Elements of Quantum Probability

B. KUMMERER AND H. MAASSEN

This is an introductory article presenting some basic ideas of quantum probability. From
a discussion of simple experiments with polarized light and a card game we deduce the
necessity of extending the body of classical probability theory. For a class of systems,
containing classical systems with finitely many states, a probabilistic model is developed.
It can describe, in particular, the polarization experiments. Some examples of “quantum
coin tosses” are discussed, closely related to V.F.R. Jones’ approach to braid group
representations, to spin relaxation, and to nuclear magnetic resonance. In an appendix
we indicate the steps which lead to the full mathematical model of quantum probability.

INTRODUCTION

The aim of quantum probability is to provide a mathematical scheme in which
classical probability theory and quantum mechanics can be discussed together.

Although quantum mechanics by its very nature always has been a probabilis-
tic theory, it took a very long time for the typical concepts of classical probability
theory to get a foothold in this area. Concepts such as random variables, stochastic
processes, etc., were lacking. In the seventies, through developments in quantum
optics, quantum field theory, and quantum statistical mechanics, a variety of prob-
abilistic terminology began to invade quantum theory and the need for a common
conceptual foundation became apparent. The efforts in this direction constitute
the subject of quantum probability. The literature on this subject is a blend of
functional analysis, quantum mechanics, and probability theory, mixed in differ-
ent ratios and therefore hardly accessible to outsiders. The present paper is an
attempt to present a motivation for the field and some of its basic ideas in an
elementary way. For further reading we suggest the books of P. A. Meyer [Mey]
and K. R. Parthasarathy [Par| and references therein.

The first section discusses polarization experiments which show the need to
extend classical probability theory. In particular, we discuss Aspect’s experiment
[Asp] and the violation of Bell’s inequality [Bel]. The experiment is illustrated by
a card game. In the second section we show how the simple considerations about
polarizers are paradigmatic for quantum probability. We develop its elementary
building blocks in finite dimensions. To illustrate these ideas we consider some
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finite coin tosses in the third section. Suprisingly, they lead quite quickly to
recent developments. In an appendix we indicate the steps which lead to the full
mathematical model of quantum probability.

1. WHY CLASSICAL PROBABILITY DOES NOT SUFFICE

1.1 An experiment with polarisers

To start with, we consider a simple experiment. In a beam of light of a fixed
colour we put a pair of polarizing filters, each of which can be rotated around the
axis formed by the beam. As is well known, the light which comes through both
filters differs in intensity when the filters are rotated relative to each other. If
we fix the first filter and rotate the second, then we see that there is a direction
where the resulting intensity is maximal. Starting from this position, and rotating
the second filter through an angle «, the light intensity decreases with « until it
vanishes for a = %71’. Careful measurement shows that the intensity of the light
passing the first filter is half the beam intensity (we assume the original beam
being completely unpolarized) and that of the light passing the second filter is
proportional to cos? a. If we call the intensity of the beam before the filters Iy,
after the first I, and after the second I5, then I} = %IO and

I, = I, cos® a. (1)
IO I 1 0 I2
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FIG. 1

Now, it is known from the work of Max Planck (1900) and Albert Einstein
(1905) that for extremely low intensities monochromatic light comes in small pack-
ages, later called photons, all of the same energy, (which is independent of the total
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intensity). Nowadays experimentalists are indeed able to produce these low inten-
sities and see these single photons.

So the intensity must be proportional to the number of photons, and formula (1)
has to be given a statistical meaning: a photon passing through the first filter has
a probability cos? a to pass through the second. So formula (1) only holds on the
average, i.e., for large numbers of photons.

If we think along the lines of classical probability, then we may attach to a
polarization filter in the direction a a random variable P, , taking the values 0
and 1, where P,(w) = 0 if the photon w is absorbed by the filter and P, (w) =1
if it passes through. For two filters in the directions « and 3 we may write for
their correlation:

E(P,P3) = P[P, =1and Pg=1] = 3cos?(a— f3).

(Here a common notation from probability theory is used, namely, the expression
[P, = 1 and Pg = 1] stands for the set of those w for which P,(w) = 1 and
Py(w) = 1.

The following argument shows that this line of reasoning leads into difficulties.
Take three polarizing filters F;, F»2, and F3, having polarization directions aq,
as and ag respectively. We put them on the optical bench in pairs. Then they
give rise to random variables P;, P, and Pj3 satisfying

]E(P,P]) = % cosz(ai — aj).

PrOPOSITION. (Bell’s 3 variable inequality) For any three 0-1-valued random
variables Py, Py, and P3 on a probability space (2,P) the following inequality
holds:

P[P,=1,Ps=0] < PPL=1,P,=0+P[P,=1,P;=0].

Proof. Write

P[P, =1,P;=0=P[P,=1,P,=0,Ps=0]+P[P,=1,P, =1,P; = 0]
<P[P,=1,P, =0 +P[P,=1,P; =0].

In our example, however, we have

P[P, =1,P;=0] = P[P, =1]-P[P, =1, P; = 1]

= 1 Lcos?(a; — ;) = Esin®(o; — ).

Bell’s inequality thus reads
1 sin®(e1 — a3) < Lsin®(a1 — as) + 1sin®(az — a3),
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which is clearly violated for a;y = 0,9 = %7‘(’ and a3z = %7‘(’, where it becomes

<5+

ol =

| W
ol

We thus come to the conclusion that classical probability cannot describe this
simple experiment!

Remark

The above calculation could be summarized as follows: we are in fact looking
for a family of 0-1-valued random variables (P,)o<a<r with P[P, = 1] = %,
satisfying the requirement that

P[P, # Pg] = sin?(a — B).

Now, on the space of 0-1-valued random variables on a probability space the func-
tion (X,Y) —P[X # Y] equals the L!-distance of X and Y:

PIX £ Y] = /Q X(w) — Y(@)|P(dw) = |X — Y]|s.

On the other hand, the function (o, 3) + sin®(a — ) does not satisfy the triangle
inequality for a metric on the interval [0,7). Therefore no family (P,)o<a<n
exists which meets the above requirement.

