(~) = ~ V t e IR 

([Tak2]). In particular, contrary to classical probability, conditional expecta­

tion onto a subalgebra does not always exist. This is a fundamental distinc­

tion between classical and quantum probability. 

A quantum dynamical semigroup is a one parameter semigroup of morphisms 

of a quantum probability space which is continuous in the pointwise weak-* 

topology, that is t H (lfl, T1(b)lfl) is continuous on IR+ for each be :B, lflE {>. 

If T is a quantum dynamical semigroup on Q = ({>, :B, ~), and each T1 is an 

automorphism of Q (equivalently, if each T, is an automorphism of :il preserv­

ing the state (;, · ;)) then T extends to a quantum dynamical group: 

T1 = (T_1)-1, (t < 0). 

A dilation of a dynamical semigroup {T1° : t ~ 0} on Q0 consists of a dynami­

cal group {T1 : t e IR} on a quantum probability space Q together with mor­

phisms j : Q0 ~ Q and IP: Q ~ Q0 such that 

IP o r1 o j = r,0 , (t ~ O). 
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j will then be an injective *-homomorphism f.8 0 --+ 5J and j o IP a conditional 

expectation. Conditional expectations IE1 : 5J --+ f.81 = {T, o j(f.80 ): t e /} exist 

for each subinterval I of IR and a dilation is called Markov if 

(5.6) 

6. From kernels to operators. 

In this section we construct operators from kernels via the * product, using 

the results from Section 5, thereby defining a (non-commutative) duality 

transform between vectors and * -affiliated operators of the quantum probabil­

ity space of interest to us here. 

6.1 Canonical commutation relations 
In view of Propositions 2.4.5 and 2.4.3 we may define operators W(f), W'(f) 

and J1 (f e C~(/)) to be the unique isometric extensions to L2 (V1,µ) of 

Gw1 , Dv1 and lo respectively (see Definition 2.4.2). The following relations 

are immediate. 

Proposition 6.1.1: For/, g e C ~(/). 

(i) W(f)W(g) = ei,(f,g)W(f +g); W(O) =A; 

(ii) W'(f)W'(g) = ei,(f,g)W'(f +g); W'(O) =A; 

(iii) W'(f)W(g) = W(g)W'(f); 

(iv) W'(f) =Ji W(])J1; 

(v) (wo. W(f)w0 ) = (wo. W'(f)wo) 

Let Ko and .M.o be the linear spans of the sets {W(f): f e C ~(/)} and 

{W'(/): f e C~(/)}, and let .N" =.HQ and .M. = .M.0 be the respective von Neu­

mann algebras they generate. In view of Corollary 2.5.3, w0 is a cyclic vector 

for both .N" and .M., and since .N' c .M.' by 6.1.1 (iii) w0 is also a separating 

vector for both .N' and .M.. Let S, J and L1 be the Tomita operators for (.N', w0 ) 

(see Section 5). We now relate these to the operators S0 , lo and r 0 
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introduced in Definition 2.4.2. 

Proposition 6.1.2: 

S =So; 
Al/2 - r.­
Ll - 0· 

Proof: 'W = .N'0w0 is a core for r := M.ry by Corollary 2.5.3 and also a core 

for S and L1 1' 2 by Kaplansky's density theorem [Tak3]. But Slw = S0 , so 

JLl 112 = S = So = Ji I'0 = Ji r and the result follows by the uniqueness of 

polar decompositions. • 
Corollary 6.1.3: 

.N' =JA.' 

Proof: JA.= strong closure of J.N'oJ. (by Propositions 6.1.1, 6.1.2) 

= J.N'J (by the isometry of J) 

= .N" (by Tomita's relation (5.1)). • 
W and W' are therefore a pair of commuting (cyclic) representations of the 

canonical commutation relations over the symplectic space (C1(/). 'c+,c_) 

with generating functional flc+,c- [BrR] which may justifiably be called com­

mutant representations. 

Notice that the algebras .N' and JA. are equally the von Neumann algebras gen­

erated by bounded left and right multiplication operators (in the *-sense) 

respectively: 

{- c llY*zll } 
Dz : z e Xo (/), ~~~ 1iYil < oo • 

We shall denote the quantum probability space (L2(f'1,µ), .N', w0) by Q{. It 

follows from Proposition 6.1.2 that i:Q: = L 2(/71, v). 

- i 33 -



6.2 Initial space. 

Now let Qo = rno. Uo. ~o) be a quantum probability space and Q = 
QI= Qo®Q{, in other words QI= (9,U.~) where 9 = 9o®L2(PI,µ) = 
L2(/71,µ; bo). U = Uo®.N" and~= ~o®wo. Then QI is a quantum probability 
space, EQ1 = L 2(17I, v; EQ0 ) and, (for v-almost all u), 

(Li:J?t><u> = ...Jr<u>AU?u<u)J 
(SQ1/)(u) = SQ0 [/(ut)]. 

6.3 Non-commutative duality transform 

We next introduce left multiplication operators for Uo-valued smooth kernels 
and show that they are *-affiliated to Q1. 

Lemma 6.3.1: For x, ye Xf,<lJo>(l), u, v e 9o. 

(x(-)u,y(-)v)r, = (u,xt•y(0)v)r,0 • 

Proof: 

f (x(u)u,y(u)v )r, du = ( u,L x t (ut)y(u) du v )r, . 
0 ~, 0 

Definition 6.3.2: For x e Xf,<lJo)(/) let Gx be the map 

y(-)v -+ (x * y)(-)v, 

Lemma 6.3.3: (i) Gx is a densely defined closable operator on 9 

• 

Proof: Since, by an application of Fubini's theorem, y(-)v = 0 almost every­
where implies that x * y( · )v = 0 almost everywhere, the map is well-defined. 
Let x,y, z e Xf,<lJo>(l), then by Lemma 6.3.l and the associativity of *, 
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= (xt•y(·)u,z(-)v)~, (u,ve~o). 

So o; :::> Gxt which is densely defined-this proves (i) and (ii). (iii) follows 

from the associativity of *. • 
Definition 6.3.4: Now let x e JC:0(/) and o: be the restriction of Gx to 

Clio® a1g . ..«o>~. 

Proposition 6.3.5: If X 11* Q1 is the *-affiliated operator corresponding to the 

lC ;:;u -
vector x( · )~0 • where x e Xb 0(1), then G:x = X c Gx. 

Proof: ~ c X and, by Proposition 5.1.1, (llo®a1g . .M)~ is a core for X. 

• 
Notation 6.3.6: For x e XQ' let i be the corresponding *-affiliated operator 

and for X 11* Q1, Xv will denote the corresponding vector. Thus 

x is the closure of the operator T' ~ ....+ T' x (T' e l!') 

and 

xv is the vector x~. 

The next result justifies the name non-commutative duality transform for the 

mapA. 

Proposition 6.3.7: Let x,y e x:0(1) be such that~ e Dom(ij), then 

(X*Y)A C XJ, 

(where, as in future, we abbreviate z( · )~o to z when z e x:0 ). 

