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We give an explicit proof of the pair partitions formula for the moments of the
q-harmonic oscillator, and of the claim made by Parisi that theq-deformed lattice
Laplacian on thed-dimensional lattice tends to theq-harmonic oscillator in distri-
bution for d→`. © 1998 American Institute of Physics.
@S0022-2488~98!00412-5#

I. INTRODUCTION

In 1994, Parisi published his paper ‘‘D-dimensional arrays of Josephson junctions, spin
glasses andq-deformed harmonic oscillators’’~Ref. 1!. It describes a lattice model~to be called
the ‘‘Parisi model’’ here! that shows a connection with theq-harmonic oscillator. We prove some
of the claims and conjectures made by Parisi after setting the stage for them in some detail.

We shall work within the framework of noncommutative probability theory or ‘‘quantum
probability’’ ~see, for example, Refs. 2–6!, to be described briefly in Sec. II. A fine example of
noncommutative probability is free probability theory, as discovered by Voiculescu.

Here we are concerned with an interpolation between the classical Gaussian distribution and
the ‘‘free Gaussian’’ distribution: Wigner’s semicircle law. This is done byq deforming the
quantum mechanical harmonic oscillator. In Sec. III we show how theq-deformed Fock space, as
introduced by Boz˙ejko and Speicher in Refs. 7 and 8, can be constructed in an algebraic way,
starting from theq-deformed commutation relations. It is shown that the moments of the ground
state distribution of theq-harmonic oscillator can be calculated as a sum over pair partitions
interpolating nicely between the well-known moment formulas of the Gauss and Wigner distribu-
tions.

In Sec. IV we prepare for the Parisi model by introducing thed-dimensional lattice,T(N,d),
and its boundary and coboundary operators. The Parisi model itself is introduced in Sec. V.
Section VI shows how we can use pair partitions to describe the walks onT(N,d) that turn out to
be relevant for the Parisi model. Using the possibility of describing walks in terms of partitions,
we show in Sec. VII that the position operator of aq-harmonic oscillator has the same distribution
as the normalizedq-deformed lattice Laplacian in the Parisi model if we letd→`.

In Sec. VIII we show that, in fact, sequences of independentq-Gaussians are present in the
Parisi model, although on the grounds of Ref. 9 we hesitate to call them ‘‘q-independent.’’

II. NONCOMMUTATIVE PROBABILITY AND INDEPENDENCE

In this section we shall give a brief outline of noncommutative probability theory and the free
probabilistic example.

We shall first describe the transition from classical to noncommutative probability theory.3,4

This transition follows much the same recipe as the search for ‘‘noncommutative versions’’ of
mathematical objects as initiated by Connes.10 A classical probability space will be, following the
axiomatic approach outlined by Kolmogorov, a triple~V,S,P!, whereV is a state space,S is a
s-algebra of events, andP is a probability measure onS. The transition of classical probability to
noncommutative probability theory is preceded by a replacement of functions by multiplication
operators: on~V,S,P! we can construct a commutative algebra of functions together with a state
that contains the same information as~V,S,P! itself. Problems defined on the space can then be
translated to algebraic problems and worked out in the commutative algebra of functions. Then we

a!Electronic mail: H.van.Leeuwen@abp.nl
b!Electronic mail: maassen@sci.kun.nl

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 39, NUMBER 12 DECEMBER 1998

64240022-2488/98/39(12)/6424/17/$15.00 © 1998 American Institute of Physics



drop the commutativity requirement on the algebra. The noncommutative algebra can no longer be
identified with a space, but it still represents some kind of probability theory.

Definition 1: A general probability space is a unital von Neumann algebra, A, together with
a normal statew.

The events in a general probability space are the projectionsp5p* 5p2 in A, and the prob-
ability that p occurs isw(p). A self-adjoint elementXPA will be called a random variable and
w(X) its expectation. The distribution,mX , of a random variableXPA will be a linear functional
on the ring of complex polynomials in one variable,mX :C@x#→C, that satisfiesmX( f )
5w„f (X)… for every f PC@x#. Such a linear functional uniquely determines a probability measure
with compact support on the real line, which is also denoted bymX .

As an illustration we shall reconstruct the classical probability space from a commutative
general probability space~A,w!. First, if ~V,S,P! is a classical probability space, then the associ-
ated general probability space~A,w! is AªL`(V,S,P) and w( f )ª* f dP, the expectation off
with respect toP. Now, we canreconstruct the events inS by considering all projectionsp
PA, which are of the formp51S for someSPS. Up to equivalence we can then reconstruct the
concrete realization ofV we had.

In this paper we choose to extend the classical definition of independence in the following
way.

Definition 2 (independence):Random variablesX1 ,...,Xm in a general probability space
~A,w! are called independent if for alln<m and polynomialsf 1 ,...,f n , we have

w„f 1~Xk~1!!¯ f n~Xk~n!!…5w„f 1~Xk~1!!…¯w„f n~Xk~n!!…, ~1!

provided kP$1,...,m%n has all components k( i ), 1< i<n, different from each other.
A completely noncommutative notion paralleling the idea of independence is the concept of

free independence of random variables.
Definition 3 (free independence):Random variablesX1 ,...,Xm in a general probability space

~A,w! are called freely independent if for allnPN and polynomialsf 1 ,...,f n we have

; i<n:w„f i~Xk~ i !!…50⇒w„f 1~Xk~1!!¯ f n~Xk~n!!…50,

provided kP$1,...,m%n satisfies k(1)Þk(2)Þk(3)Þ¯Þk(n).
Proposition 4:Free independence implies independence.
Proof: SupposeX1 ,...,Xm are freely independent. Note that~1! is valid for n51. Suppose that

~1! is valid for all polynomials f 1 ,...,f n21 and different indicesk(1),...,k(n21). Now let
f 1 ,...,f n be given polynomials andk(1),...,k(n) be different indices. Bygj we denote the
difference betweenf j and the constantw„f j (Xk( j ))… so thatw„gj (Xk( j ))…50. Then free indepen-
dence implies

w„g1~Xk~1!!¯gn~Xk~n!!…50.