1.2 An improved experiment

A possible criticism to the above argument runs as follows. Are the random
variables P, well-defined? Is it indeed true that for each photon w and each
filter F,it is determined whether w passes through F,or not? Could not filter
Foinfluence the photon’s reaction to filter Fg? In fact, it seems quite obvious
that it will!

In order to meet this criticism we should do a better experiment. We should

let the filters act on each of the photons without influence on each other. At first
sight this may seem impossible: one of the filters is bound to act first.
At this stage, however, a clever technique from quantum optics comes to our
aid. Namely, it is possible to build a device that produces pairs of photons, such
that the members of each pair move in opposite directions and show opposite
behaviour towards polarization filters: if one passes the filter, then the other is
surely absorbed. The device contains Calcium atoms, which are excited by a laser
to a state they can only leave under emission of such a pair.
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FIG. 2

With these photon pairs, the very same experiment can be performed, but this
time the polarizers are far apart, each one acting on its own photon. The same
correlations are measured, say first between P, on the left and Pg on the right,
then between P, on the left and P, on the right, and finally between Pj on the
left and P, on the right. The same outcomes are found, violating Bell’s three
variable inequality, thus strengthening the case against classical probability.

1.3 The decisive experiment

Advocates of classical probability could still find serious fault with the argu-
ment given so far. Indeed, do we really have to assume that we are measuring the
same random variable Pg on the right as later on the left? Is it really true that the
polarizations in these pairs are exactly opposite? There could exist a probabilistic
explanation of the phenomena without this assumption.

So the argument has to be tightened still further. This brings us to an ex-
periment which was actually performed by A. Aspect in Orsay (near Paris) in
1982 [Asp]. In this experiment a random choice out of two different polarization
measurements was performed on each side of the pair-producing device, say in
the direction «y or as on the left and in the direction (; or (32 on the right,
giving rise to four random variables P; := P(«y), P := P(«a3) and Q1 := Q(S1),
Q2 := Q(f2), two of which are measured and compared at each trial.

PROPOSITION. (Bell’s 4 variable inequality) For any quadruple Py, Py, Q1,
and Q2 of 0-1-valued random variables on (Q,P) the following inequality holds:

PP =@Q:1] < P[P = Q2] +P[P = Q1] +P[P = Q2] (2)

(In fact, by symmetry, neither of these four probablities is larger than the sum of
the other three.)

Proof. Let Aji, (j,k = 1,2), denote the random variable which is 1 if P; = Qy,
and 0 otherwise. Then clearly P[P; = Q] =IE(A,;). We shall show that pointwise

A1 < Ay + Aar + Aga, (3)
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from which (2) is obtained by taking expectations. Indeed, in order to violate (3)
one needs at least one point w € 2 for which Ay;(w) =1 and Aj3(w) = Ag1(w) =

Az (w) = 0, ie., Pi(w) = Qi(w) and Pi(w) # Q2(w) # Pa(w) # Q1(w). But
this is a contradiction, because there are an odd number of inequality signs #
here. O
Note that Bell’s 4-variable inequality is just the quadrangle inequality with respect
to the metric (X,Y) — || X —Y|;.

On the other hand, quantum mechanics predicts (cf. Section 2.4 below), and
the experiment of Aspect showed, that one has,

P[P(e) = Q(P) = 1] = 5 sin*(a — f).
Similarly, P[P(a) = Q(8) = 0] = 4 sin®(a — 3). Hence
P[P(a) = Q(B)] = sin®(a — f).
So Bell’s 4 variable inequality reads in this example:
sin®(ay — A1) < sin?(a1 — B2) + sin®(ap — B1) + sin® (a2 — Ba),

which is clearly violated for the choices a; =0, az = 5, 81 = 5, and 2 = G, in

which case it reads
1<1+1+1
—4 4 4

B

=

FIG. 3

So there does not exist, on any classical probability space, a quadruple Py, P, Q1,
and @2 of random variables with the correlations measured in this experiment.



Remarks.

1. When applying the above Proposition to the Orsay experiment, we should
keep in mind that a crucial assumption has to be made. It must be assumed that
for each w € € the values of Pj(w) and Q;(w) are well-defined. This means
that in each imagined realization of the world it is determined how each photon
will react to any possible filter, including those it does not actually meet. This
assumption is typical for classical probabilistic physical theories, but is abandoned
in standard quantum mechanics. (Unmeasured quantities like the ones mentioned
above are called ‘hidden variables’ in the literature on the foundations of quantum
mechanics.)

2. A second important assumption, also necessary for the applicability of
Bell’s inequality, is that the outcome on the right (described by Q(3) for some
() should not depend on the angle « of the polarizer on the left. We shall call
this assumption ‘locality’. In order to justify this assumption, Aspect has made
considerable efforts. In his (third) experiment, the choice of what to measure
on the left (a; or «as) and on the right (8 or () was made during the flight
of the photons, so that any influence which each of these choices might have on
the outcome on the opposite end would have to travel faster than light. By the
causality principle of Relativity Theory such influences are not possible.

3. Clearly, the above reasoning does not exclude the possibility of an expla-
nation of the experiment in classical probabilistic terms, if one is willing to give
up the causality principle. Serious attempts have been made in this direction (e.g.
[Boh]). The majority of physicists, however, seem to be convinced of the principle
of causality.



1.4 The Orsay experiment as a card game

It has now become very difficult for the advocates of classical probability
to criticize the experiment. To illustrate this point, we shall again present the
experiment, but this time in the form of a card game. Nature can win this game.
Can you?

Q

“ted  black

red

11010011000110100100011
00110010011100101100101
00110011011010010110101
0110101110010.......

A1

011101100111101001100001
110110001011101000111101
011010011001010111010010
110101010110011......

Ao

11010011010001101011110

110100011011001101001101

01110010100101110101101 | 110000100101110000101001
110001011..... 100001000100101100101001
bl aCk 000101110000100....