(6.1) 

Proof: Suppose that ~ e Dom(i j), in other words y e Dom(i), then i y~ = 

xy = G:xY = X*Y = (X*Y)A~ and (6.1) follows. • 
Corollary 6.3.8: Let x e JC:0(/) 
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Proof: (i) is immediate and so (ii) follows from the proposition above. 

• 
Notation 6.3.9: For a function f on /1 and interval /, let J1 denote the func­

tion on /1: 

a~ f(ul"l/). 

Proposition 6.3.10: Let x e x:0(1R.) have support in 111. then Dom(i) ::::> 

L2(/1R\I; '()0 ) and for <p e L2(/1R\I; ~0 ) 

(6.2) 

Proof: Let <peL2(/1R\/;'()0 ) and choose a sequence {T~: n = 1,2,. .. } in 

lC0 ® alg . ..U~ ' 1 such that 'Pn := T~ ~ ~ <p. Then <f'n e Dom(i) and 

so that, by the combinatorial Lemma 2.3.3(a): 

llx(<pn -<pm)ll~ = JI' llx(ul"ll)(<pn -<pm)(ul"l (1R\/))lli0 du 

= ( "" llx(a)(<pn -<pm)(ii)lli du 
)p ~acu o 

= JPJI' llx(a)(<pn-'Pm)(P>lli0 dadP 

~ ( llx(a)lli da·ll'Pn-'Pmlli )p 0 

~ 0 as n, m ~ oo, 

In other words, since x is closed, <p = lim </Jn e Dom(i) and (6.2) holds. 
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Corollary 6.3.11: Let x e X:0(1R). Then Dom(i) :::> {>060 

xv60 = x(. )v, (v e bo). 

The modular automorphism group CJQ is expressed most conveniently with the 

use of the non-commutative duality transform: 

(6.3) 

7. Operator stochastic calculus. 

In this section we again take I to have left end point 0, and we abbreviate IQ 0 

and IQ to 1:0 and I respectively, where Q0 is a fixed initial quantum proba­

bility space and Q = Q0 ®Q{ (Section 6.2). 

7 .1 Extension of the differential and integral operatQrs 

First embed 5'o and 5'1 into the set of adapted kernel processes 

*> := {/ e .t0(/, .ft; I): /(t) e i:,1 'v' t} 

by the prescription 

x ~ x(·)~o. 

and denote the resulting subspaces of t> by t>o and t> 1 respectively. In this 

way smooth kernel processes may be thought of as Hilbert space-valued rather 

than algebra valued. Now consider the locally square integrable kernel 

processes and the martingale kernels: 

£2 := {/ e Lfoc. (/,.ft, A.; I) : ft e 1:11 for almost all t} 

m := {/et>: Xr10,,/t = fs 'v' s :s; t} 

For TE /, x E r2 let 

T 1/2 

= {l Hx1lli dt} 
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-the seminorms { 11 · llr: Te I} clearly separate l2. 

The operators I", .1± and .1° extend to l2, Po+m and p1 +m respectively with 

the same definitions as in Section 3. In particular, if x e m then .1°x = 0 and, 

for ( O', t) e I'ad. (/): 

.1±x(u, t) = x(uu {t±}, T), (T > t). 

Moreover, if x e p and x1 = 0 for almost all t, then 1± x1 = 0 for all t, so these 

integrals do not distinguish versions. Kernel stochastic integrals of locally 

square integrable processes are martingales, kernel stochastic derivatives of 

martingale kernels are 12 (as is seen by an application of the combinational 

Lemma 2.3.3(a)), and the fundamental theorem (3.2.5) continues to hold for 

p1 +m (Proposition 7.5.1 establishes this). The new element here is the 

isometry/orthogonality relation. 

Proposition 7.1.1: Let x,y e t2, then for Te I 

Proof: For z e t2, 

llI±zrl 2 =1 :1: llz(u\{maxu},maxu) 11 2 du 
P'ro.r1 

T 

= c±j0 JP' llz(r,t)ll 2 drdt, 

(7 .1) 

and, since i+xr and ryT are supported by the disjoint sets fr and IT respec­

tively, (7.1) follows. • 

The following extension of the previous result is useful. 

Proposition 7.1.2: Let/" e £2 and x = l+f+ +rf- +1°/0 , then 

t 

llx,Hi = j
0 {c+llfs+lli+c_llfs-~i+2Re(/8°,X8 )~} ds. (7.2) 

Proof: By (7.1) 

- 138 -



t 

+2Rejli' { fo fs0(a) ds, i+t,+(a)+rt,-(a))da, 

but (for almost all a) 

since 1±1± are martingales, and 

t t s 

U 1 fs0(a) dsll 2 = 2Re1 {/9°(a),1 /,0 (a) dr) ds 
0 0 0 . 

so (7 .2) follows. • 
7 .2 Simple approximation. 

The simple and continuous kernel processes are defined by: 

s = {/ e i>: f is a step function and /(t) e x:0(/)~0n le~ 'V t}. 

c = t>rt~(/;.E). 

Thus martingale kernels and kernel stochastic integrals are continuous, and 

continuous kernel processes are locally square integrable. The next result 

establishes the density of s in t2• 

Proposition 7.2.1: Let f e t2, then there is a sequence t<n> e s such that for 

all t E /, 

(7.3) 

as n ~co. 

Proof: For each N > 0, 

Now 
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{ZBx[b,cl: B c I'ro,aJ compact, a< b < c} 

is total in L 2(I'ad.(/), 51, µx.A. 1) moreover, by Kaplansky's density theorem, 

each ZB ® v (v e .E0 ) may be approximated, in .E, by elements from lC4 (or :1l4 

for any strongly dense * -subalgebra :1l of lC). Combining these facts, the 

result follows. 

• 
We write J<n> ~ f when f<n>, f e r2 satisfy (7 .3) for each t. In view of (7. I) 

we therefore have 

Corollary 7.2.2: Let f e r2• Then there is a sequence J<n> e s such that, for 

each te I 

(7.4) 

7 .3 Conditional expectations •. 

For each subinterval J of/ let P1 be the orthogonal projection of multiplica­

tion by Zp1 , .E1 = P/E and lC1 = lC ri (.E1 )". 

Proposition 7.3.1: Let x e .E, then 

x ex, <=> x17 lC,. 

Proof: If x e .E1 then it follows from Theorem 2.2 of [LiW] that x = Y where 

Dom(Y) = ug, YR4 =Rx (Re lCj). In particular, x17 lC1. Conversely if 

:f17 lC1 then, since P1 e lCj, zp1 x = x, in ~ther words x e .E1. 

• 
Remark 7.3.2: The duality transform establishes a bijection between operator 

valued maps F: I ~ 17*(Q) for which F1 17 lC11 -called adapted operator 

processes-and maps f: I ~ .E for which f(t) e .Et]. In particular, to each of 

the classes Po. p1, r2, m, s and c corresponds a class of adapted operator 
A 

processes Po ... ., C. 

Definition 7.3.3: For each subinterval J of /, the conditional expectation IE1 

on 17*(Q) is given by 
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IE;[i] = (P;x)". 

By Proposition 7.3.1, IE;[X] 71 U1 for each *-affiliated operator X. IE; extends 

a conditional expectation in the sense of Section 5 to *-affiliated operators. 