Writing out this product, we find

w„f 1~Xk~1!!¯ f n~Xk~n!!…52 (
g'$1,...,n%

~21!n2#gS )
i ¹g

w„f i~Xk~ i !!…DwS )
j Pg

f j~Xk~ j !! D .

Sinceg contains less thann elements, the expectation ofP j Pg f j (Xk( j )) factorizes by the induction
hypothesis. So all the terms in the sum are equal apart from their sign. Since the sum of these signs
is 1, the result follows. h

III. q -HARMONIC OSCILLATORS AND THE q -DEFORMED FOCK SPACE

In this section we show how theq-deformed Fock space, as introduced in the papers of
Bożejko and Speicher,7,8 is found naturally, starting from the commutation relation. We show how
the moments of theq-harmonic oscillator can be expressed in terms of pair partitions.

We start from the operators1 anda1 ,a2 ,...,am , generating a*-algebraAq and satisfying

aiaj* 2qaj* ai5d i , j1, qP~21,1!. ~2!
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OnAq we introduce a linear functionalwq that we require to satisfy

wq~1!51, wq~ai* ak
e !50, wq~ak

eai !50, ~3!

for i , j P$1,...,m%, kP$1,...,m%n, nPN, andeP$1,* %n, i.e., a sequence with lengthn of 1’s and
* ’s. So, byak

e we mean the ordered product:

ak
e5)

i 51

n

l i , where l i5H ak~ i ! ,
ak~ i !* ,

if e~ i !51,
if e~ i !5* .

Next, we show the connection between pair partitions andwq(ak
e). Let S5$1,...,n%, for some

nPN. A sequence,

P5$~a1 ,b1!,~a2 ,b2!,...,~an/2 ,bn/2!%, for n even,

such thatø i 51
n/2 $a i ,b i%5S, will be called apair partition of S. A pair partition will be ordered in

the sense thata i,b i for all i P$1,...,n/2% and a1,¯,an/2 . The collection of all such pair
partitions of the setS will be denoted byP2(S) or P2(n). For n odd this is just the empty set. A
crossing inP is a subset ofP with two elements,$(a i ,b i),(a j ,b j )%, which satisfies eithera i

,a j,b i,b j or a j,a i,b j,b i . The set of all crossings of a partitionP can be conveniently
labeled by

c~P!ª$~ i , j !u1< i , j <n/2,$~a i ,b i !,~a j ,b j !% is a crossing%.

Lemma 5:For all nPN, n>1, eP$1,* %n, andhP$1,...,m%n, we have

wq~ah
e !5 (

PPP2~n!
q#c~P! )

~ i , j !PP
wq~ah~ i !

e~ i !ah~ j !
e~ j ! !. ~4!

Note that in this notation~i,j! can stand for an element ofP or for a pair of elements. The context
will make clear, which is meant.

A pair partitionPPP2(n) is compatible withe, denotedP;e, if pairs (a i ,b i)PP are such
that e(a i)51 ande(b i)5* for all i P$1,...,n/2%. Compatibility ofP with h means that for each
pair (a i ,b i)PP we haveh(a i)5h(b i). Using this notion of compatibility we can rewrite rela-
tion ~4! as follows:

wq~ah
e !5 (

PPP2~n!
P;e,h

q#c~P!. ~5!

We shall now prove Lemma 5.
Proof: Suppose thateP$1,* %n can be written as~s,1,* ,%!, wheresP$1,* %k and%P$1,* % l ,

with k1 l 125n. Suppose, furthermore, thatiP$1,...,m%k and jP$1,...,m% l with „h(1),...,h(n)…
5„i(1),...,i(k),h(k11),h(k12),j (1),...,j ( l )…. Then the following holds:

wq~ah
e !5wq~ai

sah~k11!ah~k12!
* aj

%!5dh~k11!,h~k12!wq~ai
saj

%!1qwq~aj
sah~k12!

* ah~k11!aj
%!.

This relation, together with~3!, determines the left-hand side of~4!, and thereforewq , completely.
We shall refer to the right-hand side of~5! asF(ah

e) putting F(1)51, and shall show thatF
satisfies the same recursion relation. LetPPP2(n). Then, for every pair (i , j )PP we have
wq(ah( i )

e( i )ah( j )
e( j ))Þ0 if and only if e( i )51 ande( j )5* andh( i )5h( j ). There are now two possi-

bilities: (k11,k12)PP or (k11,k12)¹P. In the first caseP8ªP\$(k11,k12)% is a parti-
tion of $1,...,k,k13,...,n% with #c(P)5#c(P8). In the second case there must bei ,k11 and
j .k12 such that (i ,k12) and (k11,j ) are crossing pairs inP. It is then possible to remove the
crossing and construct

P95~P\$~ i ,k12!,~k11,j !%!ø$~ i ,k11!,~k12,j !%,
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for which #c(P9)5#c(P)21. Now we haveP9;(s,* ,1,%),h9, where h95„i,h(k12),h(k
11),j …. Note that conversely every pair partition ofn, compatible withe andh but not containing
(k11,k12), can be found inP2(n) as an element with a crossing between the two pairs that
containk11 andk12. We find

F~ah
e !ª (

PPP2~n!
P;e,h

q#c~P!

5 (
PPP2~n!

P;~s,1,* ,% !h
~k11,k12!PP

q#c~P!1 (
PPP2~n!

P;~s,1,* ,% !h
~k11,k12!¹P

q#c~P!

5dh~k11!,h~k12! (
P8PP2~n22!

P8;~s,% !,~ i,j !

q#c~P8!1 (
P9PP2~n!

