3 The selection of talent as a group process
A literature review on the social dynamics of
decision-making in grant panels

Talent selection within science is increasingly performed by panels, e.g. by reviewing grant or
fellowship applications. Many studies from fields of sociology of science and science policy
studies have been conducted to identify biases and predict outcomes of these processes, mainly
focussing on characteristics of applicants, applications and reviewers. However, as panel review-
ing entails social interaction, group dynamics influence these processes. By adding insights from
social psychology to current knowledge on panel reviews, we are better able to identify factors
affecting talent selection and funding decisions in grant panels. By opening up this so-called
black box we aim to contribute to a better understanding of the dynamics of panel decision-
making. This knowledge is also relevant for various stakeholders involved in grant allocation, for
applicants, reviewers and policymakers, as it can be used to improve transparency, fairness and
legitimation of talent selection processes.

3.1 Introduction
The academic market in both the United States and most European countries is a buyer’s market,
and has been so for quite some years, given the strong preferences of many new PhDs and postdocs
for a job at the university. Researchers who are lower in the academic hierarchy hold to an increasing
extent temporary positions without prospect of permanent employment (Stephan, 2012). This
shift towards more temporary contracts is mainly due to an increase of the proportion of research
within universities that is based on short term external funding, like project funding or individual
career grants. Consequently, opportunities for especially young academics to conduct research
and develop an academic career are more and more characterized by competition for funding.

A rationale behind project funding is that it strengthens competition between researchers, and
therefore promotes the quality of science: only the best succeed. The ability to acquire research
grants is turning into a prominent criterion in processes of academic recruitment and perfor-
mance evaluation (De Jonge Akademie, 2010; Van Arensbergen, Hessels & van der Meulen,
2013). Career grants are not only a way to directly distribute financial resources amongst young
researchers to conduct research, it also provides them indirectly with improved career opportuni-
ties as grants are considered significant indicators of excellence or talent (Van Arensbergen, Van
der Weijden & Van den Besselaar, forthcoming). This line of reasoning is based on the assump-

1 This chapter has been accepted for publication after minor revisions by Research Evaluation as Van Arensbergen, P.,
review on the social dynamics of decision-making in grant panels.

2 To give an impression of how strong the competition for individual career grants is: for the starting grants of the
European Research Council the success rate in 2013 was 9% (http://erc.europa.eu/statistics). For similar type of
career grants in the Netherlands - Veni and Vidi grants - success rates in 2012 were 16 and 14% respectively (NWO,
2012).
tion that grants are awarded to the best applicants. Although this obviously is what funding agencies claim, several recent studies suggest otherwise (Bornmann et al., 2010; Hornborstel et al., 2009; Melin & Danell, 2006; Van den Besselaar & Leydesdorff, 2007, 2009; Van den Besselaar, 2013). As these funding decisions have great impact on individuals’ careers, but also shape the direction of academic research (Hodgson, 1997), we consider it of great importance to create a better understanding of underlying decision-making processes. Of course, uncertainty in grant decisions is unavoidable, which prevents high predictive validity. But a better understanding of the social dynamics may help research councils to improve their selection practices and to reduce the systematic bias that may emerge from social dynamics in decision-making bodies.

The main method used to make these allocation decisions is a combination of individual peer review and panel review (peers reviewing as a group). Although peer review has been studied a lot, attempts to predict the outcomes of funding allocation processes show it still largely is a black box (Cole, Cole & Simon, 1981; Hartmann & Neihardt, 1990; Van den Besselaar & Leydesdorff, 2007).

Contributing to the unpredictability of these review outcomes is the nature of this type of decision-making: it often involves group decision-making. Often panels of peer experts are installed to assess the quality of applications and to decide on funding allocation. Reasons for installing panels mainly have to do with the size and width of the set of applications and with the weight of funding decisions. A panel of reviewers has more resources to draw on than one or two individual reviewers (information integration). And secondly, decisions made by a panel of experts (through consensus building) are considered more acceptable than individual decisions (Olbrecht & Bornmann, 2010).

3.2 Focus of this review

The present literature study focuses on decision-making as performed by panels, including individual peer review. Originally peer review is considered the legitimate method to evaluate scientific quality of scholarly contributions and therefore is deeply embedded in research culture. Peers are considered to be best suitable to assess scholarly quality and to distinguish inferior from meritorious research by means of critical appraisal (Hartmann & Neihardt, 1990; Langfeldt 2002). At the same time it is highly criticized as being unreliable, costly and biased (e.g. Marsh, Jayasinghe & Bond, 2008; Porter & Rossini, 1985). Most of the studies on peer review stem from sociology of science (SoS) and science policy studies (SPS). They mainly deal with how review outcomes are affected by performance and characteristics of individual applicants, and by characteristics of reviewers. These studies are predominantly based on analyses of written documentation (e.g. submitted proposals, review reports and reports of meetings), interviews (e.g. with reviewers and applicants), and bibliometric data.