We shall list some of the properties enjoyed by these maps. Let A,B e U and 

X e 77*(Q) be such that XA and BX e 77*(Q), then 

(iii) if X e I; then IE;[XA] c XIE;[AJ 

if A e U; then IE;[XA] c IE;[X]A 

(iv) if Be U; then 1Ej[BX] = BIE;[X] 

ifXeI; then IE;[BX] = IE;[B]X 

(v) if Ii f"'li2 = 0 then IE;1 agrees with IE(o) on I;2 

(vi) IE(o) [i] = ( 6ek )x(0)~o)". 

adjoint preserving 

projectivity 

(7.5) 

These properties are straightforward to verify, for instance (i) follows from 

the fact that P; commutes with SQ and (iv) from the fact that P; commutes 

with U;. 

Remarks: 1. If Te 77*(Q) then t ~ IE,1 [T] is a martingale (i.e. belongs to 

m). 

2. An adapted operator process X is a martingale if and only if IEsJ [X,] = 

Xs 'r;/ s ~ t. 

7.4 Quantum stochastic integration ([BSW2], [L 1,2], [HL l]]). 

We now introduce operator creation and annihilation processes which together 

constitute a quantum Brownian motion ([CoH]) and define the stochastic 

integral with respect to these processes. We shall then argue that our present 

definition agrees with previous definitions. 
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Let a, := A1£0azro.ii (t e I) where al, aJ are the kernels of (2.3), then a, ate Pt. 
The operator process A - := d, A+ := (a tr are called the annihilation and 
creation processes; they are mulually ad joint martingales ((At) t = Aj \It). 

Definition 7.4.1: We define (operator) quantum stochastic integrals as fol­
lows. For Fe (l2)", 

where/= Fv. 

1. FdA± := (/±/)" 
0 

Lemma 7.4.2: Let f = XZ(u,uJ where x e (x:0~0) n {ltu1~) and u < v. Then 
fort~v. 

Proof: First note that 

But, since the supports of x and a! only have 0 in common, A.(•,•l 

a}<•.•l •x(o') = Lacu aL .• 1(a)x(a) 

= {X(O'\{maxu}) if O'E r+,maxO'E (u,v] 
0 otherwise 

= {f
0
(u\{maxu},maxu) if ue r+ 

otherwise 

By a similar argument for A- the result now follows. 

(7.6) 

• 
When these stochastic integrals have been defined in the past, the procedure 
has been the familiar one of first defining them for elementary processes by 
(7 .6), then extending by linearity to simple processes, then invoking the den­
sity result (Lemma 7 .2.1) and the isometry property (Proposition 7 .1.1 )-
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proved for simple processes-to extend the integral to (locally) square integr­

able processes by the prescription (7.4) preserving isometry. Our approach 

has been to both define the stochastic integrals and establish their 

isometry/orthogonality properties directly-always invoking the duality 

transform (6.9) to pass back and forth between vectors and *-affiliated opera­

tors. The previous lemma, together with the density result establish the 

equivalence of our definition with the previous ones, modulo variations in 

domain which, in view of Proposition 5.1.1 .and [LiW], have no significance. 

7 .S Martingale representation theorem. 

Since 1± map 12 into m, stochastic integrals of adapted operator processes are 

a source of martingales. In this section it is shown that all martingales arise 

in this way ([HL 1,2), [L2]). 

Proposition 7.5.1: Let X em then there are F± e (2 such that 

t t . 

X,=Xo+fo F+dA++fo F-dA- (te/) (7.7) 

the processes F± being unique up to a Lebesgue null set. 

t t L F+ dA+ + J
0 

F- dA- = (l+..1+x,)"+(r..1-x1)" = (zy+x1)"+(zp-x,)" 

I t 

so X1-1 F+ dA+ -1 F- dt- = (zy"x1)" = .io. and (7.7) follows. Unique-

o 0 . 

ness follows from the isometry/orthogonality result (Proposition 7.1.1). 

• 
7 .6 Stochastic differential equations. 

The kernel formalism allows a unified approach to the existence problem for 

linear (operator) stochastic differential equations, and, since the solution of 

corresponding kernel differential equations may be given explicitly, this 

approach gives more information than a purely operator approach [L l], 

[HL2]. 
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Theorem 7.6.l: Let F{, G{ be locally Lipschitz U{o}-valued functions on I. 
Then the operator sde 

4J;:J I I kJj:J I I 4-t=l I I (7.8) { 
dX =~I F·+XG·+ dA++ ~m F--XG-- dA+ ~n F·0 XG·0 dt; 

X(O) = Xo. (Xo E U10» 

has a solution. In other words, there is an adapted process X such that 

G/'(s)~ e Dom(X(s}) 'V s, K, i, and 

t t t 

X(t)-X(O) = 1 y+(s) dA+ +J Y-(s) dA- + 1 Y0 (s) ds, (7.9) 
0 0 0 

where Y" is the process s ~ closure of I,. F/'(s)X(s)G/'(s). Moreover x+ 
I 

satisfies the conjugate equation to (7 .8). 

Proof: Let x be the I' 1 solution of the corresponding kde, that is the solution 

of (4.1) in which L"(t)[b] = L; f;"(t)bg{(t) where f{(s)®A. 11 = F{(s) and 

g{(s) ® A. 11 = G/'(s). Now G/'(s)~ = g{(s)~oo0 e D(x5 ) by Corollary 6.3.11. 

By the fundamental theorem (3.2.5) 

x, -xo = L" I"[ I.; g{(-)x( o, -)/{(-)], 

which implies (7 .9) for X = x. By symmetry x+ ;,. (x ty' satisfies the conju­

gate equation. 

• 
The proof of uniqueness does not use kernels in any essential way. 

Theorem 7.6.2: ([L 1), [HL2]) Let F",G" be locally bounded maps 

I ~ U10J which are strongly measurable. There is at most one solution to 

each of the operator sde's 

dX = F+x dA+ +F-x dA- +F 0X dt; X(O) = Xo (Xoe U1oi> (7.10) 

dY= YG+dA++rG-dA-+YG 0 dt; Y(O) =Yo (YoeU1oi) (7.11) 

Proof: (i) Let X1 and X2 be processes satisfying (7.10). Putting Z = X1 -X2 
and applying Proposition 7 .1.2 we have 
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t 

llz(t)ll 2 = J
0 

{c+llf+zf+c_llf-zll 2 +2Re(z,f 0 z)} ds 

t 

~ cTJ0 llz(s)ll 2 ds forte [0, T], 

where cT = 2 "'"' sup c K II F K(-) 11 2. Iterating this inequality yields z = 0, i.e. 

LJK (0, TJ 

(ii) Let Z = Y1 -Y2 where, Y1 and Y2 satisfy (7 .11 ), then z+ satisfies (7 .10) 

with Xo = 0, F+ = G-*, F- = G+*, F = G*, but so does X = 0, so 

z+ = 0 by (i), and therefore Y1 = Y2. • 
Combining these results we have 

Theorem 7.6.3: Let F" be locally Lipschitz lC(oJ-valued maps on /. Then 

there is a unique solution to the operator sde 

Its adjoint is the unique solution to the operator sde 

Moreover the operator processes possess smooth kernels which satisfy 

corresponding kde's and may be written explicitly (4.3). 