P9;~s,* ,1,% !,h9

q#c~P9!11

5dh~k11!,h~k12!F~ai
saj

%!1qF~ai
sah~k12!

* ah~k11!aj
%!.

Relation~5! now follows because the right-hand sideF(ah
e) satisfies the same recursion relation as

w(ah
e) with the boundary conditions~3!. h

Since the position operator of a harmonic oscillator is usually represented by an operator of
the form

Xiªai1ai* ,

we defineXi to be the position of aq-harmonic oscillator and show that its moments underwq can
be calculated as a sum over partitions. The operatorsXi , i P$1,...,m%, generate the*-algebra
Bq,Aq . We shall refer toBq as theq-harmonic oscillator algebra. Letrq denote the restriction
of wq to Bq .

Theorem 6: For all hP$1,...,m%n, nPN, we have

rq~Xh!5 (
PPP2~n!

q#c~P! )
~ l ,m!PP

dh~ l !,h~m! .

Proof: This follows from Lemma 5 by summation over alleP$1,* %n. h

Corollary 7: The linear functionalrq satisfies the following.
~1! For all j P$1,...,m% andnPN, we have

rq~Xj
n!5 (

PPP2~n!
q#c~P!.

~2! For iP$1,...,m%n and a cyclic permutationtPSn , we have

rq~Xi„t~1!…¯Xi„t~n!…!5rq~Xi~1!¯Xi~n!!.

Proof of 1: Put h(1)5¯5h(n)5 j in Theorem 6. h

Before proving~2! we first give some considerations concerning pair partitions.
The usual way to visualize a partition,PPP2(S), would be to draw the elements ofS on a

straight line and connect every two points belonging to the same pair inP with an arc above the

FIG. 1. The line representation of the partitionP5$(1,5),(2,6),(3,7),(4,8)%.

6427J. Math. Phys., Vol. 39, No. 12, December 1998 H. van Leeuwen and H. Maassen



line in such a way that two different lines cross at most once and no three lines intersect in one
point. As an example, in Fig. 1 we draw the partitionP5$(1,5),(2,6),(3,7),(4,8)%. We will refer
to this method of visualization as the line representation of a pair partition.

Another way to visualize a pair partition is its circle representation. This consists in drawing
the points ofS on a circle and connecting them by lines inside the circle, subject to the same
restrictions. An example is given in Fig. 2. We note that this can be done in more than one way.

To make the circle representation of pair partitions explicit, we regard the circle as the unit
circle in C, and we make the map

T:S→C:s°e2i ~s21!p/n.

This map converts every pair (a,b)PP to a pair~f,g! on the unit circle inC.
Definition 8: Two pairs (f,g) and( f 8,g8) of different points on the unit circle inC are said to

be separated if and only if the straight line from f to g crosses the straight line from f8 to g8 inside
the unit circle.
~See Fig. 3.! It is obvious that two pairs (a i ,b i) and (a j ,b j ) in a partitionP are crossing if and
only if the pairs„T(a i),T(b i)… and „T(a j ),T(b j )… are separated. LettPSn be a cyclic permu-
tation andPPP2(n) any pair partition. Byt~P! we denote the rotated partition:

t~P!ª$„t~a1!,t~b1!…,...,„t~an/2!,t~bn/2!…%.

Since separated pairs on the unit circle remain separated under rotation, we have

#c~P!5#c„t~P!…. ~6!

We now turn to the proof of the second part of Corollary 7.
Proof of (2):The essence of the proof thatrq has this cyclic property is the fact that the circle

representation of a partitionPPP2(n) also has this cyclic property. This is shown in Fig. 4.
More formally, for iP$1,...,m%n andtPSn cyclic, we have the following:

FIG. 2. A circle representation of the partitionP5$(1,5),(2,6),(3,7),(4,8)%.

FIG. 3. Two separated and two nonseparated pairs.
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rq~Xi„t~1!…¯Xi„t~n!…!5 (
PPP2~n!

q#c~P! )
~ l ,m!PP

d i„t~ l !…,i„t~m!…

5 (
PPP2~n!

q#c~P! )
~ l ,m!Pt~P!

d i~ l !,i~m!

5 (
PPP2~n!

q#c„t21~P!… )
~ l ,m!PP

d i~ l !,i~m!5rq~Xi~1!¯Xi~n!!.

We shall represent the pair (Aq ,wq) on a Hilbert spaceK with inner product̂ •,•&q in which
a unit vectorC, from now on referred to as vacuum vector, is singled out. To make this repre-
sentation explicit, leth be a Hilbert space with dimh5m and orthonormal basis$e1 ,...,em%.
Because of~3! we require that for alli P$1,...,m%:

aiC50.

If now we put for allkP$1,...,m%n:

ak~1!
* ak~2!

* ¯ak~n!
* C5:ek~1! ^¯^ ek~n! ,

then we see that forK we can take the full Fock space overh, denotedF~h!:

F~h!ª%
i 51

`

h^ i , h^ 0
ªC,

with vacuum vectorC51% 0% 0%¯ . We define a bilinear form̂•,•&q onK as follows:

^ek~1! ^¯^ ek~n! ,el~1! ^¯^ el~n8!&q5^ak~1!
* ¯ak~n!

* C,al~1!
* ¯al~n8!

* C&q

ªwq~ak~n!¯ak~1!al~1!
* ¯al~n8!

* !

5 (
PPP2~n1n8!

q#c~P! )
~p,q!PP

wq~ah~p!
e~p!ah~q!

e~q! !,

for l P$1,...,m%n8, n8PN, h5„k(n),...,k(1),l(1),...,l (n)…P$1,...,m%n1n8, and eP$1,* %n1n8,
such thate(1)5¯5e(n) and e(n11)5¯5e(n1n8)5* . Bożejko and Speicher in Ref. 7
show positivity of the bilinear form̂ •,•&q by proving positive definiteness of the functionSn

→C: s°q#i (s). Here the seti (s) is the set of inversions of the permutationsPSn :

i ~s!ª$~ l ,m!u1< l ,m<n,s~ l !.s~m!%.