FIG. 4

Two players, P and (@, are sitting at a table. They are cooperating to achieve
a single goal. There is an arbiter present to deal cards and to count points. On
the table there is a board consisting of four squares as drawn in fig. 4. There are
dice and an ordinary deck of playing cards. The deck of cards is shuffled well. (In
fact we shall assume that the deck of cards is an infinite sequence of independent
cards, chosen fully at random.) First the players are given some time to make
agreements on the strategy they are going to follow. Then the game starts, and
from this moment on they are no longer allowed to communicate. The following
sequence of actions is then repeated many times.

1. The dealer hands a card to P and a card to (). Both look at their own card,
but not at the other one’s. (The only feature of the card that matters is its
colour: red or black.)

2.  The dice are thrown.



3. P and @ simultaneously say ‘yes’ or ‘no’, according to their own choice. They
are free to make their answer depend on any information they possess, such
as the color of their own card, the agreements made in advance, the numbers
shown by the dice, the weather, the time, et cetera.

4. The cards are laid out on the table. The pair of colours of the cards determines
one of the four squares on the board: these are labelled (red,red), (red,black),
(black,red) and (black,black).

5. In the square so determined a 0 or a 1 is written: a 0 when the answers of P
and () have been different, a 1 if they have been the same.

In the course of time, the squares on the board get filled with 0’s and 1’s. The
arbiter keeps track of the percentage of 1’s in proportion to the total number of
digits in each square; we shall call the limits of these percentages as the game
stretches out to infinity: a11, a12, a21, and ase. The aim of the game, for both P
and @, is to get a1y larger than the sum of the other three limiting percentages.
So P and Q must try to give identical anwers as often as they can when both
their cards are red, but different answers otherwise.

‘PROPOSITION’. (Bell’s inequality for the game) P and @ cannot win the game
by classical means, namely:

a11 < a1z + az1 + ase.

‘Proof’.

The best P and () can do, in order to win the game, is to agree upon some
(possibly random) strategy for each turn. For instance, they may agree that P will
always say ‘yes’ (i.e., Pied = Pplack =‘yes’) and that @ will answer the question
‘Is my card red?’ (i.e., Qreqa = ‘yes’ and Qplack =‘no’). This will lead to a 1 in
the (red,red) square or the (black,red) square or to a 0 in one of the other two.
So if we would repeat this strategy very often, then on the long run we would get
a11 = a12 = 1 and as; = ags = 0, disappointingly satisfying Bell’s inequality.

The above example is an extremal strategy. There are many (in fact, sixteen)
strategies like this. By the pointwise version (3) of Bell’s 4-variable inequality (re-
call Section 1.3), none of these sixteen extremal strategies wins the game. Inclusion
of the randomness coming from the dice yields a full polytope of random strate-
gies, having the above sixteen as its extremal points. But since the inequalities
are linear, this averaging procedure does not help. This ‘proves’ our ‘proposition’.
Disbelievers are challenged to find a winning strategy. O

Strangely enough, however, Nature does provide us with a strategy to win the
game, solely based on the cos? law (1) for photon absorption! Instead of the dice,
put a Calcium atom on the table. When the cards have been dealt, P and ) put
their polarizers in the direction indicated by their cards. If P has a red card, then
he chooses the direction a3 = 0 (cf. fig. 3). If his card is black, then he chooses
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az = 5. If @ has ared card, then he chooses 81 = 5. If his card is black, then he
chooses 2 = ¢ . No information on the colours of the cards needs to be exchanged.
When the Calcium atom has produced its photon pair, each player looks whether
his own photon passes his own polarizer, and then says ‘yes’ if it does, ‘no’ if it
does not. On the long run they will get a1 =1, a12 = @21 = a2 = L and thus

4
they win the game.

So the Calcium atom, the quantummechanical die, makes possible what could
not be done with the classical die.

2. TOWARDS A MATHEMATICAL MODEL

2.1 A mathematical description of polarization

Coerced by the foregoing considerations, we give up trying to make a classical
probabilistic model in order to explain polarization experiments. Instead, we take
these experiments as a paradigm for an alternative type of probability, to be
developed now.

We have discussed (linear) polarization of a light beam. This is completely
characterized by a direction in the plane perpendicular to the light beam. This
suggests that we should describe different directions of polarization by different
directions in a two-dimensional real plane R?, or equivalently by unit vectors
r €R?, ||z|| = 1, pointing in this direction. Moreover, it appears that we cannot
physically distinguish between two states which differ by a rotation of 7, so we
have to describe states of polarizations by one-dimensional subspaces of R?. (Two
unit vectors span the same one-dimensional subspace if they differ only by a sign.)
Given two directions of polarization with an angle a between them, spanned by
two unit vectors z,y € R?, the transition probability cos? o can be expressed as

cos?a = <x,y>2

where < x,y > denotes the scalar product between r and y. (Since cos?a =

cos?(m — «), this expression does not depend on the sign of z,y.)

Certainly, in order to come to a mathematical model we should distinguish
between the physical state of polarization of a photon on the one hand and the
filter on the other hand, i.e., the 0-1-valued random variable which asks, whether
a photon is polarized in a certain direction. This can be done by identifying
the filter, (i.e., the random variable), with the orthogonal projection P onto the

one-dimensional subspace. We can then write
cos’a = <z,y>> = <Px,x>

So we arrive at the following mathematical model:
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States of polarization of a photon = one-dimensional subspaces of R? descri-
bed by unit vectors = spanning the sub-
space.

Polarization filters, (i.e., random va- = orthogonal projections P from R? onto

riables measuring polarization) the corresponding one-dimensional sub-
space.
Probability that a photon, described = < Pz,z> = cos?a.

by x, passes through the filter de-
scribed by P

Since P is 0-1-valued, (i.e., a photon passes or is absorbed), this probability
is equal to the expectation of this random variable:

<Pz,z> = E(P) .