Remark: A class of operator stochastic· differential equations, not covered by 

the results here, were considered by Barnett, Streater and Wilde ([BSW 2)). 

They established existence and uniqueness for equations of the form 

dY = f(Y, t) dB+ g(Y, t) dt 

where B is a linear combination of the creation and annihilation process and f 

and g are adapted (in the obvious sense) and satisfy Lipschitz and continuity 

conditions. 
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8. Adapted cocycles 

In this section we characterize adapted operator cocycles (cf. Section 4) as 
groundwork for the construction of quantum Markov processes in the next 
section. Q 0 will denote a fixed initial quantum probability space and m, 
(t e IR) will be the right shift on 71*(Q), (where Q = Q0 ® Q1, as in Section 6.2 
and I= IR): 

011(.i) := (JU1x)", t e IR 

= m,.fm_, 

(see Section 4.3). For an early paper on Markovian cocycles, see [AcF]. 

Definition 8.0.1: An le-valued process {X,: t :ai: O} is an adapted (operator) 
cocycle if 

(aci) X e C. 

(acii) m1(X8 )X1 = X8+r; Xo = l (s, t :ai: 0). 

Remark: If X is an adapted cocycle then the two parameter family 
{Xs,t: m8(X,_8 ), s ~ t} satisfies: 

(i), Xs, t e (.Ecs. tJ )" 

(1'1')' x x x s,t r,s = r,t; Xo,o =lie 

(iii)' mu(Xs,r) = Xs+u,t+u 

(iv)' t i--+ (Xu, 1)v is continuous on [u,oo), (u e IR, r ~ s ~ t). 

Conversely a two parameter family {Xs,r: s ~ t} from lC satisfying (i)' - (iv)' 
determines an adapted cocycle: {Xo, 1 : t :ai: O}. 

It is now a simple matter (easy part of Proposition 8.1.2) to show that 
bounded operator valued solutions of stochastic differential equations of the 
form 
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provide adapted cocycles. In the converse direction, it was established in 

[HL 2] that unitary valued adapted cocycles (there called covariant adapted 

evolutions) are necessarily solutions of equations of the form (8.1). Here we 

apply the kernel formalism to establish this for adapted cocycles over a finite 

dimensional quantum probability space. The idea of the proof is again to 

apply the duality transform to Proposition 4.3.2, but since the continuity con­

dition (iv)' is considerably weaker than the corresponding one for kernel 

cocycles we have to work a little harder. 

8.1 Characterization. 

For a function f on J7 and an interval/, let t1 denote the map u-+ /(u('I/). 

Lemma 8.1.1: Let x e X1 be (almost everywhere) u0~-valued and such that 

x e le. Then for ye XR\/ 

(a.e.) 

(using notation 6.3.9). 

Proof: First choose a countable dense set D' from (lto®atg . ..«o)~. Let 

{Xm e lto®atg.K~: m = l, 2, ... } be a sequence which strongly approximates i. 

By taking subsequences we may assume that Xmd' is pointwise convergent 

(outside a null set 3 1) to xd' for each d' e D'. Now let {Yn = Yn~: n = 

1, 2, ... } be a sequence in D' converging to y but also, again by taking subse­

quences, such that XYn converges pointwise (outside a null set 3 2) to xy. 

Then, since x is lto-valued and the Y.n are ltc}-valued, Proposition 6.3.10 

gives, for u~ .5'1 u.5'2, 

xy(u) = lim (iyn)(u) 
n~oo 
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and the result is proved. 

• 
Proposition 8.1.2: Let {Y1 : t~O} be a family of operators in U with U0 finite 

dimensional, then the following are equivalent: 

(a) Y is an adapted cocycle; 

(b) Y satisfies a stochastic differential equation of the type (8.1 ); 

(c) yv has a version which satisfies the equivalent conditions of Proposition 

4.3.2. 

Proof: (c) <=> (b): By the fundamental Theorem (3.2.5) the duality transform 

maps the unique solution of Az :;: qz, zo(0) = 11'0 to the unique solution of 

(c) ::::> (a): By Proposition 6.3.7 the duality transform maps adapted kernel 

cocycles to adapted operator cocycles. 

(a) ::::> (c): Let Y be an adapted cocycle. Define Ys,t e I (s ~ t) by 

Ys, 1 = m8(Y1_ 8 ), then we immediately have, for r ~ s ~ t, a e IR 

Ys,1(<») = Ys-a,1-a(a>-a) for a.a.a> (8.3) 

in panicular, 

Ys,1(0) = Y1-s(0) (8.4) 

and, by Lemma 8.1.1, 

Y [r, tJ :;: y [s, 1J y [r, s] a.e. 
r,t s,t r,s (8.5) 

which may be extended to 

where re IR~+l :={re IRn+l: ro ~ r1 ~ ... ~ rnl· By (8.4) and (8.5) the map 

is a semigroup which, by (aci) is continuous. Let q be its generator. Let 
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Ys2 ,s4 ({s3+ l) = Ps~~s4Ys1os5 ({s3+ l)Ps~~s1 

for (s2,s4) outside a null set Ncs1,s3,s5)t se IR~. So 

exists, by the continuity of p, equals 

and moreover is clearly independent of (si. s5). Thus there is a map 

q+: IR -+ 1.Co and a subset V of IR! of full Lebesgue measure such that 

F(s) := Ps~~s2Ys1os3 ({s2+1)Ps~~s1 = q+(s2) (s e V) 

By covariance (8.3), {(s,a) e IR!xlR: F(s) = F(s-a)) has full Lebesgue meas­

ure. Moreover, 

where T is the measure preserving map (.r,a)-+ (x-a,a). Hence for almost 

all (s,a) e IR!xlR, 

In particular, q+ is almost everywhere constant. Applying the same argument 

to 1'0• 1 we obtain q ± e 1£0 satisfying 

Combining this with (8.6) gives 

and, using (8.6) again, 
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y,(u) = Pt-vfYu,v(u)}pu for a.a O'e Pcu,vJ• 0 °' u < v "t 
£,. £1 e ( ) 1Rn+2 = Pt-s,.q Ps,.-s,._1 ... pSz-Si q Ps, 10r a.a. u, S, v E ;it 

Letting Un J.o and v n J.o with care, we see that y has the form ( 4.12) and the 
proof is complete. 

• 
8.2 The reduced semigroup. 

Proposition 8.2.1: If X is an adapted cocycle, then the family of operators 
{R1 := m _,x,, t >;!: O} satisfies 

(8.7) 

Proof: 

• 
In view of Propositions 4.2.1 and 4.4.1 and CoroJJary 6.3.8 the following is 
immediate. 

Proposition 8.2.2: An adapted cocycle X is unitary valued if and only if its 
generator has the form (V,-V*,-!(c+V*V+c_W*)+iH) where H = H*. In 
this case the one parameter semigroup T'° on lCo given by 

joT10 = E(o}oAdX1 oj 

(consisting of completely positive maps) has generator Lv-i[H, · ]. 