Because of its positivity, the bilinear form̂•,•&q can be regarded as an inner product onK, so we
conclude that the linear functionalwq is, in fact, a state. Therefore the second part of Corollary 7
implies thatrq is a trace state.

Sincewq(ah(p)
e(p)ah(q)

e(q)) only yields something different from 0 fore(p)51 ande(q)5* , we
know that^•,•&qÞ0 only in casen5n8, and that the partitionsPPP2(2n) contributing to this

FIG. 4. The linear functionalrq satisfies a cyclic property.
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inner product have to be compatible withe. This only happens for partitions where, for alli
P$1,...,n%, we have 1<a i<n and n11<b i<2n. There are exactlyn! of these partitions in
P2(2n), to be labeled by permutationss of $1,...,n%. We find

wq~ah
e !5dn,n8 (

PPP2~2n!
P;e

q#c~P! )
~p,q!PP

dh~p!,h~q!5dn,n8 (
sPSn

q#i ~s!dh~1!,h„s~1!…¯dh~n!,h„s~n!… .

Repeated use of the commutation relations~2! and the fact thataiC50 for all i P$1,...,m%
yields, for allhP$1,...,m%n, the following action ofai :

aieh~1! ^¯^ eh~n!ª(
j 51

n

qj 21d i ,h~ j !eh~1! ^¯ěh~ j !¯^ eh~n! ,

where byeh(1)^¯ěh( j )¯^ eh(n) we mean the tensor producteh(1)^¯^ eh( j 21)^ eh( j 11)^ ...
^ eh(n) .

IV. THE DISCRETE LATTICE T„N,d …

For d, NPN we will define the Parisi model on a discreted-dimensional lattice:

T~N,d!ª$2N,...,0,...,N%d.

Define the set ofh-dimensional,hPN, elementary facets~i.e., points, edges, planes, etc.! in
T(N,d) as follows:

Xhª$~v,g!PT~N,d!3Ph~$1,...,d%!u j Pg⇒v~ j !ÞN%,

wherePh($1,...,d%) is the collection of all subsets of$1,...,d% that contain exactlyh elements. In
this notation (v,g) stands for the elementary facet, which hasvPT(N,d) as its lowest vertex, and
whose spatial orientation is defined by the set of spatial directionsg,$1,2,...,d%. ThenX0 stands
for the setT(N,d) of vertices itself,X1 is the set of edges inT(N,d), andX2 is the set of
two-dimensional planes inT(N,d), from now on referred to as plaquettes. ByGh we shall mean
the set of all functions fromXh to Z:

GhªZXh,

and byVh the set of all functions fromXh to C:

VhªCXh.

Then Vh is the set of ‘‘forms’’ onXh . They are a discrete analog of the differential forms of
Cartan. The setV of all differential forms will be denoted byVª% h50

` Vh . Similarly, we define
Gª% h50

` Gh . Note that #(Xh)5dim Gh5dim Vh5(h
d)(2N)h(2N11)d2h. An element ofG1 will

be called a curve@on T(N,d)# and an element ofG2 will be called a surface@on T(N,d)#. The
mapping,

L:G1→N: l ° (
j PX1

u l ~ j !u,

associates to a curve its length, and the mapping,

A:G2→N:k° (
j PX2

uk~ j !u,

sends a surface to its area. By awalk of length nPN on T(N,d) we shall mean a series of
consecutively neighboring points (a1 ,...,an) in T(N,d) that trace out a curvel PG1 . This curve
l assigns to every edgexPX1 , the number of times the walk (a1 ,...,an) runs throughx in
positive direction minus the number of times this walk runs throughx in the negative direction. So
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a curve is thought of as just any configuration of edges equipped with a direction and a multiplic-
ity. A surface is conceived of analogously. A walk will be calledclosedif a15an .

We define the integral of anh-form vPVh over some elementkPGh as follows.
Definition 9:

E
k
vª^k,v&5 (

xPXh

k~x!v~x!.

We define the boundary and coboundary operators]h :Gh→Gh21 anddh :Vh→Vh11 as fol-
lows:

~]hg!~v,g!ª(
j ¹g

e~ j ,g!„g~v2ej ,gø$ j %!2g~v,gø$ j %!… h>1,

~dhf !~v,g!ª(
j Pg

e~ j ,g\$ j %!„f ~v1ej ,g\$ j %!2 f ~v,g\$ j %!…, h>0,

wheree( j ,%)ª(21)#$ i P%u i , j % andej , j P$1,...,d%, denotes the unit vector in thej th direction in
T(N,d). We define the operatord on V as dh for a differential form inVh , so dh5duVh

. The
operatord can be considered the discrete version of the derivative operator onh forms. The
operator] on G, defined as]h5]uGh

, will be referred to as the boundary operator, since it yields
the (h21)-dimensional boundary of anh-dimensional object forh>1. Stokes’ theorem is the
statement thatd and] are each other’s adjoints.

Theorem 10„Stokes…: For vPVh andkPGh11 , we have

E
k
dv5E

]k
v.

Proof: By 1(v,g) we denote the characteristic function of (v,g)PX1 . Then to prove this
theorem it suffices to show that^]1(v,g) ,v&5^1(v,g) ,dv& for every (v,g)PXh11 andvPVh :

^]1~v,g! ,v&5 (
~w,% !PXh

~]1~v,g!!~w,% !v~w,% !

5 (
~w,% !PXh

(
j ¹%

e~ j ,% !„1~v,g!~w2ej ,%ø$ j %!21~v,g!~w,%ø$ j %!…v~w,% !