It is important to realize that, although we gave a kind of proof (in Section 1)
that polarization experiments cannot be described by classical random variables
on classical probability spaces, there is no logical argument that photons must
be described by vectors and filters by projections, as we just did. Indeed, since
the beginnings of quantum mechanics there have been many efforts to develop
alternative mathematical models. We are going to describe here the traditional
point of view of quantum mechanics [Neu|. This will lead to a mathematical model
which extends classical probability and up until now has described experiments
correctly.

2.2 The full quantum mechanical truth about polarization

In the foregoing description of polarization things were presented somewhat
simpler than they are: we considered only linear polarization, thus disregarding
circular polarization. The full description of polarization leads to the quantum
mechanics of a 2-level system:

State of polarization of a photon = one-dimensional subspace of €2, descri-
bed by a unit vector x spanning this
subspace (and determined only up to a
phase).

II>

Polarization filter or generalized 0-1- orthogonal projection P onto a complex
valued random variable one-dimensional subspace.

(Also for left- or right-circular polarization do there exist physical filters.)

11



Probability for a photon, described = < Px,z> .
by x, to pass through a filter, de-
scribed by P

The set of all states is conveniently parametrized by the unit vectors of the

form
o - T

(cosa,e?sina) € €2, 5 <a< 3 0<op<m.
This set can be identified with the points on the unit sphere S? € R* when using
the polar coordinates § = 2a and ¢. Restricting to states with ¢ = 0, (which
are parametrized by the points of the circle (cos2a,sin2q) in R?), we retain the
foregoing real description when we identify a with the angle of polarization.

A possible identification of the points of $2 CR* with physical states, giving

the correct values for all probabilities, is as in the picture below:

a=0: vertically polarized

2a

45 polarized

left circular polarized right circular polarized

-45 0polarized

a=90° horizontally polarized

FIG. 5

With these identifications we come to the following mathematical model of
polarization of light:

vertically polarized light = (1,0) € C?

12



horizontally polarized light = (0,1) € C?

light polarized at an angle « to the = (cosa,sina) € C?
vertical direction

light polarized at an angle o = £7 = (%,i—%) c C?
to the vertical direction
left- /right-circular polarized light = (%, iﬁ) c C?

and correspondingly

o

vertical polarizer =

=

horizontal polarizer =

angle- a-polarizer = .9
cos asin sin” «v
1 1
2, +2 )
+3

ﬂF%)
1
2

7 -polarizer =

N[

H_ N
VIS

left /right circular polarizer =

(i
(i
. (cosa cosasina)
(
(4

2.3 Finite dimensional models

The mathematical model that is used by quantum mechanics is the straight-
forward generalization of the above description. In order to keep things simple,
we restrict ourselves to the quantum mechanics of finite dimensions. It generalizes
the probability theory of systems with only finitely many states. As in classical
probability, the generalization to systems with a countable number of states or a
continuum of states is analytically more involved, though conceptually easy.

The model is as follows:

States correspond to one-dimensional subspaces of C", where the dimension
n is determined by the model. Again, a state is described conveniently by some
unit vector spanning this subspace.

0-1-valued random variables are described by orthogonal projections onto
a linear subspace of C". If the random variable only asks whether the system is
in a certain state, then the subspace is one-dimensional. But also projections onto
higher dimensional subspaces K make sense. They answer the question whether
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the system is in any of the states represented by a unit vector in K. Similar
questions for other subsets of states are not allowed!

The probability that a measurement of a random variable P on a system in
a state x gives the value 1 is still given by < Pz, z>.

Note that we do not assume that every unit vector x € C™ describes a state
of the system, nor that every orthogonal projection corresponds to a meaningful
random variable. Specializing these two sets is part of the description of the
mathematical model for a given system. In a truly quantum mechanical situation,
typically all possible vectors and projections are used. In contrast to this, a model
from classical probability is incorporated into this description as follows.

A finite probability space is usually described by a finite set Q = {wq, ..., wy}
and a probability distribution (p1, ..., pn), 0 <p; <1, > . p; =1, such that the
probability for w; is p;. A 0-1-valued random variable is a 0-1-valued function on
2, i.e., a characteristic function x4 of some subset A C 2. In order to describe
such a system in our model, we think of C"™ as the space of complex valued
functions on €2, and use the functions ¢; with 0;(w;) = 0, ; as basis. The states
of the system, i.e., the points w; of €2, are now represented by the unit vectors d;,
1 < j <n. The random variable x4 is identified with the orthogonal projection
P4 onto the linear span of the vectors {J; : w; € A}. In our basis x4 becomes
a diagonal matrix with a 1 at the ¢-th place of the diagonal if w; € A, and a
0 otherwise. It is obvious that w; € A if and only if x4(w;) = 1 if and only if
< Ppd;,0;,> = 1.

Conversely, any set of pairwise commuting projections on C" can be diagonal-
ized simultaneously and thus have an interpretation as a set of classical 0-1-valued
random variables. Therefore:

Classical probability corresponds to sets of pairwise commuting projections.

In the above sketch of classical probability an important point is obviously
missing: So far we have only considered pure states of the system, a probability
distribution (p1, ..., pn) did not enter the dicussion. How can we describe a
situation where a system is in a certain state x with probability ¢ and in another
state y with probability 1 —¢q (0<¢<1)7?

Obviously, the set of states should be a convex set, containing also the mixed
states. In the classical model of probability, the appropriate convex combinations
of point measures are taken in order to obtain a new probability measure.

In general, if P is any 0-1-valued (quantum) random variable and zq, ...,z
are arbitrary quantum states, each occuring with a probability p;, 1 < i < k,
>.;pi =1, pi > 0, then the probability that a measurement of P gives 1 is
clearly given by

Z p; <Px;, z;>
i
A more convenient description of mixed states is obtained as follows.
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For a unit vector € C™ denote by ®, the orthogonal projection onto
the one-dimensional subspace generated by z. In the physics literature, ®, is
frequently denoted by |xr ><x|. By tr denote the trace on the n X n-matrices,
summing up the diagonal entries of such a matrix. Then one obtains

<Pz,x> = tr(®, - P) .

Hence
Zpi <Px;,x;> = tr(sz&I)wi -P) = tr(®-P),

where ® :=>".p;®,, .