However, many allocation (and appointment) decisions are made in panels, which is not covered very well by peer review literature. Panel review is not the same as peer review, as panelists are often not peers. Since panels have to assess heterogeneous objects (e.g. grant applications

3 See Bornmann (2011) for a recent literature review on peer review.
covering a range of fields, research programs, job candidates), they are composed in such a way
that they cover a broad range of expertise. Consequently, panelists are not all experts or peers to
every object they review. Panels may also include non-scientific members, e.g. societal stake-
holders, representatives from funding agencies or university board members. Furthermore, peer
review generally is just part of panel review procedures. Finally, panel review is embedded within
group interaction and can therefore be characterized as a social activity. For this reason we
combine SoS and SPS literature on peer review with literature on group decision-making from
social psychology (SP). Where the first mainly focus on how peer review affects review outcomes,
the latter focusses on actual review processes. SP research predominantly deals with central
mechanisms involved in decision-making processes and the context in which these are carried
out. To a large extent this literature is based on experimental research. Langfeldt (2001, 2002),
Lamont (2009), and Olbrecht and Bornmann (2010) also looked at social psychological research
with regard to panel review. Although they describe several important mechanisms that could
affect panel review (e.g. motivation losses and group polarization), based on exploratory observa-
tions of panels we know there are more factors related to panel interaction that influence
allocation decisions.

Figure 1 Basic model of grant allocation process

3.3 Methodology
The literature exploited in this study mainly comes from Web of Knowledge searches, added with
Google Scholar hits. Figure 1 depicts the straightforward model we used for our literature search
and to structure our review. We searched for literature using as main key words ‘peer review’,
Searches resulted in a broad scope of literature in terms of type of research (e.g. interview
studies, bibliometric analyses, historical case study analyses, (lab) experiments) and in terms of
potential factors influencing panel reviews. Results were refined based on six exploratory observations of panel meetings in 2010 and 2012, in which grant applications were reviewed and ranked in pre-selection and selection phases. We observed several issues related to group dynamics, which seemed to influence panel processes. For example, panelists varied in their motivation and contribution to panel deliberation, and similar types of information (e.g. anecdotal or shared) were not always considered evenly important. Factors identified in our observations and included in our SP literature review are social status and identity, group norms and cohesiveness, information distribution, motivation and interests, and procedural factors.

Next, we describe how characteristics of people or proposals under review affect review outcomes. For this we primarily draw upon SoS and SPS literature. Second, review processes as a social interaction between various panelists are explored in more detail. Characteristics of panels and dynamics inherent to group decision-making are further explained predominantly using SP literature. Finally, also based on SP literature we look at influences of external factors related to the organizational context in which the review process is carried out.

3.4 Panel review of grant applications

3.4.1 Explicit quality related criteria
Since funding organizations claim to fund only excellent research and the best researchers, one expects in accordance with Merton’s (1973 [1942]) norms of universalism the scholarly quality of grant proposals and of applicants to be central criteria for a proposal's acceptance or rejection. However, already thirty years ago the study of Cole et al. (1981) on funding decisions within the National Science Foundation (NSF) could not confirm this. They did not find a strong correlation between funding success and past performance of researchers. More recent studies using different types of data sources show inconsistent results. For example, in order to build statistical discriminatory models that can replicate peer review outcomes, Cañibano, Otamendi and Andújar (2009) used curricula vitae of applicants to a Spanish research program. They found research productivity to be the main determinant of grant success. Other studies comparing past performance of granted applicants with unsuccessful applicants generally found that the former have higher average performance than the latter (e.g., Bornmann & Daniel, 2006; Van Leeuwen & Moed, 2012). However, as competition has become harsh, successful groups are much smaller than rejected groups, which include also many low performing applicants. This has been subject to further investigation, and researchers have started to compare successful applicants with more restricted sets of good performing rejected ones - something that changed the outcomes: successful applicants do not outperform about equally large groups of best performing applicants (Melin & Danell, 2006; Van den Besselaar & Leydesdorff, 2007, 2009; Hornbostel et al., 2009). More generally, in terms of past performance, selection processes are characterized by large numbers of false positives (granted applicants performing less than rejected applicants) and false negatives (rejected applicants performing higher than granted applicants). Bornmann et al, (2008) found percentages between 26 and 48% in two grant programs within life sciences, and Bornmann et al (2010) similar percentages in grant programs in the life sciences and the social sciences.

More recently, the focus has shifted from past performance to post performance analyses: do the selected applicants indeed prove to be better in the years after having received grants? Here
similar patterns of results are emerging - granted applicants have in average a better post-performance than all rejected (Bornmann et al., 2008) but not if compared with the best rejected (Melin & Danell, 2006; Van den Besselaar, 2013).

3.4.2 Implicit quality related criteria

Laudel (2006) disproves the dominant ‘quality myth’ in her interview study with German and Australian scientists about their research trails and funding sources. She suggested several non-quality related factors influencing funding decisions. For example, continuity of research trails, countries’ general investment in research and scientists’ research field. A research field bias was also found in several other studies. Bornmann and Daniel (2005) demonstrate that success rates for doctoral fellowship applicants working in the field of chemistry are approximately half as high as for applicants working in other fields within life sciences. The analysis of applications for post-doctoral fellowships however, does not confirm this bias, suggesting we cannot speak of an unambiguous relation between research field of applicants and grant success. A relevant issue here is whether choice of field is a ‘non-quality related factor’, as there are more promising and less promising research topics and fields, and selection of topics may be seen as a quality of the researcher at stake.