5(
j Pg

e~ j ,g\$ j %!„v~v1ej ,g\$ j %!2v~v,g\$ j %!…5~dv!~v,g!5^1~v,g! ,dv&. h

Theorem 11: d 250.
Proof: For vPVh and i , j we have, for all (v,g)PXh12 :

~dh11dhv!~v,g!5(
i Pg

e~ i ,g!„dhv~v1ei ,g\$ i %!2dhv~v,g\$ i %!…5 (
i , j Pg
iÞ j

F~ i , j !G~ i , j !,

where

F~ i , j !5e~ i ,g!e~ j ,g\$ i %!

and

G~ i , j !5v~v1ei1ej ,g\$ i , j %!2v~v1ei ,g\$ i , j %!2v~v1ej ,g\$ i , j %!1v~v,g\$ i , j %!.

Note thatG is symmetric andF is antisymmetric:
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F~ i , j !F~ j ,i !5e~ i ,g!e~ j ,g\$ i %!e~ j ,g!e~ i ,g\$ j %!

5~21!#$kPguk, i %~21!#ˆkPg\$ i %uk, j ‰~21!#$kPguk, j %~21!#ˆkPg\$ j %uk, i ‰521.

Thereforedh11dhv5( i , j PgF( i , j )G( i , j )50 for all vPVh . h

Because]5d* , viewed as (#Xh)3(#Xh11) matrices, Corollary 12 immediately follows.
Corollary 12: ]250.
Definition 13:An elementpPGh is called closed if]h(p)50.
We shall call a closed curve aloop. The boundary of a surfacek is always a loop since]2k

50. We shall say that]2k spans k. With every loopl we can associate a class of surfacesG l

ª$kPG2u]2k5 l %, the class of surfaces spanned byl. A surfacepPG l will be called minimal,
with respect tol, if its areaA(p) is minimal in A(G l).

Definition 14:By the areaA( l ) of a loop we shall mean the area of a surface that is minimal
with respect tol.

A closed walk traces out a loop. By the area of a closed walk (a1 ,...,an5a1) we shall mean
the area of the loop traced out by this walk, and denote it byA„(a1 ,...,an)….

V. THE PARISI MODEL

In the description of the Parisi model we try to stay as close as possible to the notation used
in Ref. 1.

ConsiderT(N,d) and put on every plaquette a magnetic field, i.e., we define a 2-formB
PV2 with strengthBP@0,p#, the sign of which will be chosen independently for every pair of
spatial directions:

B~v,$ i , j %!5S$ i , j %B,

whereS$ i , j % is a random variable depending on the pair$i,j%. The random variableS$ i , j % is a coin
toss, i.e., the value ofS$ i , j % is chosen from$21,1% with distribution$1/2,1/2%. It is obvious that, for
any of the 2d(d21)/2 choices forS, the constant fieldB on T(N,d) is divergence-free:dB50. We
put qªcosB; thenqP@21,1#.

By F(k) we denote the magnetic flux through some surfacekPG2 . This flux is simply the
sum of the fluxes through the plaquettes ink, which, by Definition 9, equals

F~k!5 (
xPX2

k~x!B~x!5E
k
B.

We define the magnetic flux enclosed by a loopl PG1 as the fluxF(k) for somek spanned byl,
and denote it byF( l ). Since the fieldB is divergence-free there must exist someAPV1 for which
d1A5B. Indeed, if, forkP$1,...,d% we choose anyC0 ,...,CdPR, and put

A~w,$k%!5C01 (
j 51

k21

„Cj1w~ j !S$ j ,k%B…;

then the requirementd1A5B is fulfilled, as can be checked easily by calculating (d1A) at
(v,$ i , j %) explicitly. By Stokes’ theorem we find, forF( l ),

F~ l !5E
k
dA5E

l
A5 (

xPX1

l ~x!A~x!,

for all kPG l . SoF( l ) is well defined and does not depend on the choice ofk.
Let the magnetic fieldB on T(N,d) induce a deformation of the nearest-neighbor (2N11)d

3(2N11)d-interaction matrix or lattice Laplacian, leading to the deformed lattice LaplacianDq .
This matrix (Dq)v,wPNd is defined by

u~Dq!v,wu5 H1,
0,

if uv2wu51, for v,wPX0 ,
otherwise,
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where the phases are determined by the field

~Dq!v,v1ek
ªeiA~v,$k%!,

~Dq!v1ek ,vªe2 iA~v,$k%!,

for all (v,$k%)PX1 . From this definition it is clear that (Dq)v,w5(Dq)w,v. Now let

W~ l !ªeiF~ l !5 )
xPX1

eil ~x!A~x!

be the product of theDq’s along a loopl. W( l ) is known as the ‘‘Wilson loop,’’ althoughW( l )
itself is not a loop but a complex number assigned to the loopl. For a closed walkl 8 that traces
out a loopl PG1 we have that the product of theDq’s alongl 8 equals the product of theDq’s along
l, henceW( l 8)5W( l ).

We define an operatorX̂ as follows:

X̂5
1

A2d
Dq , ~7!

where the overcaret symbolizes the dependence onN andd. ThenX̂ is an element in the algebra
A of matrix-valued functions,

$21,11%~2
d
!→M ~2N11!d, ~8!

where $21,11%(2
d) is the space of outcomes of the coin tosses andM (2N11)d denotes the (2N

11)d3(2N11)d matrices with complex entries. OnM (2N11)d we have a normalized trace tr
5(1/(2N11)d) Tr, where Tr is the standard trace onM (2N11)d. Since we have here a trace that
satisfies tr(1)51, its expectation can serve as a generalized probability measure~a state! ŵ onA,
and it is therefore possible to calculate generalized expectations of elements ofA:

ŵ~X̂n!ªÊ„tr~X̂n!…5
1

~2d!n/2~2N11!d Ê„Tr~Dq
n!…, for all nPN.