Being a convex combination of 1-dimensional projections, ® obviously is a
positive (i.e., self-adjoint positive semidefinite) n x n-matrix with ¢r(®) = 1.
Conversely, from diagonalizing positive matrices it is clear that any such positive
matrix ® with ¢r(®) = 1 can be written as a convex combination of 1-dimensional
projections. The set of these matrices forms a closed (even compact) convex set,
and its extreme points are precisely the 1-dimensional projections which in turn
correspond to pure states, represented also by unit vectors. Therefore it is precisely
this class of matrices which represents mixed states. These matrices are frequently
called density matrices.

Thus, a general mixed state is described by a density matrix ® and the
probability for an observation of P to yield the value 1 is given by tr(® - P).
Remarks

1. Although in this description also pure states are described by 1-dimensional
projections, they are not considered as random variables.

2. The decomposition of a density matrix ® into a convex combination of 1-
dimensional projections is by no means unique. The compact convex set of density
matrices is far from being a simplex. Indeed, on C? it can be affinely identified
with a full ball in R®, by taking in R® the convex hull of the sphere that was
described above.

3. In classical probability the convex set of mixed states is the simplex of
all probability distributions. In our picture, if we insist on decomposing a mixed
state given by ® = > . p; Ps5, into a convex combination of pure states (within the
convex hull of {Ps, : 1 <4 <n} which is a simplex), then it becomes unique.

4. Physically, a state ® is completely described by all of its values tr(® - P),
where P runs through the random variables of the model. Thus, if we consider
only subsets of projections, then two different density matrices can represent the
same physical state of the system. As a drastic example, consider the classical
system Q = {wy, ..., w,} with equidistribution, i.e., p;(w;) = %, leading to the
density matrix ® = ). %P(;i = % -1. On the other hand, with the unit vector
x = (\/iﬁ, ,ﬁ) € C", we obtain for any subset A C Q: tr(®-Py) = L -|A| =
< Pax,z>. Therefore, on the random variables {P4 : A C Q}, the rank-one-
density matrix P, represents the same state as the densitiy matrix % - 1. Note,
however, that P, is not in the convex hull of {Ps, : 1 <i <n}.
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2.4 The mathematical model of Aspect’s experiment

As an illustration, we shall now explain the photon correlation in the Orsay
experiment, given by the cos?-law. Note that here we cannot simply refer to the
basic cos?-law of quantum probability, since the filters are acting on two different
photons.

The polarization of a pair of photons is described by a unit vector in the

tensor product €% ® C? = C*, where we use the basis
1,0,0, 0) = €1 (024 €1 = €11,
0, 1,0, 0) = €1 (024 €2 = €19,
0,0, 1,0) — €2 Qe =: ea1,
0,0,0,1) = e2 ® ez =: €29,

(
(
(
(

with e; = (1,0) € €C? and ey = (0,1) € C?. For example, in the pure state e;s
the left-hand photon is vertically polarized and the right-hand photon horizontally.
As it turns out, the state of the pair of photons as produced by the Calcium atom

is described by the state
1
T = ﬁ(@lz — 621).

Now, the filters P(«) on the left and Q(3) on the right, introduced in §1.3, are
represented by two-dimensional projection operators on C*, which are the “2-right
amplification” and the “2-left-amplification” of the polarization matrix

( cos? a COs a sin o )
)

COS ¢ Sin sin? o

namely

cos? o COS ¢ Sin ¢ 1 0
Pla) = <cosasina sin? o ® 0 1

cos? a 0 cos avsin « 0
. 0 cos? o 0 cos asin v
| cosasina 0 sin? o 0
0 cos a: sin « 0 sin” o
(10 cos? 3 cosBsin 3
Q(ﬂ)_(o 1>®(cosﬁsinﬂ sin? 3
cos? 3 cosfBsinf 0 0
cos [3sin 3 sin? 8 0 0
0 0 cos? 3 cos 3sin 3
0 0 cos (3sin 3 sin’ 3

16



(More about such tensor products will be treated in Section 3.)
We note that P(a) and Q(f) are commuting projections for fixed a and
3. Tt follows that P(a)Q(B) is again a projection, as well as the products

Pla)(1-Q(B)), (1—P(a))Q(B), and (1 — P())(1 — Q(F)). So we obtain the

description of a classical probability space with four states, to be interpreted as

“left photon passes”, “right photon passes”),
g
(“left photon passes”, “right photon is absorbed”),
(“left photon is absorbed”, “right photon passes”),
(“left photon is absorbed”, “right photon is absorbed”).

The probabilities of these four events are found by the actions on x = %(612 -

e21) = %(0, 1,—1,0) of the four projections. In particular, the probability that
both photons pass is given by

<z,P(a)Q(B)x>

1
= 5(0, 1, —1, O)X
cos? a cos? B cos2 acos 3sin 3 cos a sin a cos? B cos asin « cos B sin 3 0
« cos? a cos Bsin 3 cos? asin? B cos a sin o cos B sin 3 cos a sin a sin? B 1
cos o sin a cos? B cos a sin aw cos B sin B sin? o cos? Jel sin? a cos Bsin 3 —1
cos a sin & cos 3 sin 3 cos a sin a sin? B sin? a cos B sin 3 sin? a sin? B 0
1
.9 .. 9 . .
=3 (cos? asin® B + sin® a cos? B — 2 cos asin a cos B sin f3)
1 . . 2
=5 (cos asin 3 — sin a cos f3)
L.
=5 sin?(a — 3)

3. EXAMPLES OF QUANTUM COIN TOSSING

3.1 Model of a quantum coin toss

A fair quantum coin toss should be a (finite or infinite) sequence of 0-1-valued
random variables (F;); such that for each random variable P; the probability of
measuring 1 or 0 is + each. Moreover, the random variables P; and P; should
be ‘independent’ for 7 # 7 in a sense yet to be made precise.