An important variable that should be taken into account is the research field of reviewers. In case of a disciplinary match between applicant and reviewer, review scores are significantly higher than when there is no match (Porter & Rossini, 1985). This can be explained in terms of cognitive particularism, meaning that people make decisions based on cognitive similarity, their membership in a particular scientific school of thought. “It is not that panel members are not of goodwill but that they simply do not fight so hard for subjects that are not close to their hearts” (Travis & Collins, 1991, p. 336). Consequently, proposals on topics that are unrelated to the panel members’ interests may be disadvantaged here, and that may also hold for interdisciplinary research proposals. Since interdisciplinary research can be seen as a novel way of integrating expertise, real peers may be hard to identify. However, research on both peer review and bibliometric assessments found no significant bias with respect to interdisciplinarity (Rinia et al., 2001).

Status also plays an eminent role in evaluation processes. This relates to academic status of applicants and status of their department, university or institute. Applicants with a higher academic and/or departmental status have better chances on securing grants than applicants with relatively lower status (Bazely, 1998; Bornmann & Daniel, 2005; Cole et al., 1981; Viner, Powell & Green, 2004). This shows that not only characteristics of applicants themselves are influential, but also those of institutes they are affiliated with. Another influential type of affiliation involves panelist affiliation. Wennerås and Wold (1997) found that higher competence scores are given to applicants who are affiliated with a panelist than to applicants without such ties. This affiliation may explain partly why the academic status of the applicants’ institution plays a role: the panelists themselves may predominantly come from the same high reputation institutes. Important to emphasize is that the affiliated panelists themselves are not allowed to participate in scoring of the specific proposals. ‘Neutral’ reviewers seem to compensate for the absence of

4 One may use bibliometric methods to find those peers.
scores by ‘biased’ reviewers by raising their scores assigned to applicants associated with one of their peers. Furthermore, applicants who are themselves member of a peer review cadre have more chance to be allocated grants than applicants who lack this type of membership (Viner et al., 2004), and this is not explained by performance differences (Van den Besselaar, 2012).

A highly contested variable in peer review literature is gender. Related to funding decisions it was demonstrated that women receive relatively fewer grants than men (Bornmann, Mutz & Daniel, 2007). However, there consists general disagreement over the impact of gender on outcomes of peer review and grant allocation. In their well-known study Wennerås and Wold (1997) looked at applications submitted to the Swedish Medical Research Council. They observed that peer reviewers assigned lower scores to female than to male applicants, while their levels of scientific productivity were about the same. A similar study on grant applications in the Netherlands confirmed that gender matters (Brouns, 2000). How it matters was found to vary between disciplines. Whereas in some disciplines in case of equal average publication scores more men than women were evaluated as excellent, less productive women also obtained grants in others. This implies the use of double standards. Women have to perform to higher levels to be considered as qualified as men, according to both men and women (Foschi, 2004; Van den Brink, 2009). However, in accordance with several other studies (Bazely, 1998; Jayasinghe, Marsh & Bond, 2001; Marsh et al., 2008; Mutz, Bornmann & Daniel, 2012; Sandstrom & Hallsten, 2008) Ceci and Williams (2011) in their recent review on discrimination against women in science, found no evidence supporting current discrimination of women in grant allocation. However, an extension and reanalysis of previous data by Marsh et al. (2009) shows it is important to distinguish between types of applications. Whereas there were no gender differences with regard to grant applications, there were differences in favor of men with regard to fellowship applications.

Decreasing gender disparities can be the effect of changed (council) policies, as suggested by several studies (Sandstrom & Hallsten, 2008; Van den Besselaar & Leydesdorff, 2007, 2009). Among scientists themselves - male and female - it is even not seen as main concern in grant assessments (Van der Weijden & Calero Medina, 2014). However, as within science in general gender disparities persist (e.g. Lariviere et al., 2013; Ranga, Gupta & Etzkowitz, 2012) this issue still needs further study and attention.

As we already saw with regard to research field and affiliation, review outcomes do not solely depend on characteristics of candidates under review. Evaluation outcomes are determined by interaction between characteristics of reviewers and the reviewed. With regard to panel review there is another type of interaction significantly affecting the review outcomes: interaction between panelists. Therefore we will now take a closer look at panels and describe review processes as social interaction between panelists. We will describe various factors inherent to

5 Many studies included in their review did not use data on the performance of applicants - a general weakness of many studies on gender bias in grant decisions.

6 For example, the European Research Council recently launched the projects ERCAREER (Capturing gendered career paths of ERC grantees and applicants) and GendERC (Gendered dimensions in ERC grant selection), and the European Committee granted EGERA (Effective Gender Equality in Research and the Academia) and GARCIA (Gendering the Academy and Research: combating Career Instability and Asymmetries).
social interaction, that influence decision-making processes and are subsequently expected to affect review outcomes. In the following paragraphs we will identify factors which need to be studied in more detail, in order to determine how they affect outcomes of grant allocation processes.