HereÊ yields the expectation value with respect to thed(d21)/2 coin tosses. The standardization
factor 1/A2d in ~7! ensures thatX̂ has variance 1 in the limitN→`. It remains to show that
indeedŵ(X̂n) can be interpreted as a sum over walks onT(N,d):

ŵ~X̂n!5
1

~2N11!d Ê„Tr~X̂n!…5
1

~2N11!d ÊS (
i 1PT~N,d!

¯ (
i nPT~N,d!

X̂i 1 ,i 2
X̂i 2 ,i 3

¯X̂i n ,i 1D . ~9!

The productX̂i 1 ,i 2
¯X̂i n ,i 1

on the right-hand side of this equation yields something different from
0 if and only if

u i 12 i 2u5u i 22 i 3u5¯5u i n212 i nu5u i n2 i 1u51;

( i 1 ,i 2 ,i 3 ,...,i n ,i 1) is a closed walk onT(N,d) that starts fromi 1 and returns toi 1 and hence
describes a loop inG1 . If the walk crosses some point inT(N,d) more than once, then there is
more than one walk yielding the same loop. Therefore the sum over walks in~9! cannot be
reduced to a sum over loops easily. However, we shall see that in the limitd→` only a narrow
class of walks survive.

VI. PAIR PARTITIONS, WALKS, AND LOOPS

In this section we shall describe the connection between pair partitions, as described in the
Introduction, closed walks onT(N,d), and loops inG1 .
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Suppose we have somePPP2(S) consisting of n pairs (a1 ,b1),...,(an ,bn) for S
5$1,...,2n%. To every pair (a1 ,b1), i P$1,...,n%, we assign the unit vector in thei th direction,ei .
Now for every elementsPS, starting with 1, we make a step in the lattice in the direction
assigned to the pair inP to which this number belongs. Ifs is the first element of such a pair, then
the step will be taken in the positive direction. Ifs is the second element of such a pair, then the
step will be taken in the negative direction. If we choose the origin as a starting point for our
walks, then we always get a loop on$0,1%n, the corners of the unit cube inn dimensions.

For fixed P, define a mappingsP :S→$1,...,n% that indicates to what pairsPS belongs:
sP(s)5 i if sP(a i ,b i). Furthermore, define a mappingqP :S→$21,11% that indicates whether
it is the first or the second element of this pair:qP(s)51 if s5a i andqP(s)521 if s5b i . To
keep track of our walk we define a mappingv:S→X0 as follows:

v~s!ª(
j 51

s

qP~ j !esP~ j ! , with v~0!ª0.

To fix the starting point and direction of every edge in the walk, we need the following mapping:

w:S→X0 : i °min„v~ i 21!,v~ i !…,

where min„v( i 21),v( i )… is the component-wise minimum ofv( i 21) and v( i ). Now, let
g1 :P2(S)→G1 associate toP the loop in G1 traced out by the walk„0,v(1),v(2),...,v(2n
21),0…:

g1~P!ª(
j 51

2n

qP~ j !1
„w~ j !,$sP~ j !%… .

Then one easily checks thatg1(P) is indeed a loop, i.e.,]1g1(P)50.
Apart fromg1 we shall also need an injective mappingg2 :P2(S)→G2 that maps a partition to

a surface spanned byg1(P). To this end let us regard the pair partition in the circle representation
as a planar graph with a closed outer edge. For every planar graph we can construct a dual by
regarding every sector inside the outer edge of the graph as a vertex in the dual graph. The vertices
in the dual graph are then connected by edges when the corresponding sectors have an edge in
common.

Definition 15: The dual graph of a pair partition is the dual of the planar graph generated by
its circle representation.

Figure 5 shows the construction of the dual graph of the partitionP
5$(1,5),(2,6),(3,7),(4,8)%. To constructg2 , consider a planar graph,H, given by a circle repre-
sentation of a pair partitionPPP2(S). The disk sectors in this graph represent elements ofX0 , as
is clear from the construction of the circle representation. Namely, we assign to sectors in

FIG. 5. The dual graph of the pair partitionP5$(1,5),(2,6),(3,7),(4,8)%. The orientation of the walk that traces out
g1(P) is indicated by arrows.
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H a vertex in space as follows: denote byA0 the sector inH that has an edge in common with the
circle segment between 1 and 2n. Then to every sectorA in H we associate a vertexy
5„y(1),...,y(n)… according to the rule.

y~ i !5 H0,
1,

if A and A0 lie on the same side of the connecting line with indexi ,
otherwise.

As a consequence toA0 is associated 0P$0,1%n. This procedure is illustrated in Fig. 6, which
shows a picture of the partitionP5$(1,5),(2,4),(3,6)% with the corner points in every sector as an
element of$0,1%3. Since two sectors in the graph that have an edge in common can be associated
to points inX0 that differ only one step in the direction corresponding to the shared edge, we can
connect two such points by an edge in the dual graph,H8, of P, corresponding to an edge inX1 .
This way the sectors inH8 point at plaquettes inX2 , since every crossing of connecting lines in
H has four sectors inH that share that point. Since any two lines cross at most once, the number
of plaquettes enclosed byH8 is equal to #c(P), the number of crossings ofP. In fact, H8
contains a plaquette, based upon the minimum of its four corner points,ui j , for every pair (i , j )
Pc(P). We can now define

g2~P!ª (
~ i , j !Pc~P!

1~ui j ,$ i , j %! .

Note that every plaquette ing2(P) receives positive orientation in this definition.
Theorem 16: For everyPPP2(2n) we have]2g2(P)5g1(P).
The content of this theorem becomes apparent if one realizes that the outer edge of the dual

graph of the pair partitionP represents the walk„v(0),v(1),...,v(2n)…, as shown in Fig. 5. It is
immediately clear that noncrossing partitionsPPP2(2n) yield g2(P)50, so we have]2g2(P)
50. This agrees withg1(P)50: every step that is taken is retraced later. This, however, will be
a special case of the proof we shall give.