In our mathematical model the above implies that we ought to construct
sequences of orthogonal projections such that in a certain mixed state, i.e., for

a certain density matrix ®, we have tr(® - P;) = 3. Independence of P; and

Nl
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P; means that the probability for P; and P;, ¢ # j, both yielding 1 is equal
1.1 1

to 5 -5 = 7. However, as the random variables do not commute, one has to
decide about the order in which the random variables are measured. Therefore,
any of the requirements tr(® - P;P;) = §, tr(®- PjP;) = 1, tr(®- P,P;P) = 1,
tr(®- P;P;P;) = 1 are good candidates for the definition of independence. In fact,
one usually considers situations where all these requirements are equivalent. In
the examples to follow we shall consider the simplest of such situations, namely
where ® = 1. 1. Then tr(® - X) is the normalized trace of X and the above
conditions are obviously equivalent. This mixed state is often called the chaotic
state as it is the state of equidistribution. It extends the classical equidistribution
on a finite set 2, since it can be written as ), %Pxi where x; runs through any
orthonormal basis of C"; in particular, x; can be chosen as d; (cf. §2.3).

Since in our description we restricted to probability for systems on finite
dimensional spaces, i.e., projections on C" for some finite n, one cannot expect
to find an infinite number of such projections P;. Therefore we shall construct the
coin tosses for any finite number of experiments.

In order to be more explicit in the following examples some notation is helpful.

Denote by M, the set of all complex n x m-matrices, i.e., the set of all
(complex-) linear maps from C™ to C" in a certain fixed orthonormal basis
{ela Ty en}-

The tensor product €™ ® C™, which is isomorphic to C™™, will be identified
with the direct sum €, C™ where the i-th direct summand contains the vectors
{e;@z: z€ C"} C C™® C". With this identification a matrix A € M,,, can
be written as an element in M, (M,,), i.e., an m x m-block-matrix with entries in
M,,. In particular, given A € M,,, A = (w;), its “n-right-amplification” A® 1,
is the block matrix (cj - In)1<ij<m, where 1, is the identitiy matrix in M, .
Sililarly, given B € M,,, its “m-left-amplification” 1,, ® B is the m x m-block
diagonal matrix with all diagonal blocks equal to B.

Thus, if m = 2, the n-right-amplification of

a1 0 a12 0
Q11 Q2 ) 0 a1 0 12
A= is ,
a1 Qg a21 0 (22 0
0 a21 0 a29

if B € M,,, its 2-left-amplification is the block matrix

B 0
0 B
The following observation is helpful: Suppose, we have constructed some ran-

dom variables Py, ..., P, on C" which meet our requirements on a coin tossing.
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Then all requirements on a coin tossing remain satisfied if we take a left- (or right-)
amplification of all of them. In fact, they describe the same physical situation,
since all possible correlations are the same.

3.2 Classical coin tossing

Tossing a classical coin, say a penny, has in our model the following description
(we label the two sides of the penny by 0 and 1):
The random variable for tossing once is

(0 )
P = .
0 0
The random variables for tossing twice are
1 1
P, = and Py =
0 0

(In a different basis this example has already occurred in Section 2.3). Here and
in the following, we omit 0 entries in matrices, whenever this is convenient. The
random variables for tossing three times are
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Generally, from the random variables Py, ..., P, € M,, describing n tossings
we recursively construct Py, ..., P,q1 for n+1 tossings: B
P;. 1 is the 2-left-amplification of P;, 1 <7< n,ie., Ppy1=1®F,
1 0 10
P is the k-right-amplification of <0 0) , e, P = ( ) ® 1.

0 0
3.3 Polarizers lead to quantum coins

In order to construct non-classical coins, we go back to our polarization ex-
periments.

The chaotic state for the polarization of light is just unpolarized light. This is
physically defined as light such that any polarization filter decreases its intensity
to 50 %.

If such a beam of unpolarized light passes first through a vertically (linearly)
polarizing filter and then through a filter rotated against the first through an angle
of a = 7, then its intensity has decreased to % . Hence these two filters correspond
to two tossings of a quantum coin, in our mathematical model described by the

projections
1 0 3
P1 = and P2 = 1 .
0 0 >

Since these projections do not commute, they do not describe a classical situation,
cf. Section 1. Instead they satisfy the following relations:

N~ N

PiP,Py =3P, P,PiP,=1Ps.

Can we extend these two tossings to a coin tossing of arbitrary length? The answer
is ‘yes’: In fact, there are many ways, even if we require in addition

PP 1P, =3P, P PP =43Py
(“stationarity”).
3.4 From coin tossing to braids

One extension can be obtained as follows: Put

= 2)am (1 ).

then they describe two coin tosses. Four coin tosses are described by

N N
N N

1

PIZ 7P2:

O N O
N O N O
O Nk O NI
v~ O v O

0

20



11
1 2 2
11
0 2 2
P3 - 0 ) P4 - 1 1
0 2 2
1 11
2 2
In general, from n coin tossing variables Py, ..., P, € M, we obtain n + 2
coin tossing variables in Moy, denoted P, ... P,42 as follows:

P; o is the 2-left-amplification of P; for i > 2, i.e., Piio=1® p;.

P; and P, are the k-right-amplifications of P and @, i.e., P, = P ® 1,
P, =Q®1

P; is the (k — 2)-right-amplification of

1

1

ie, 3=[PP+ (I — P)® (1l — P)]® lj_».
This example, in a somewhat different notation, had been constructed with
the techniques from ([Kuel], 4.3.10) by one of the authors in the middle eighties,
and it took him a while to notice that the random variables P; satisfy the relations

PjPj1P; =1P;, Pj1PjPjy1 = 1Pj1 forallj
PP, = P,P for |l —m|>2.

These relations are nowadays famous from the work of V.F.R. Jones (cf.
[Jon]), where they first occurred in certain constructions with von Neumann alge-
bras. He recognized that one should consider the matrices

Ok :ZPk—(]l—Pk)
thus obtaining from the above the braid group relations
0j0j410j = 0j41050541 forall j, oo =00 for [l —m|>2.

This bridge between von Neumann algebras and certain braid group represen-
tations leads quickly to Jones’ polynomial invariants for knots. As is well known,
this was the start shot for tremendous developments in mathematics and mathe-
matical physics.