3.5 **Peer review as social interaction**

As processes of grant allocation generally involve quality assessment by panels, they can be considered to be social, emotional and interactional processes (Lamont, 2009). Panel decisions are the outcome of and are influenced by group interaction. Differences in for example status and expertise of the panelists can play an important role in this type of interaction. Furthermore, group interaction can make group members motivate each other and increase the amount of information that is collected and discussed, compared to individual decision-making. On the other hand, group interaction can result in poorer decision-making, because shared responsibility creates a situation in which everyone withdraws and no one really endeavors, better known as social loafing (Levi, 2007). It can also encourage members to focus primarily on reaching consensus, so they are not really motivated to detect possible weaknesses in their decisions and to realistically appraise alternative decisions. This social psychological phenomenon is better known as groupthink (Janis, 1982). We will therefore look in more detail at panel review as a social interaction process. We will describe how specific characteristics related to the social nature of this process can affect panel decisions. Based on our observations we will successively focus on the composition of the panel, group norms and cohesiveness, information distribution, and finally we will look at the motivation and interests of panelists.

3.5.1 **Panel composition**

Several studies showed that outcomes of reviewing decisions to a great extent depend on who the reviewers are and how the panel is composed (e.g. Lamont, 2009; Van Arensbergen et al., forthcoming). According to Van den Brink (2009) in the Netherlands more women in appointment committees lead to higher numbers of women being appointed as full professor. The same was found in a Spanish study on promotion decisions: adding a female evaluator to the committee, increases the number of females promoted to full professor by 14% (Zinovyeva & Bagues, 2010). This indicates preferences for same-sex candidates. However, this type of bias was not found in promotion decisions for associate professors. Moreover, female associate professors were found to discriminate against female candidates from the same institution, possibly for strategic reasons.

In general scholars are asked for grant panels based on their disciplinary expertise and research experience. Often applicants may enclose to their proposal names of some reviewers they definitely do not want to be part of the panel. In some cases applicants also have the opportunity to nominate people for panel membership. Reviewers nominated by applicants are found to systematically give higher scores to all proposals than reviewers who are appointed by the board or otherwise (Jayasinghe et al., 2001; Marsh et al., 2008).

Another aspect of panel composition is the difference in expertise represented by panelists. The set of applications generally covers a broad range of topics, sometimes even from various disciplines. Consequently experts from different disciplines have to be included in the panel to enable a fair and comprehensive evaluation of all proposals. But also within a disciplinary panel, people can be considered experts on different topics or research areas. It is important to pay
attention to panel composition, since the composition sets the potential for interaction and conflict among its members. Overlap in competences is associated with better cooperation and with open conflict between scientific experts (Langfeldt, 2002). Research on decision-making also shows that groups with heterogeneous members with complementary skills take better group decisions than homogenous groups (Levi, 2007). However, the advantage of heterogeneous groups does not arise directly from the broad range of knowledge that is present in groups. Members have to be conscious of differences in areas of expertise. An experiment conducted by Bonner, Baumann and Dalal (2002) showed that when group members know who the experts are in reference to a specific task, they will adjust their group decision to the decision of the experts. This of course, does not necessarily mean that the group decision will be of better quality when decisions of experts are taken over. But it can be considered a stimulus for information sharing. A social psychological experiment using the hidden profile task demonstrates that when people know who knows what, distributed information is mentioned more often and the hidden profile is solved more often (Stasser, Stewart & Wittenbaum, 1995). Hence group decision-making can benefit from diverse panel compositions as long as this diversity is evident to everyone within the panel. We will come back to the issue of information sharing later.

Furthermore, within panels there may be differences in status. By this we mean the status as perceived and implicitly assigned to them by other panelists. Some people might be considered to be hotshots with very good reputation and hence have a high status. Others might be seen as newcomers or relatively insignificant in their field. These perceived status differences cause unequal power distribution amongst group members, which subsequently will disturb communication within groups. In general, high-status members talk more and receive more attention from other members. Low-status members generally talk less or even do not talk at all when their opinions deviate from those of high-status members. This can harm decision-making processes, since not all true opinions are expressed and high-status people will not be contradicted often. Communication plays an important role in processes of group decision-making. In order for a group to perform well, it is desirable that group members trust each other and that there is open communication between them. This can be facilitated by good social relations within the group (Levi, 2007).

Finally, panel composition affects the way individual panelists identify themselves. Individuals do not have one fixed identity, but depending on the social context they are in, different identities can be addressed. Interaction between characteristics of individuals and of the specific situation determines which particular identity is activated. This process of social identity formation comprises two important activities, namely social comparison and self-categorization in terms of membership in particular groups (Stets & Burke, 2000). By means of self-categorization in-groups and out-groups are created, which leads to accentuation of perceived similarities between the

7 This contains a group decision-making task in which the best solution cannot be detected by individual members based only on the information they received prior to discussion. There is a difference in the information individuals have at their disposal. Prior to the group discussion, partial information is given to all group members (shared information), whereas other pieces of information are known to some but unknown to other members (unshared information). Based on the available information individuals will detect different ‘best’ solutions. To find the only real best solution unshared information has to be pooled during the discussion.
self and other in-group members and of perceived differences between the self and out-group members (Hogg & Terry, 2000). Grant panels can be considered by its members as (one) in-group, but can also comprise several smaller groups. Panelists possibly identify themselves with some and not with other members. For example, when people share a disciplinary background, professional status or faculty membership, this can determine the in-group identity.