Proof: Let H be the planar graph given by the circle representation ofP. Fix an edge (v,$ i %)
in the dual graph,H8, of P. This edge crosses a segment,k, of the i th connecting line inH. There
are now three possibilities.

~1! The segmentk is thei th connecting line itself, i.e., thei th connecting line crosses no other
connecting lines inH.

~2! The segmentk connects the edge of the circle to a crossing with thej th connecting line in
H.

~3! The segmentk connects 2 crossings, say with thej 1th and thej 2th connecting line.
In the first case the connecting line in the circle representation corresponding toei splits the

circle into two separate parts connected by one edge,z, in H8. The i th connecting line therefore
crosses no other connecting lines. This means that there exist nokP$1,...,n% such that (i ,k)
Pc(P); thereforeg2(P)(v,$ i %)50. Since the walk that traces outg1(P) is closed, it has to visit
z twice; once in the positive direction and once in the negative direction, sog1(P)(z) also
vanishes.

FIG. 6. The corner points of the surface generated by the partitionP5$(1,5),(2,4),(3,6)%.
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In the second case the edge (v,$ i %) is in the boundary of the plaquette (ui j ,$ i , j %), so

„]2g2~P!…~v,$ i %!5e~ i ,$ j %!„1~ui j 1ej ,$ i %!~v,$ i %!21~ui j ,$ i %!~v,$ i %!…. ~10!

First supposei , j ; then the crossing pairs (a i ,b i) and (a j ,b j ) in P satisfy a i,a j,b i,b j .
Now if v5ui j , meaning thatv andui j lie on the same side of thei th and j th connecting line as
0, then the walk that traces outg1(P) reachesv before crossing thej th connecting line. Therefore
the step this walk takes fromv onward corresponds toa i , sog1(P)(v,$ i %)51. From~10! we see
that also„]2g2(P)…(v,$ i %)51. If, on the other hand,v5ui j 1ej , thenv andui j lie on the same
side of thei th connecting line, but not on the same side of thej th connecting line. This means that
the walk that traces outg1(P) has to cross thej th connecting line before it can reachv. But this
means that a step in thei th direction has also been taken. Therefore we know that the step in the
i th direction corresponds tob i , so g1(P)(v,$ i %)521. From ~10! we see that also
„]2g2(P)…(v,$ i %)521. Now supposei . j , then the crossing pairs (a i ,b i) and (a j ,b j ) in P
satisfya j,a i,b j,b i . The same type of argument as used for the casei , j yields

v5ui j ⇒„]2g2~P!…~v,$ i %!5g1~P!~v,$ i %!521,

v5ui j 1ej⇒„]2g2~P!…~v,$ i %!5g1~P!~v,$ i %!51.

In the third case (v,$ i %) is in the boundary of two plaquettes;p151(ui j 1
,$ i , j 1%) and p2

51(ui j 2
,$ i , j 2%) . Since we are free to choosej 1, j 2 , we can distinguish three cases:

~a! i , j 1, j 2 ,
~b! j 1, i 1, j 2 , and
~c! j 1, j 2, i .

To prove case~a! we note that in this case we haveui j 2
5ui j 1

1ej 1
andv5ui j 2

. Now calculate

~]2p1!~v,$ i %!5e~ j 1 ,$ i %!„1~ui j 1
1ej 1

,$ i %!~v,$ i %!21~ui j 1
,$ i %!~v,$ i %!…521,

~]2p2!~v,$ i %!5e~ j 2 ,$ i %!„1~ui j 2
1ej 2

,$ i %!~v,$ i %!21~ui j 2
,$ i %!~v,$ i %!…51.

Therefore we have that„]2(p11p2)…(v,$ i %)5„]2g2(P)…(v,$ i %)50. Since (v,$ i %) is not an outer
edge ofH8, we also have thatg1(P)(v,$ i %)50. The reader can now easily verify cases~b! and
~c!, since the method of proof for these cases is the same as for case~a!.

Finally, there are the edges inX1 that are not part of the dual graph ofP. We have
g2(P)(u1)50 for everyu1PX2 not corresponding to a plaquette inH8. For every suchu1 , we
have ]2„g2(P)(u1)…50. Furthermore, we haveg1(P)(u2)50 for every u2 not in the walk
$„w(1),$sP(1)%…,...,„w(2n),$sP(2n)%…%, so on the edges that are not in the dual graph ofP we
have that]2g2(P)5g1(P)50, since everyu2Pˆ„w(1),$sP(1)%…,...,„w(2n),$sP(2n)%…‰ is rep-
resented in the dual graph ofP. h

Theorem 17: For everyPPP2(2n) the surfaceg2(P) is minimal in Gg1(P) .
Proof: In casen51 the loopg1(P) cannot enclose a plaquette. It follows from the definition

of g2(P) that in this caseg2(P)50, so the theorem holds forn51. In the following we assume
n>2 andi , j for i , j P$1,...,n%.

On the unit vectors$e1 ,...,en% we introduce the following projection operator:

Qi j ekª1$ i , j %~k!ek .

Then the elementg2(P) will be minimal in Gg1(P) if for every pairi , j P$1,...,n% the projection of
the closed walk that traces outg1(P) is a closed walk around (0,$ i , j %)PX2 , provided that
( i , j )Pc(P). We now introduce

Y i jª ø
s51

2n

$Qi j v~s!%,
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the set of elements inX0 the projection to the$i,j% plane of the walk that traces outg1(P) visits,
and note that the proof is finished if we show (i , j )Pc(P)⇒#Y i j 54.

Suppose (i , j )Pc(P), then (a i ,b i) and (a j ,b j ) are crossing pairs inP, so a i,a j,b i

,b j . This means thatY i j 5$0,ei ,ei1ej ,ej%, so #Y i j 54. h

Corollary 18: For all PPP2(2n) we have that A(g2(P))5A(g1(P))5#c(P).