T0 is called the reduced semigroup of the adapted cocycle X. 

9. Quantum Markov Processes 

In this section we shall be concerned with the construction of dilations using 
Bose noise, and the characterization of the class of quantum dynamical 
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semigroups which admit such a dilation (cf. [ApF]). 

9.1 Multidimensional Bose Noise 

Let I'(/; I) denote the charged and coloured finite power set of I with 

colours: 

I'(/;l) = U r'(/)x{l, ... ,/}N. 
N=O 

let Po be the metric on I'(/; I) given by 

. 0 

p0 ((1,£,l), (•'.•'. l')) = I : A "'F ls,-s; I 
if both equal 0 

if (e, k) = (e', k') 

otherwise 

and let (P'(/; l),p) be the completion of (I'(/; l),p0 ). The constants c± will 

now be colour dependent: 

C±,j = C±(/Jj,hj), j = 1,. .. ,/, 

where (JJ, h) e (0, oo)1x [0, oo)1 is fixed and the functions C± are determined by 

continuity and the relations 

C+(/J,h)-c_(JJ,h) = h; 

Explicitly: 

{ 
h(rfJh-1)-1 

c_(JJ, h) = p-l ; 

C+(/J, h)/c_(JJ, h) = rfJh. 

(h > 0) 

(h = 0). 

The origin of this parametrisation of the pair (c+, c_) by (JJ, h) lies in physics: 

When a small quantum-mechanical system, such as an atom, is coupled to the 

electromagnetic field (a Bose field) it is usually sensitive only to certain small 

spectral regions of this field around frequencies vi (j = 1, ... ,1), say. When 

the field is at a temperature T, these regions are described to a good approxi­

mation by copies of Bose noise with parameters 

where Ii and k are the constants of Planck (divided by 2x) and Boltzmann 

- 151 -



respectively. The j-dependence of Pi leaves open the possibility of coupling 

to fields of different temperatures. A classical field corresponds to Bose noise 

with h = 0. 

Letµ = µ10 be the Borel measure on P'(I; l) given by dµ = mcU. where 

(cf. 2.1) 

A kernel calculus may be constructed on (r(I; l) µ11·")) as before, involving 

operators Ie,k, 1°, 4e.k and 4° (e = ±,k = 1, ... ,1), and a quantum probability 

space Qf·" = (L2(dµP• 11),Kl1· 11,6~·"). Corresponding to Propositions 8.1.2 

and 8.2.2 we have: 

Proposition 9.1.1: For a family (Y,: t ~ O} of operators in -,ill.II, the follow­

ing are equivalent: 

(a) Y is an ,KP.lil_adapted cocycle 

(b) Y satisfies an s.d.e. of the type 

dY = i::=I (Q+,i dAi +Q-,i dAj")+Q 0 dt; Yo= I (Q.ie Uco» 

(c) Y = j where y satisfies a k.d.e. of the type 

Ay = qy; 

(d) Y = j where y is an .N"·"-adapted kernel cocycle 

(e) Y = j where 

as long as either Q0 is finite dimensional, or Y is unitary valued. 

Proposition 9.1.2: The KJJ·"-adapted unitary cocycles are those with genera­

tor Q of the form 

Q+,k:;: "L, Q-,k - - 11* k - 1 I Yk, - l'J(' - , • .,.,' 
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The generator of the corresponding reduced semigroup on 1C0 is then 

i[·,e]+'t'1 L~··h• (wherej(e)=E, j(vt)=Vt>· 
""k=l • 

We write L~'h(b) for c+<P. h)[v*v-!{v*v, bl] +c_(.8, h)[vbv*-!{vv*,b}] 

where { . , . } is the anti-commutator a, b i-+ ab + ba ). 

9.2 Bose dilations 

Lemma 9.2.1: Let Y be an .N'P·"-adapted cocycle with generator q®AK. If 

either Y is unitary valued, or Q0 is finite dimensional, then for each t e Iii, 

p,11 >- { u,o(q) = q . 
u1 (Ys) = Ys 'Vs ~ 0 ~ 0 ei· EitfJh ei· (E = ±,J = 1, ... ,1). 

u1 (q • ) = e 1 ~q • 

Proof: The modular automorphism group ull·" is given by (6.3) where 

r := mt/m is the map 

so that 

_ '{" £·/l·h1 
(r,e,k) ~ e ""1 1 J 

u1(Ys) = Ys 'V s;?; 0 

-it'{" E·/l·h· ( ) '- '-
~ e ""1 J J 1u,o(e s-rN q qeN•"'N ••• qe.,,.,1 e'tq) 

~ u1°(q) = q, u1°(qe,j) (E = ±, j = 1, .. ., 1). 

• 
Proposition 9.2.2: Let Ube an .N'P·"-adapted unitary cocycle with generator 

Q = q®AK. Then 

t I-+ (Ad U1)om1 (t;?; 0) 

determines a quantum dynamical group T on Qp," if and only if 

u,o(q°) = qo, u,o(qe,j) = eEitfJ1h1qe,j, (e = ±,j = 1, ... ,1). 

- 153 -



In this case the reduced semigroup T0 of U is a quantum dynamical semigroup 
on Q0 admitting the Markov dilation (Q, j, IP, T) where j: b -7 b ®AK and IP is 
characterized by IP(X)®A = 1Efof[XJ. 

Proof: Since i; is invariant under the shift on L 2(I'(I; I), ~0), { m1 : t e IR} is a 
quantum dynamical group on Q. By Proposition 8.2.1, T satisfies the semi­
group property, so the equivalence follows from (5.5) and the lemma. Each 
T1° is then a composition of morphisms: 

T1° = 1PoAdU1 oj = 1PoT1oj (since m1oj = j), 

so r 0 is a quantum dynamical semigroup and Ta dilation of T0 • The Markov 
property follows from (7.5). 

• 
Definition 9.2.3: A (Markov) dilation (Q,j, IP, T) of a quantum dynamical 
semigroup T0 on Q0 is a Bose dilation if for some (/3, h) 

Q = Q0 ®Qf•h; j(b) = b®l; T1 = AdU1 om1 

where U is an .N'/J,h_adapted unitary cocycle. 

Proposition 9.2.4: Let r 0 be a quantum dynamical semigroup on Q0 with 
generator L. The following are equivalent: 

(a) r 0 admits a Bose dilation 

for some (l,p, h, e = e*, v) satisfying u1°(e) = e, 

u,o(vk) = eit/J1ch1cvk (k = 1, ... ,1). 

Proof: (a) ~ (b): This is immediate from Propositions 9.1.2 and 9.2.2. 