Van Kleef et al. (2007) studied social identification in terms of prototypicality. A group that people identify with generally comprises one or more members that can be considered to be the group prototype. “Prototypes embody all attributes that characterize groups and distinguish them from other groups, including beliefs, attitudes, feelings, and behaviours” (Hogg & Terry, 2000, p.123). In two experiments Van Kleef et al. (2007) compared differences in negotiation behavior between prototypical and peripheral group members. Prototypical group members are those who strongly match group prototypes and those who hardly match are called peripherals. They demonstrate that in case of valued group membership, peripherals within the group are more competitive and less cooperative than prototypical. Two studies conducted by Terry and Hogg (1996) show that social identification has an effect on the intentions and actual behavior of group members. “When social identity is salient, depersonalization occurs, such that a person’s feelings and actions are guided more by group prototypes and norms than by personal factors” (p. 790).

3.5.2 Group norms and cohesiveness

According to Lamont (2009) panel discussions are steered by informal rules, generally known by all panelists. These unwritten rules defining appropriate and inappropriate behavior in groups, are called group norms. Norms usually emerge unconsciously and gradually through interactions of group members, and are not necessarily made explicit or formal. Sometimes people are unable to articulate norms which they clearly use to guide their behavior. Norms can have a strong impact on behavior of group members, even stronger than externally imposed rules e.g. by supervisors or organizational practices. Examples of group norms are that panelists are expected to give each other full liberty to express opinions without reprisal, they should be oriented towards producing consensual decisions, and they should maintain collegiality (Janis, 1982; Lamont, 2009; Levi, 2007; Marques et al., 2001; Spector, 1996).

According to Levi (2007) norms enable groups to create a clear group identity, as they express central values of groups and prescribe what is accepted and deviant behavior within groups. This way group members can distinguish themselves from others and have a sense of who they are as a group. The other way around, norms are found to be dependent on the social identity perceived by individual panelists. As mentioned earlier, group norms have more effect on the behavior of individuals the stronger they identify themselves as being part of a social group and not merely as unique individuals (Terry & Hogg, 1996). Social identity is related to cohesiveness within groups. A highly cohesive group is characterized by strong interpersonal bonds holding a group together. Group cohesiveness refers to a sense of team spirit and the extent to which group members appreciate their group membership and share group goals. Conformity to norms is found to be more likely in groups that are highly cohesive (Levi, 2007; Spector, 1996). Groups characterized by high levels of cohesion are found to be better able to communicate and work together (Beal, Cohen, Burke et al., 2003). This could lead to better group outcomes. An analysis of case histories of seven corporations compared decision-making characteristics of top manage-
ment teams in successful and unsuccessful times (Peterson et al., 1998). Group cohesiveness was
one of the characteristics they studied. They found that successful decision-making groups
showed more cohesiveness than unsuccessful groups. On the other hand, members of cohesive
groups may want to preserve the group’s relationships and therefore avoid any kind of behavior
considered to be harmful. This could mean that people agree to group decisions, while they
actually don’t agree with it individually. According to Janis (1982) strong group cohesion is one of
the important antecedent conditions for groupthink; “a mode of thinking that people engage in
when they are deeply involved in a cohesive in-group, when the members’ strivings for unanimity
override their motivation to realistically appraise alternative courses of action” (p. 9). Groupthink
increases chances on flaws in the decision-making process, consequently leading to poorer
decisions. However, Esser (1998) who reviewed two areas of groupthink research - historical case
analyses and laboratory tests - poses that group cohesiveness is not a strong predictor of
groupthink. Also with regard to the effect of cohesiveness on group performance or decision-
making, no unambiguous relation has been found (Spector, 1996).

3.5.3 Distribution of information
The main advantage of panel compared to individual peer review is that there is more knowledge
available as all individuals’ knowledge is pooled together. During panel meetings reviewers share
their expertise and inform each other about their assessments. Generally, type of information can
be classified in three different ways: shared versus unshared, preference consistent versus
preference inconsistent, and instrumental versus non-instrumental.

In terms of shared and unshared information, general knowledge most reviewers have about
applications can be considered to be shared information, whereas additional knowledge some-
one has based on his specific expertise can be considered as unshared information. An experi-
ment using the hidden profile task showed that groups in which all information is shared make
better decisions than groups in which some group members have unique information (Schulz-
Hardt et al., 2006). As grant panelists vary on level of expertise with regard to applications they
have to evaluate, there will always be both unique and shared information. In general during
group deliberations more attention is paid to shared than to unshared information. Consequently
shared information has more impact on the final group decision (Baron, 2005; Gigone & Hastie,
1993; Tindale et al., 2001; Winquist & Larson, 1998). This tendency would inhibit the added value
of experts contributing their specific knowledge that other reviewers do not have to panel review
processes. However, based on the study mentioned earlier of Bonner et al. (2002) we argue that
for unique information to be influential on panel decisions, the person bringing in this informa-
tion should be recognized as being an expert.