To understand the relation between these developments and quantum proba-
bility is a challenge for the near future. Some promising results exist already.
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3.5 From coin tossing to nuclear magnetic resonance

Another way of extending the two polarizations in 3.3 to a coin tossing of
arbitrary length is the following: As before, put

(390
“\o o) 7 4
and, in addition,

1 _1
PL::<0 0):112—P,Ql::<2 2):112—(9.

11
0 1 ~3 2
From the n projections Pi,..., P, in §3.2 describing the classical coin toss,
construct 2n + 2 projections @1, ..., Qanta € Mont1 = Mon(Ms):

Q1 € Man(My) is the 2™-left-amplification of P, ie., Q1 = lan ® P .

Q2 € Man(My) is the 2™-left-amplification of @, i.e., Q2 = Ian @ Q .

QQ2i+1 1s the 2™ x 2™ block diagonal matrix with entries from M, which has
in its diagonal a P where P, has a 1 and a P+ where P; has a 0.

Q242 is the 2™ x 2™ block diagonal matrix with entries from M, which has
in its diagonal a Q where P; has a 1 and a Q+ where P; has a 0.

Thus, when denoting the random variables of this coin toss again by P; instead
of @Q);, four tossings are described by the matrices

1 1 1
2 2 0
P 0 Q 11
Pl:( P>: 1 ’PF( Q)Z DR
0 2 2
0 32
1
P 0
P: =
3 ( PJ'> 0 )
1
11
2 2
Q 11 0
()|
4 — QJ_ — 1 1 )
2 2
0 _1 1
2 2

while six tossings are described by the block-diagonal matrices

P Q
P
Plz 7P2: Q )

P Q
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PJ_
PJ_ QJ_
P Q
PJ_ 1
P5 — 7P6 - Q
P Q
PJ_ QJ_

It is immediate, that these projections satisfy the relations
Plpjpl = %Pl 5 if |Z — j| is Odd,

PZ‘P]' = f)]f)Z y if |Z — ]| is even.

Also this example can be constructed by systematic methods. It was obtained
from the construction scheme developed in ([Kuel], 4.2.2). From this construction
a physical interpretation can be deduced:

The family of random variables describes the z-component of a spin- %—particle
in an exterior magnetic field. The field is stochastic in time and takes one of two
possible values at each time unit. For a detailed description of this system we refer
to [Kue2]. Models of spins in stochastic magnetic fields are part of the theory of
spin relaxation which is at the basis of nuclear magnetic resonance (NMR) (cf.
[Sli]).

This model can also be translated into a model for photons: It describes po-
larization of a photon propagating through a medium, where the medium changes
the polarization of the photon at random. An example would be a sugar solution
whose concentration varies at random in space.

4. APPENDIX: AN OUTLOOK ONTO THE FULL MATHEMATICAL MODEL

In this section we give a brief indication of the steps necessary in order to
extend our considerations so far to the full mathematical model of quantum prob-
ability, which is at the basis of most publications in this field. It should be noted,
however, that once one has accepted the picture we have developed up to now,
the next steps are only straightforward extensions. They are necessary in order to
describe more general systems (e.g., the extension to real-valued random variables
and infinite dimensions) or convenient in order to obtain a smooth mathematical
framework (e.g., using random variables in an operator algebra). A more detailed
description of these steps is planned as a continuation of the present paper.
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4.1 Real-valued random variables

So far we have considered only 0-1-valued random variables. The mathemati-
cal body of quantum mechanics suggests to describe real-valued random variables
as follows:

A real-valued random variable is a self-adjoint matrix A on C". In quantum
mechanics this is called an observable. Its eigenvalues are the possible outcomes of
a measurement of this random variable. A state is still described by a unit vector
or, more generally, a density matrix ®. If P; is the orthogonal projection onto the
eigenspace of an eigenvalue \; of A, then the probability for a measurement of A
to yield the eigenvalue \; is given by p; = tr(® - P;). Therefore, attributing this
probability to the eigenvalue J;, the state ® induces a probability distribution on
the set of all eigenvalues:

Dopi=y tr(®P) =tr(®- Y P) =tr(9) =1

It follows that the expectation of a measurement of A on a system in the
state @ is given by
E(A)=tr(®- A).

As in §2.3, the set of real-valued random variables on a (finite) classical prob-
ability space is identified with the set of all diagonal matrices with real entries.
Conversely, given any set of pairwise commuting self-adjoint matrices, they can be
diagonalized simultaneously and thus have an interpretation as a set of classical
random variables.

4.2 Towards infinite dimensions

Already from classical probability it is clear, that models on finite dimen-
sional spaces are not sufficient. For many asymptotic considerations one should
be able to handle infinitely many different (e.g., independent) random variables
simultaneously. Moreover, random variables allowing an infinite number of possi-
ble outcomes are necessary. Therefore, we must take models into consideration on
Hilbert spaces H of infinite dimension. Then, pure states are still described by
unit vectors. For mixed states, however, it is convenient to allow infinite convex
combinations of pure states. They are described by positive trace class operators
on H with trace 1 (normalization). These are the self-adjoint operators on #H
with discrete spectrum, whose eigenvalues are non-negative and sum up to 1 when
counted with multiplicity. Trace class operators are alternatively called ‘nuclear
operators’.

Real-valued random variables are now self-adjoint operators on 4. For their
theory the spectral theorem is crucial. The spectrum of a self-adjoint operator A
is real and we still identify the real numbers in the spectrum with the possible

24



outcomes of a measurement. With any unit vector and, more generally, with any
positive normalized trace class operator ®, the spectral theorem associates a prob-
ability measure pg on the spectrum of A. Namely, if I is any measurable subset
of the spectrum of A, and Pj is the spectral projection of A corresponding to this
subset (i.e., Pr = x7(A) by the functional calculus, where x; is the characteristic
function of I'), then the probability for a measurement of A to yield a value in T
is pe(I) = tr(® - Pr). By the properties of trace class operators, the right hand
side of this equation gives a well defined finite value. Again, the expectation of the
outcome of a measurement of A on a system in the state ® has the expectation
tr(® - A), but now this may be infinite or even ill-defined. Clearly, this model
generalizes the finite dimensional model.