(9.1) 

(9.2) 

(b) ~ (a): Let L be determined by (l,p, h, d = d*, v) as in (9.1) then the .N'/J,h_ 

adapted unitary cocycle with generator q where 
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q 0 =id. - ! ~I {c+<Pk,hk)vfvk+c_(,8k>hA:)vkvf} 
""k=l 

q +,j - v· q-.j - -viJc (J. - 1 m) 
- }' - J - ••••• • 

leads to a Bose dilation, since vfvk and vkvf are fixed under u,0 , by Proposi­

tion 9.2.2. • 
9.3 Detailed Balance 

In the physics literature one finds the condition of detailed balance for the 

transition probabilities between the energy levels of a quantum-mechanical 

system. This condition says that the transition probabilities between any pair 

of levels balance each other in the equilibrium state of the whole system. For 

a long time it was believed that detailed balance was a necessary condition for 

the dynamical semigroup determined by these transition probabilities to be 

physically realisable, i.e. to possess a dilation. Although this belief is now 

known to be erroneous in general ([KiiM], [FrM]), we shall prove it correct 

for the case of dilations using Bose noise. 

Definition 9.3.1: A norm continuous quantum dynamical semigroup T0 on Q0 

with generator L satisfies detailed balance if there is a quantum dynamical 

semigroup s0 on Q0 satisfying 

(dbi) (S1°(a)~0 , b~0 ) = (a~0 , T1°(b)~0 ) ":/ a,b e ~0 , t ;ii. 0 

(T° has a Q0 -adjoint) and whose generator M satisfies 

(dbii) L-M = i[ e, ·] for some e = e* in ~0 • 

Remarks: 

1. T0 has a Q0 -adjoint if and only if it commutes with the modular automor­

phism group uQ 0
• 

2. If T0 has a dilation (Q,j, IP, T) then it has a Q0 -adjoint, namely !Po T_1 o j 

(t ~ 0). 
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Proposition 9.3.2: Let T0 be a quantum dynamical semigroup on Q0 • Sup­

pose that U0 is finite dimensional, and a factor (i.e. has trivial centre). Then 

T0 admits a Bose dilation if and only if T0 satisfies detailed balance. 

Proof: Let T be a Bose dilation of T1° given by the cocycle U with generator 

q®A. The generator of IPoT_1 oj = IPoAdUf oj is M9 (see 4.7) and since 

L9 -M9 = [q-q*, ·J. T0 satisfies detailed balance. 

Conversely ([Ali]) suppose T0 satisfies detailed balance. U0 , being a finite 

dimensional matrix algebra, which is also a factor, is isomorphic to Mn(C)xlm 

for some n, m, where Im is the mxm identity matrix. The generator l of the 

completely positive semigroup T0 is therefore expressible in the form ([Lin], 

[GKS]) 

i[ u, ·] + "°'P (vt · vk-!{vfvk, · l) 
"-k=l 

for some peN,u = u*,vkeU, k = l, .. .,p. Let "°' eZPz be the 
.i..ze sp(hul0 ) 

spectral decomposition of ..1Q0 and define Xz and vz,k (k = 1, ... ,p) in U0 by 

then, 

Uz~o = Pzu~o 

Vz,k;o = Pzvk;o 

o-,o(uz) = eiztuz 

a1°(vz.k) ,,; eiZ'vz,k 

for z esp (ln.10 ), and, since l commutes with a0 , we have 

T 

l = lim (2T)- 1/ a1° ol o a!:.1 dt 
T-+oo -T 

T 

= lim (2T)- 1J [i"' eiz1c uz, · ] 
T-+oo -T "-z 

(9.3) 

+ "°'P "°' eiCx-x'>1(v*, k · v k- l(v*, kv k , · })] dt 
"-k=l "-x.x' x • z, "' x . z, 

= i[ u0 , • ] + L (vi.k · vz,k - Hvi_kvz,k , · }) k,z 
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Elementary manipulations with the Tomita operators, such as 

yield the identities 

for a, be U0 • Thus the generator L * of the Q0 -adjoint semigroup equals 

-i[ u · ] + ~ [e-zv k · v* k - il{v* kv k · }). 
o • .i.Jk,z z, z, ,,. z, z, • 

Since L*(!) must vanish, we have 

By (db ii) 

L - L * = i [ d, · ] for some d = d* e U0 
(9.6) 

and, since L and L* commute with <1°, a1°(d)-d lies in the centre of U0 , 

hence 

a,0 (d) = d (t e IR) (9.7) 

Since L = !<L+L*)+!(L-L*) and c_(/3,h)/c+(/3.h) = e-flh, we see, by com­

bining (9.3-9.7) with Proposition 9.6, that T0 admits a Bose dilation. 

• 
10. The Wigner-Weisskopf Atom 

10.1 Description 

Let M2(C) be the algebra of observables of an atom possessing two energy 

levels: a higher level 1 and a lower level 2. The equilibrium state on M2(C) at 

inverse temperature p is given by 
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where ft = h/2x and h is Plank's constant. Working in units for which Ii = 1 
the appropriate quantum probability space Q0 is (b0 , 1!0 , ~0) where 

bo = M2(C) with inner product (x,y) --> <pp(x*y) 

- ( 1 0) ~o - 0 1 . 

1!0 = x(M2(C) where x: M2(C) --> .:t'(b0 ) is the representation given by 

ax = x(a): x--> ax. 

Note that bo is isomorphic to C2 $ C2 with the inner product 

~0 corresponding to ( ( b ). (?)) under this isomorphism. The modular group 

u,0 := uP0 is given by 

The lowering operator of the atom v := {~ 
l = 1) and etL• is given by 

0) clearly satisfies (9.2) (with 
Ox 

( ac b) H e-Pa+d( 1 0) + e-tcoth/J/2 a-d { 1 
d x e-P + 1 0 1 x e-P + 1 0 

+ e ( -1 /2) coth(/J/2){ 1 b ) 
0 0 11: 

~/J) e x 

This quantum dynamical semigroup is known as the approach to thermal 
equilibrium of the two-level atom coupled to a quantum field at inverse tem­
perature p, a system first described by Wigner and Weisskopf ([WeW]). The 
construction of Proposition 9 .2.2 immerses this atom in the flow of a Bose 
noise Q1(1R) governed by the shift lll1• The development in time of the 
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coupled system 

T1 : X ~ Ufm1(X)U1 = Uf/D1XID_ 1U1 

can be described, in the Schrodinger picture, by the unitary group R1 = 

m_,u, fort~ o and U'!:. 1ID_, fort< o. 

10.2 Interpretation of ~ 

The natural configuration space for the two-level atom is {1, 2} and a pure 

state of the atom is described by a wave function IJIE L2({1,2}) = c2, associ­

ating the expectation ( IJI, blJI) to the observable be M2(C). However, the atom 

may be found in a mixed state, i.e. a convex combination of pure states, such 

as ;p=(l+e-/J)-1(e-fl(e1,·e1 )+(ei,·ei)). One may then think of it as 

residing in one of these pure states, each with a probability given by its 

coefficient. This may be substantiated by representing the observable algebra 

of the atom on c2 ED C2 = ~o as was done above. Since in quantum mechanics 

one is free to represent the Hilbert space of a system as L 2(!2, µ) for different 

choices of (!2,µ), thereby obtaining equally valid configuration spaces (!2,µ), 

we may now call {l,2}x{l,2} a configuration space of the atom. The state ;p 

is then given by the wave function eo on {1, 2}2. When in this state the atom 

may be excited by the operator v* to v*e0 = it(e12), or de-excited by v to 

veo = 1t(e21). Further excitation of v*eo or de-excitation of V~o is not possi­

ble, but vv*e0 = 11:(ei2) and v*v~0 = 11:(e11) are permissible wave functions 

(when normalised). We recover e0 as the superposition v*v~0+vv*~0 . 