Information distribution is also affected by initial opinions or preferences of panelists. In panels
characterized by divergent opinions more information is put into deliberation than panels in
which there is high agreement to start with. Furthermore, heterogeneity in opinions stimulates
group members to spend more time on (information steered) deliberation and results in better
group decision outcomes (Scholten et al., 2007; Schulz-Hardt et al., 2006). With regard to type of
information that is put into discussion, we discern information that is consistent and inconsistent
with one’s initial preferences. Mojzisch, Grouneva and Schulz-Hardt (2010) found in their experi-
ment on biased information evaluation, that people paid more attention to preference consistent
information than to information that conflicted with their preferences. This effect was even stronger when confirming information was introduced by the person himself than by other group members. Whether people adjust their initial preference based on new information that is contributed to the discussion is strongly influenced by social validation. Affirmation of preference inconsistent information by other group members raises the perceived quality of this information (Mojzisch et al, 2008). The bias of favoring preference consistent information can be explained as a tactic: people defend their initial preference and in order to convince others they mention more information that supports their preference (Wittenbaum, Hollingshead, & Botero, 2004). But it can also be the result of more unconscious processes: people consider preference consistent information as more accurate and relevant and therefore pay more attention to it (Mojzisch et al., 2010).

Finally, we discern instrumental and non-instrumental information. Information that is relevant for and ought to impact decisions is called instrumental, whereas irrelevant information that should not affect decisions is called non-instrumental. According to Bastardi and Shafir (2000) people often give non-instrumental information instrumental value without being aware of this. In order to base their final selection decisions on thorough evaluations, review panels collect as much information as possible, both instrumental and non-instrumental. Next, also newly obtained non-instrumental information is used to make decisions, as “the very act of pursuing information may lead people to endow it with instrumental value” (p.217). As the mere act of obtaining adds weight to new information, disregarding its relevance, information that is known from the start might receive less attention than new information (Bastardi & Shaffir, 1998). This implies that for example anecdotal information about applicants mentioned by panelists rather coincidently can influence review outcomes.

3.5.4 Motivation and interests of panelists
Panelists might differ in their motivation to engage in allocation processes. According to Merton’s norm of disinterestedness reviewers should not have any personal, political or economical interests interfering their assessment of applications. Applications should be assessed purely on their academic merits. Nonetheless, several types of interests are conceivable to be held by panelists, like personal, departmental, university, disciplinary, gender etcetera. For example, reviewers might find it important to fund more research in his specific field or that more women get opportunities to build academic careers. Reviewers do not always have to be completely aware of these interests, they can influence their preferences in a more subtle way. The stronger individual preferences deviate from preferences of other panelists, the smaller its contribution to final panel preferences (Tindale et al., 2001). How panelists interact with each other and the extent to which they exert themselves during review processes, is influenced by their motivation. Next we will discern various types of motivation: epistemic, social and competitive motivation.

The extent to which reviewers search for missing information and process newly obtained information depend on their willingness to exert oneself to come to accurate and well informed assessments of applications. This is called epistemic motivation. Interaction within groups characterized by high epistemic motivation is found to be more steered by information than by preferences and is less susceptible for reasoning errors. Furthermore, these groups are more open to deviating opinions and they develop more egalitarian and participatory interaction patterns (De Dreu, Nijstad, & Van Knippenberg, 2008). A way to increase the epistemic motiva-
tion is to make reviewers accountable for review processes (De Dreu et al., 2007). We will come back to the role of accountability when describing procedural factors.

The type of information reviewers search for and process is found to be influenced by their social motivation (De Dreu et al., 2006; De Dreu et al., 2008). There are two types of social motivation: proself and prosocial. People with proself motivation have a strong focus on reaching personal goals and interests. On the other hand, people with prosocial motivation focus more on fairness and common goals. Considering the general task of review panels (assessing the quality of applications) panelists are not expected to be proself motivated. Panels in which members do have personal interests and primarily strive for reaching personal goals, are less likely to reach consensus than panels focusing on common goals. This can be the result of the exchange of information being distorted, as people with proself motivation tend to neglect other people’s opinions. Social motivation consequently can lead to biases in information processing (De Dreu et al., 2008). Kramer, Pommerenke and Newton (1993) found that the extent to which one takes decisions based on self-interests or on the other party’s interests is also affected by the salience of a shared social identity. During a decision-making task that involved negotiation, people were found to show greater concern with outcomes obtained by the other party and to have preferences for more equal outcomes, when a social identity was salient. When a distinctive personal identity instead of a social identity was salient, negotiators focused primarily on their own outcomes guided by self-interests.

The process of grant allocation involves a certain extent of negotiation, when panelists have strong preferences and try to convince each other of these. Looking at panel review processes as a type of negotiation, panelists can be ascribed competitive motivation; assuming that an individual’s goal achievement is negatively related to goal achievements of others (Ten Velden, Beersma & De Dreu, 2011). Two types of competitive motivation can be discerned: appetitive and aversive. People with appetitive motivation focus on outdoing their counterparts, acquiring better results. Aversive competitors try to prevent their counterparts from doing better than them, they aim at avoiding worse results than their competitors. In a series of experiments Ten Velden et al. (2011) compared negotiation behavior of appetitive and aversive competitors. Their study showed that individuals with appetitive motivation were more confident that agreements would satisfy their goals, and they more easily reached agreements. Furthermore, identical pieces of information were found to have different effects on negotiation depending on motivational goals of negotiators. This shows that the same information can be used in different ways and that motivation influences the effect specific information has on negotiation processes.