Classical probability is incorporated into this model as follows: Given a clas-
sical probability space (2,3, 1) and a real-valued random variable X on it, we
form the Hilbert space H := L2(2,3,p). The probability measure p can be
translated into the rank-one trace class operator ®q (orthogonal projection onto
the subspace spanned by the vector 1), where 1 is the constant function on Q
with value 1. The random variable X is turned into the self-adjoint (possibly un-
bounded) operator multiplying each function in L?(Q, ¥, u) = H pointwise by X.
All probabilistic considerations can be easily transferred into this mathematically
equivalent model.

Conversely, given a positive normalized trace class operator ®, on any Hilbert
space H , and a set of pairwise commuting self-adjoint operators, there always ex-
ists, although this is a non-trivial matter to prove, a probability space (£2,3, u)
and a unitary map between H and L2(Q, %, 1) carrying the self-adjoint operators
into multiplication by real functions in such a way that all probabilities are pre-
served. Therefore, it remains true that classical probability corresponds to sets of
pairwise commuting random variables.

4.3 Towards an algebraic description

Although many considerations in quantum probability can be done and are
done within the model described so far, there are reasons to come to a more
algebraic description of quantum probability. We mention two of them:

1. Tt is often difficult to find naively a realization of an infinite system on
some Hilbert space. As a typical example, the reader may try to extend the coin
tossing model in Section 3.4 to an infinite number of tosses.

2. So far we only mentioned that specification of the set of random variables is
part of the description of a mathematical model (Section 2.3). However we did not
comment on the question, on what kinds of sets of random variables mathematical
models should be based. Without any further specification the mathematics would
become extremely cumbersome, and indeed to a great extent it is just mathemat-
ical convenience, which leads to certain additional requirements on the set of all
random variables of a model.
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To start with, it is generally assumed that the set of all random variables of a
model forms a linear space. Second, almost everyone assumes that it is — or can
be realized as — the set of all self-adjoint operators lying in (or being attached
to) some *-algebra of operators on a Hilbert space. (Clearly, domain questions
have to be taken into consideration). It is often convenient to assume, that this
*_algebra of operators consists of bounded operators and is closed in the operator
norm, i.e., is a concrete C*-algebra; or that it is even closed in the strong operator
topology, so that it becomes a von Neumann algebra. This makes available the
rich theory of these algebras. Unbounded random variables can still be realized as
unbounded functions of bounded self-adjoint operators.

Von Neumann algebras are particularly useful, when one wants to make use
of the spectral theorem for selfadjoint operators, since all spectral projections of
such an operator lie in the same von Neumann algebra. From the foregoing it
should be clear, that models from classical probability correspond to commutative
algebras and indeed, every commutative von Neumann algebra is isomorphic to
some L>°(Q,3, u). Traditional quantum mechanics uses the algebra B(H) of
all bounded operators on some Hilbert space H. Finite dimensional C*-algebras
(which are also von Neumann algebras), are automatically isomorphic to a direct
sum of copies of full matrix algebras. The infinite version of the example in Section
3.4, however, leads to a different type of von Neumann algebras, as it lives naturally
in the hyperfinite factor of type II;. The example in Section 3.5 can be realized
in the algebra of all functions on a classical probability space with values in the
2 x 2-matrices.

In this algebraic picture, a (mixed) state on a C*-algebra A can be abstractly
characterized as a linear functional ¢ : A — C which is positive, i.e., takes positive
values on the positive selfadjoint operators in A and is normalized, i.e., has norm
1. If A is a von Neumann algebra, it is convenient to assume in addition that ¢
is even continuous in the ultrastrong operator topology. It is then normal, i.e., it
is completely additive on sets of pairwise orthogonal projections. Such a state on
a von Neumann algebra A C B(H) can always be realized as ¢(z) = tr(®-x) for
x € A and ® some positive normalized trace class operator on H. More generally,
if ¢ is a state on a C*-algebra A, there is a representation of A as a concrete C*-
algebra of operators on a — possibly different — Hilbert space, such that the state
¢ can be realized by a unit vector in this Hilbert space (GNS-representation).

Finally, the notion of a random variable is to be generalized. Although in
many situations it is enough to consider real-valued random variables, and a large
part of the literature concentrates on this case, there is also a need for considering
random variables with a different state space. In classical probability, a Brown-
ian particle in three dimensions would be a typical example. It is described by
three random variables, one for each coordinate. In the mathematics of classical
probability, there is not much difference between random variables with different
state spaces. In general, however, a set of self-adjoint operators describing differ-
ent quantities of a physical system under observation, do not need to commute
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with each other. The polarization of a photon in different directions, which we
discussed extensively in this paper, or the spin in different directions of a particle,
are typical examples of such a situation. In these situations one is led to consider
not only one self-adjoint operator at a time, but instead a set of possibly non-
commuting self-adjoint operators, constituting the description of a single random
variable. The same considerations as above led people to assume, that this set
comes from a *-algebra. If one takes this point of view, then even one self-adjoint
operator is already replaced by the commutative algebra of functions of this oper-
ator, closed in a suitable topology. This leads to the notion of a random variable
as a subalgebra of operators contained in the larger algebra which is generated by
all random variables of the model. Finally, in order to keep track of the variation
in time of a single operator with a particular interpretation — say the horizontal
polarization of a photon — the following formulation is more convenient:

The quantities of an observed system form a *-algebra Ay and a random
variable identifies Ay with a subalgebra of the algebra A generated by all real-
valued random variables of the model. Thus a random variable is an injective *-
homomorphism from Aq into A. A stochastic process is a family of such random
variables [AFL]. This is the starting point of many papers in quantum probability.

For more information we refer to the two books [Mey| and [Par|, already
mentioned and also to our forthcoming paper, developing these ideas further and
illustrating them by more examples.
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