On the other hand I' is a configuration ·space for the noise in thermal equili­

brium at inverse temperature P. Its interpretation resembles that for the atom: 

excitations added to the thermal background are described as points with posi­

tive charge, the negative charges standing for de-excitations or particles 

removed from the background. In this way we view~= L2({1,2}2xl) as the 

space of wave functions of atom and noise. 

10.3 The Schrodinger Evolution 

If at time 0 the system of atom and noise has the wave function IJI, then at a 

later time tits wave function will be R1 IJI, given by 
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(i,j,CT) H ~ ~ ( u1(aUa>t);klJl(aum)kj dro (10.1) 
.l..iacC1+t .l..ike {l, 2} } r 

where u e 51 1(10, oo)) is the adapted kernel cocycle with generator q given by 

o 1(l -/J)-1( e-/J 0) q "" -2 +e 
0 1 1t 

The cocycle may be represented diagrammatically: for a= (s,£), u1(a);j = 0 
unless the charges e1, ••• , En alternate and have sum ( i - j), in which case 
u1(<T);j = exp{-!(1 +e-P)- 1(11 +e-P/2 ]}, where 11( respectively 12) is the total 

length of the higher (lower) plateaux in the following diagram. 

1 

2.._ __ ___ 
I ., 

I I ,____. 
I I 

+ -
The case (i,j) = (1, 2) 

' I 
~ 
I I 

' I 
I 

' I 

+ t 

The SchrOdinger evolution R, has the following interpretation: (10.l) 
expresses R1 l/f in terms of I/I by summation over all configurations (k, j, au m) 

which may lead to (i,j, u) by the combined effect of a left shift by t .and an 
interaction with the atom. The atom, located at the origin, can emit bosons 
(here written as a) and absorb others (written m), leaving a part a= <Ht\a 

of the initial configuration intact. The shift then takes the result cr+t to CJ. 

The adaptedness of u ensures that only those particles which pass the origin 
during the time interval (0, t] may be absorbed, and only such are emitted 

which end up in the space interval [ -t, 0]. 

The value u1(a u pt);k of the coefficient in the summation (10.1) is understood 

by considering (10.2) as a picture of a possible history of excitations and de­
excitations during the time interval [0, t]. 
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Symbol Description Subsection 

:to 0 

~ Borel u-algebra 0 

r charged finite power set 2.1.1 

J1 completion of above 2.1 

µ measure on J1 2.1 

C+ ~ C_ > 0 fixed constants 2.1 

(.A, *) fixed involutive Banach algebra 2.1 

t involution on Jl, µ and :1(11;.A) 2.1.2 

xt.~ bounded, smooth kernels 2.2 

x1, w1,a1 various kernels 2.2.2 

µ quasi-free characteristic function 2.2.2 

* hose convolution product 2.3.2 

ra,b• re 
2.4.1 

I'o.lo,So modular operators 2.4.1 

Gy,Dx left, right multiplication operators 2.4.2 

' symplectic form 2.4.4 

VJ commutant Weyl kernel 2.4.4 

'W,V Weyl, commutant Weyl algebras 2.5.0 

v µ+µt 2.5.3 

Ir) I 1""1(-oo, t) 

rac1. adapted simplex 3.0 

r+ { maxu has + charge} 3.0 

kx 
3.1 

~ smooth adapted kernel process 3.1.1 

,dK, 1( = 0, +,- differential operators 3.2.1 

IK integral operators 3.2.4 

.d (.d+,.d-,.do) 4.1 

m, Shift 4.3.0 

Q quantum probability space 5.2 

O'Q modular automorphism group 5.2 

SQ,JQ,LiQ modular operators 5.2 

T/*(Q) *-affiliated operators 5.3.1 

x+ conjugation on T/*(Q) 5.3 
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.x.xv non-commutative duality 6.3.6 
2 llo. lli. l , m kernel processes 6.7.1 

s,c more kernel processes 7.2 
IE conditional expectation 7.3.3 

m, shift 8.0 
Fi,K Planck, Botzmann constants 9.1.0 

ACKNOWLEDGEMENTS: We would like to thank Robin Hudson and Ivan 
Wilde for useful comments on our preprint [LMJ. We are also grateful to the 
Netherland Organisation for Scientific Research, and the UK Science and 
Engineering Research Council for the support which enabled this collabora­
tion. Finally we would like to break precedent and express our gratitude to Jo 
Frampton for persisting with the unenviable word-processing job and produc­
ing such a visually pleasing manuscript. 

References 

[AcF] L Accardi and A Frigerio: Markovian cocycles, Proc. Royal Irish 
Academy 83A (1983) 251-263. 

[Ali] R Alicki: On the detailed balance condition for non-Hamiltonian sys­
tems, Rep. Math. Phys. 10 (1976) 249-258. 

[ApF] D B Applebaum and A Fr!gerio: Stationary dilations of W*­
dynamical systems constructed via quantum stochastic differential 
equations, in "Emanations of the Warwick Symposium on Stochastic 
Differential Equations and Applications, 1984-85" (ed. K D 
Elworthy) Pitman Research Notes in Mathematics 150 (1986) 1-38. 

[ApH] D B Applebaum and R L Hudson: Fermion Ito's formula and sto­
chastic evolutions, Commun. Math. Phys. 96 (1984) 473-496. 

[Bar] C Barnett: "Non abelian stochastic processes", Thesis, 1980: Hull. 

- 162 -



[BSW 1] C Barnett, RF Streater and IF Wilde: The Ito-Clifford integral, J. 

Funct. Anal. 48 (1982) 172-212. 

[BSW 2] C Barnett, R F Streater and I F Wilde: Quasi-free quantum stochas­

tic integrals for the CAR and CCR. J. Funct. Anal. 52 (1983) 

19-47. 

[BrR] 0 Bratteli and D Robinson: "Operator Algebras and Quantum Sta­

tistical Mechanics, Vol. II" Springer 1981. 

[CoH] A M Cockroft and R L Hudson: Quantum mechanical Wiener pro­

cess, J. Multivariate Anal. 7 (1977) 107-124. 

[Fri] A Frigerio: Construction of stationary quantum Markov processes 

through quantum stochastic calculus, in [QPII] (1985) 207-222. 

[FrM] A Frigerio and H Maassen: Quantum Poisson processes and dilations 

of dynamical semigroups, Probab. Th. Rei. Fields 83 (1989) 

489-508. 

[GKS] V Gorini, A Kossakowski and E C G Sudarshan: Completely posi­

tive dynamical semigroups on N-level systems. J. Math. Phys. 17 

(1976) 821-825. 

[Gui] A Guichardet: "Symmetric Hilbert spaces and related topics". 

Springer LNM 261 (1972). 

[HL 1] R L Hudson and J M Lindsay: A non-commutative martingale 

representation theorem for non-Fock quantum Brownian motion, J. 