We described earlier how social identity influences interaction and negotiation within groups: prototypical members are less competitive and more cooperative than peripherals (Van Kleef et al., 2007). This suggests that panelists may use different strategies or social tactics in processes of decision-making, e.g. consultation, pressure, personal appeals and coalition tactics. The use of social tactics to influence one another is affected by status differences. It is less plausible to imagine low-status members pressuring high-status members by making demands or threatening them, than vice versa. They will probably try to persuade high-status people by using factual information or flattery (Levi, 2007; Yukl, 1989).
On a more unconscious level, group negotiation is liable to the use of cognitive heuristics. On the one hand these heuristics accelerate efficient decision-making, on the other hand they can undermine the quality of its outcomes. Kahneman and Traversky (1973) identified three types of cognitive heuristics which enable people to understand their complex environment, availability, representativeness and anchoring. Availability relates to the inclination to rely predominantly on information that is most salient in one's memory. The representativeness heuristic refers to the tendency to judge something or someone based on its most evident features. Anchoring involves the strong reliance on randomly determined anchoring points. Often opening statements serve as point of reference for all statements being made thereafter. With regard to panel review this implies the comments of the first reviewer are very influential and set the tone for further discussion (Van Arensbergen et al., forthcoming). Knowledge of these cognitive heuristics can be implemented as social tactics when panelists actively use them to influence negotiation outcomes.

So far we have described how outcomes of panel reviews are based on characteristics of the object (features of the applicant and application) and how panel review processes are affected by social characteristics of this type of group interaction (panel composition, group norms and cohesiveness, information distribution and motivation). How these latter factors influence review outcomes, is a major task of research within the field of SoS/SPS. Finally we will focus on the context of review processes. How do review procedures and external contextual factors influence review outcomes?

3.6 The organizational context of panel review

The organization of panel reviews involves various aspects. For example, selecting and installing panelists, determining specific panel tasks, developing review procedures and guidelines, and implementing some sort of control mechanism, e.g. by the presence of independent supervisors or by having to write detailed review reports. Then there are contextual factors related to review processes like available budget and time pressure. With regard to panel composition we showed earlier how it may affect evaluation processes. For example, composition is found to determine the representation of expertise, social identities, status and interests among its members. These constellations can impact communication, behavior and information sharing within groups, subsequently affecting panel results.

The general task of review panels as discussed in this paper is to evaluate the quality of scientific work, of research proposals, or of scientists. The actual objects of review processes can therefore vary from hard copy research proposals and curriculum vitae to people in one's own proper person. Review procedures are designed accordingly and panels are generally clearly instructed how to execute their task. The presence of clear decision-making procedures decreases the risk of groupthink (Esser, 1998). However, procedural rules and guidelines generally do not fully steer review processes. Behavior of panelists can for example be more susceptible for (implicit and explicit) group norms (Spector, 1996). Langfeldt (2001), who observed panel meetings of the Norwegian Research Council, furthermore found that although review protocols prescribed quality criteria to be used, the weight assigned to these criteria differed within and between panels. The kind of criteria eventually used by panelists depended strongly on budget restrictions and rating scales they had to use. For example tight budgets and fine-rating scales tend to strengthen established research and allow less pluralism in funded research. At the same time she
found that reviewers who individually reviewed applications and send their reviews per mail, more consciously attempted to follow guidelines than panelists who discussed applications in panel meetings. This underlines the limited effect of guidelines in processes of social interaction.

With regard to funding decisions, often panels have to judge all applications, resulting in rank orders and subsequently in selections of the ‘best’. This final selection decision can be made by panel themselves or by organizing parties like research councils. Consulting (in writing) external experts for every specific application can also be part of the procedure. The specific task assigned to panels is found to affect decision-making processes (Hollingshead, 1996; Langfeldt, 2002; Stewart & Stasser, 1998). In an experiment Hollingshead (1996) studied the effect of group decision-making procedures on information sharing. She compared groups who were instructed to rank all alternatives to those who had to choose the best alternatives. Ranking groups were found to exchange more information and to consider all alternatives, eventually taking better decisions than selecting groups. However, the beliefs panelist have about the correctness of their decisions also play a role. When people believe there is only one correct answer (solve task) instead of no correct answer (judge task), they tend to produce more discussion (Stewart & Stasser, 1998). According to Langfeldt (2002) also explicitness of review procedures influences decision-making processes. She distinguishes between sounding and open confrontation as two ends of a continuum. Sounding involves tacit exploration of opinions, no explicit voting and an emphasis on reaching consensus, whereas explicit voting without any preceding exploration of opinions is called open confrontation. The open confrontation method may be more efficient in terms of time needed for decision-making, but at the same time may have rather negative consequences for group cohesiveness. With regard to explicit voting, it is good to realize that the timing and sequence of voting calls influences the preferences of panelists (Davis et al., 1988).

Another aspect of review procedures is the degree of accountability of panels regarding their decisions. Accountability increases epistemic motivation of individuals, their need to search for information, the extent to which they repeat unshared information, and the quality of decision-making (De Dreu et al., 2007; Scholten et al., 2007). Therefore it is an important factor influencing chances on groupthink (Esser, 1998). Groupthink is more likely to occur in groups where any degree of accountability is absent. Making individuals accountable is found to be more effective on reducing groupthink tendencies than making them accountable collectively as a panel (Kroon, ‘t Hart, & Van Kreveld, 1991).

A last important factor usually seen as complicating review processes is the available time. A thorough review of all applications generally requires a lot of time, which is often at the expense of valuable research time of panelists. The combination of the large scope of applications to be evaluated and the restricted time available, reduces the ambitions of panelists to execute very rigorous reviews (De Dreu et al., 2007; Langfeldt, 2002). When panels experience strong time pressure reviewers pay more attention to shared information and less to alternatives, consequently resulting in a closing of the mind. People tend to rely more on cognitive heuristics like the availability heuristic as mentioned earlier and are more focused on reaching (cognitive) closure (De Dreu et al., 2007). Therefore, high time pressure is considered an important antecedent for groupthink (Janis, 1982).
3.7 Conclusions and implications

This paper aims to contribute to a better understanding of panel review processes by combining literature from the fields of SoS and SPS with SP. Considering the complexity of review processes characterized by social interaction, innumerable factors can be identified influencing review processes and their outcomes. Since it is impossible to include them all, we chose to focus on a limited number of factors we consider to be most illustrating based on several observations of panel meetings.

Figure 2 depicts a more detailed model of grant allocation processes, including the main social psychological factors discussed. Some of these factors - mainly related to applicants and proposals - are found to influence review outcomes too. Other factors - mainly related to panels and social interaction - need further research to determine their effect on outcomes of review processes. These factors (within the rectangle) contribute to the uncertainty with which review outcomes can be predicted outright using criteria related to scholarly quality. As shown, there are many non (directly) quality related criteria involved in review processes.

Figure 2 More detailed model of grant allocation processes
Despite the need for further research, we may be able to formulate recommendations on how to stimulate open and thorough panel discussions resulting in fair and good quality outcomes - based on general SP studies reviewed above.

As groupthink leads to flaws in decision-making, situations facilitating groupthink should be avoided. Therefore panels should be heterogeneous with regard to their composition. At the same time an overlap in competences is recommended, as this is associated with better cooperation between panelists and allows for open discussion between experts. However, in order to benefit from diverse panel compositions, this diversity should be evident to panelists. They should be aware of the specific expertise of individual members, so they can value their information accordingly. Cohesiveness was found to be beneficial for team spirit and good communication. Therefore it is important to maintain a sense of collegiality and a good atmosphere during panel meetings. At the same time, there should be room for deviating opinions and open conflict between reviewers in order to stimulate information sharing. Next, time pressure should be reduced as much as possible, as this negatively impacts review processes. Of course this is easier said than done, however it is important to provide reviewers with sufficient time and resources to successfully do their job. Making panelists more accountable will reduce the risk of groupthink, as it has a positive effect on searching for and sharing of information and it prevents panels from wanting to reach decisions too easily and prematurely. Having to report on review processes, also involves being more explicit on which criteria were used. On the one hand this might decrease the impact of self-interests, and on the other hand it might increase the extent to which applications are reviewed in a similar way. For example by using detailed protocols including explicit standards for academic competence, decisions can be expected to be less influenced by double standards, non-instrumental information or personal interests. Another method is to assign an independent chair or moderator to each panel. This person should not be involved in review processes concerning the content, but should watch over review processes and should explicitly pay attention to types of information being discussed and weight given to it. So for example, point out the irrelevance of non-instrumental information, prevent that unique or preference inconsistent information is neglected, or too much weight is assigned to relatively unimportant information known by everyone. In order to avoid reaching agreement too quickly without considering relevant alternatives, (s)he could take on the role of devil's advocate. This will involve reviewers in alternative ways of thinking and forces them to explicitly justify their decisions. The person guarding review processes should also make sure all panelists get the chance to express their opinions, disregarding perceived differences in status or social identity - as these factors cannot be easy moderated in another way.

3.8 Future Research

Future research is necessary to test how factors related to processes of group decision-making as described above, affect outcomes of panel reviews. More specifically, the role of panel composition, motivation of panelists, type of information being distributed and exchanged, and accountability need further investigation. As does the role of implicit criteria deployed by panelists - compared to formal criteria as specified in official selection procedures. This future research on panel reviews should therefore also deploy observational research methods. Direct observations are hardly ever carried out. When the aim is to really understand review processes this can be considered a methodological problem, since results are now mainly based on indirect reconstruc-
Ethnographic observation is therefore desirable as it offers opportunities to investigate review and decision making processes where they happen. We plan to do observation studies in a just started project.8

3.9 References

8 Within the GendERC project.