Funct. Anal. 61 (1985) 202-221. 

[HL 2] R L Hudson and J M Lindsay: Uses of non-Fock quantum Brownian 

motion and a quantum martingale representation theorem, in [QPII] 

(1985) 276-305. 

[HL 3] R L Hudson and J M Lindsay: The classical limit of reduced quan­

tum stochastic evolutions, Ann. Inst. H. Poincare: Phys. The. 43 

no.2 (1985) 133-145. 

- 163 -



[HP 1] R L Hudson and K R Parthasarathy: Quantum Ito's fonnula and sto­
chastic evolutions, Commun. Math. Phys. 93 (1984) 301-323. 

[HP2] R L Hudson and K R Parthasarathy: Stochastic dilations of uni­
formly continuous completely positive semigroups, Acta Applic. 

Math. 2 (1984) 353-378. 

[HP 3] R L Hudson and K R Parthasarathy: Unification of fennion and 
boson stochastic calculus, Commun. Math. Phys. 104 (1986) 457-
470. 

[JoM] J-L Joumee and P-A Meyer: Une martingale d'operateurs homes, 
non representable en integral stochastique, in "Seminaire de 
Probabilites XX" (ed. J Azema and M Yor). Springer LNM 1204 
(1986) 313-316. 

[KFGV] A Kossakowski, A Frigerio, V Gorini and M Verri: Quantum 
detailed balance and KMS condition, Commun. Math. Phys. 51 

(1977) 97-110. 

[Kilm] B Kilmmerer: Markov dilations on W*-algebras, J. Funct. Anal. 63 
(1985) 139-177. 

[KiiM] B Kiimmerer and H Maassen: The essentially commutative dilations 
of dynamical semigroups on Mn, Commun. Math. Phys. 109 (1987) 
1-22. 

[Lin] G. Lindblad: On the generators of quantum dynamical semigroups. 
Commun. Math. Phys. 48 (1976) 119-130. 

[L 1] J M Lindsay: "A quantum stochastic calculus." Thesis, 1985: Not­

tingham. 

[L 2] J M Lindsay: Fermion martingales, Probab. Th. Rei. Fields 71 
(1986) 307-320. 

[L 3] J M Lindsay: Quantum and non-causal stochastic calculus, Probab. 

Th. J<el. Fields (to appear). 

- 164 -



[LM] J M Lindsay and H Maassen: The stochastic calculus of Bose noise, 

Preprint. 

[LM 1] J M Lindsay and H Maassen: An integral kernel approach to noise, 

in [QPIII] (1987) 192-208. 

[LM 2] J M Lindsay and H Maassen: Duality transform as *-algebraic iso­

morphism, in [QPV] (1990) 247-250. 

[LiP] JM Lindsay and K R Parthasarathy: Cohomology of power sets with 

applications in quantum probability, Commun. Math. Phys. 124 

(1989) 337-364. 

[LiW] J M Lindsay and I F Wilde: On non-Fock boson stochastic integrals, 

J. Funct. Anal. 65 (1986) 76-82. 

[M 1] H Maassen: The construction of continuous dilations by solving 

quantum stochastic different ial equations, in Semesterbericht Funk­

tionalanalysis, Sommer 1984, 183-204. 

[M 2] H Maassen: Quantum Markov processes on Fock space described by 

integral kernels, in [QPII] (1985) 361-374. 

[Me 1] P-A Meyer: Elements de probabilites quantiques 1-V, in "Seminaire 

de Probabilites XX" (ed. J Azema and M Yor). Springer LNM 1204 

(1986) 186-312. 

[Me 2] P-A Meyer: Elements de probabilites quantiques VI-VIII, in 

"Seminaire de Probabilites XXI" (ed. J Azema, P-A Meyer and M 

Yor). Springer LNM 1247 (1987) 34-80. 

[Me 3] P-A Meyer: "Quantum probability for probabilists'', IRMA, Stras­

bourg, 1992. 

[Nel] E Nelson: "Dynamical theories of Brownian motion". Princeton 

University Press 1967. 

- 165 -



[Par] K R Parthasarathy: "An Introduction to Quantum Stochastic Cal­
culus'', Birkhaiiser Verlag, Basel/Boston/Berlin, 1992. 

[PS 1] K R Parthasarathy and K B Sinha: Stochastic integral representation 
of bounded quantum martingales in Fock space, J. Funct. Anal. 61 
(1986) 126-151. 

[PS 2] K R Parthasarathy and K B Sinha: Boson-Fermion relation in several 
dimensions, Pramana J. Phys. 182 (1986) 105-116. 

[PS 3] K R Parthasarathy and K B Sinha: Representation of a class of quan­
tum martingales, in [QP III] (1988) 232-250. 

[QP I] "Quantum Probability and Applications to the Quantum Theory of 
Irreversible Processes". Proceedings, Villa Mondragone 1982 (ed. L 
Accardi, A Frigerio and V Gorini) Springer LNM 1055 (1984) 

[QPIIJ "Quantum Probability and Applications II". Proceedings, Heidelberg 
1984 (ed. L Accardi and W von Waldenfels) Springer LNM 1136 
(1985) 

[QPIII] "Quantum Probability and Applications III". Proceedings, Oberwol­
fach 1987 (ed. L Accardi and W von Waldenfels) Springer LNM 
1303 (1988) 

[QPIVJ "Quantum Probability and Applications IV". Proceedings, Rome 
1987 (ed. L Accardi and W von Waldenfels) Springer LNM 1396 
(1989) 

[QPVJ "Quantum Probability and Applications V". Proceedings, Heidelberg 
1988 (ed. L Accardi and W von Waldenfels) Springer LNM 1442 
(1990) 

[QPVI] "Quantum Probability & Related Topics VI". (ed. L Accardi et al.) 
World Scientific (1991) 

[QPVII] "Quantum Probability & Related Topics VII''. (ed. L Accardi et al.) 
World Scientific (1992) 

- 166 -



[RoM] P Robinson and H Maassen: Quantum stochastic calculus and the 

dynamical Stark effect, Rep. Math. Phys. (to appear). 

[Seg] I E Segal: A non-commutative extension of abstract integration, Ann. 

Math. 51 (1953) 401-456; Correction, Ann. Math. 58 (1953) 

595-596. 

[Ta 1] M Takesaki: "Tomita's Theory of Modular Hilbert Algebras and its 

Applications", Springer LNM 128 (1970). 

[Ta 2] M Takesaki: Conditional expectations in von Neumann algebras, J. 

Funct. Anal. 9 (1972) 306-321. 

[Ta 3] M Takesaki: "Theory of Operator Algebras, Vol. I" Springer 1979. 

[WeW] V Weisskopf and E Wigner: Berechnung der natiirlichen Linien­

breite auf Grund der Dirac'schen Lichttheorie, Zeit. fur Physik 63 

(1930) 54. 

[Yos] K Yosida: "Functional Analysis", Springer 1965. 

Mathematics Department 

University Park 

GB-Nottingham NG7 2RD 

- 167 -

Mathematisch Instituut 

Katholieke Universiteit 

NL-6525 ED Nijmegen 