VII. THE PARISI MODEL AND THE q -HARMONIC OSCILLATOR

To show the connection between theq-harmonic oscillator and the Parisi model, we prove
that, ford→` andN→`, the moments ofX̂ converge to the moments ofX5a1a* . In short,X̂
converges in distribution toX.

Theorem 19: Let wq be the vacuum state on the q-harmonic oscillator algebra generated by
X5a1a* . Then for all nPN the following holds:

wq~Xn!5 lim
d→`

lim
N→`

ŵ~X̂n!.

Corollary 7 states how the moments of theq-harmonic oscillator can be calculated as a sum
over pair partitions. Therefore, here it suffices to show that

lim
d→`

lim
N→`

ŵ~X̂n!5 (
PPP2~n!

q#c~P!.

Proof: From Eq.~9! we know thatŵ(X̂n) can be interpreted as a sum over closed walks in
T(N,d). The theorem then is trivial forn odd since an odd number has no pair partitions and a
closed walk cannot return to its starting point in an odd number of steps. So we may assumen
52r , r PN, in the following.

We define a sublatticeT 8(N,d) of T(N,d) as follows:

T 8~N,d!ª$2N1~r 11!,...,N2~r 11!%d.

The set of all walks that start from somexPT 8(N,d) and have lengthn will be defined as

W~x,n!ª$~x, j 1 ,...,j n21 ,x!u j 1 ,...,j n21PT~N,d!, ux2 j 1u5u j 12 j 2u5¯5u j n212xu51%.

Note that we have

#W~x,n!52rd~d21!¯~d2r 11!.

To every walkwPW(x,n) we can assign some surfacesPGw , the set of minimal surfacess that
have the closed walkw as a boundary. We can then choose a setS(x,n) that contains exactly one
surfacesPGw for everywPW(x,n), i.e., #S(x,n)5#W(x,n). Every surfacesPS(x,n) has to
be minimal with respect to its corresponding walkwPW(x,n) in order for the surface to have the
corner points of the plaquettes in this surface inT(N,d).

With the use of these definitions we can rewrite the sum overi 1 in Eq. ~9! as follows:

ŵ~X̂n!5
1

~2N11!d (
i 1PT 8~N,d!

ÊS (
i 2PT~N,d!

¯ (
i nPT~N,d!

X̂i 1 ,i 2
X̂i 2 ,i 3

¯X̂i n ,i 1D
1

1

~2N11!d (
i 1PT~N,d!

i 1¹T 8~N,d!

ÊS (
i 2PT~N,d!

¯ (
i nPT~N,d!

X̂i 1 ,i 2
X̂i 2 ,i 3

¯X̂i n ,i 1D , ~11!

and calculate
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Ê~X̂i 1 ,i 2
¯X̂i n ,i 1

!5
1

~2d!n/2 (
wPW~x,n!

Ê„W~w!…5
1

~2d!n/2 (
wPW~x,n!

Ê~ei (pPX1
w~p!A~p!!

5
1

~2d!n/2 (
wPW~x,n!

Ê~ei *wA!5
1

~2d!n/2 (
sPS~x,n!

Ê~ei *sB!,

where we used Stokes’ theorem. A walk that starts inT 8(N,d) can never reach the boundary of
T(N,d), so we can identify every walkwPW(x,n) with a walk w8PW(y,n), for x,y
PT 8(N,d), via

w5~x, j 2 ,...,j n ,x!°~y, j 22~x2y!,...,j n2~x2y!,y!5w8.

From the fact thatB is constant, it follows that the magnetic flux throughsPS(x,n), correspond-
ing to w, is equal to the magnetic flux throughs8PS(y,n), corresponding tow8, for x,y
PT 8(N,d). This implies that we have

(
sPS~x,n!

Ê~ei *sB!5 (
sPS~y,n!

Ê~ei *sB!.

We can therefore perform the first sum overi 1 in ~11!, yielding

~2„N2~r 11!…11!d

~2N11!d ÊS (
i 2PT~N,d!

¯ (
i nPT~N,d!

X̂0,i 2
X̂i 2 ,i 3

¯X̂i n,0D .

Since for every point inT(N,d)\T 8(N,d) we have, at most, as many loops as for points in
T 8(N,d) we can estimate an upper bound for the second sum overi 1 in ~11!:

~2„N2~r 11!…11!d2~2N11!d

~2N11!d #W~0,n!.

This term tends to 0 forN→`, so we find

lim
N→`

ŵ~X̂n!5ÊS (
i 2PZd

¯ (
i nPZd

X̂0,i 2
X̂i 2 ,i 3

¯X̂i n,0D .

We now turn to the limitd→`. There are exactly #P2(n)( r
d)2r walks that start in 0, have

lengthn, and go throughr different spatial directions. The number of closed walks that go through
less thanr, say r 8, spatial directions is less than (r 8)n( r 8

d ), so the contribution of these walks
vanishes in the limitd→` due to the standardization ofX̂. The closed walks that go throughr
spatial directions take a step in each direction exactly twice, and therefore correspond to a pair
partition PPP2(2r ). The expectation value of the magnetic flux through the area of the loop
g1(P) such a walk traces out, is given by

Ê~W„g2~P!…!5ÊS )
xPX28

eig2~P!~x!B~x!D 5 )
xPX28

Ê~eig2~P!~x!B~x!!5~cosB!A„g2~P!…5qA„g2~P!…,

whereX28ª$(v,g)PZd3P2($1,...,d%)% with the same conventions we have forX2 . In the above
calculation the expectation of the product overX2 is interpreted as a product of expectations. To
justify this we note thatg2(P) has, at most, one plaquette for every pair of spatial directions and
that the sign of the magnetic fieldB for a pair of spatial directions is independent of that for every
other pair of directions. This implies that the fluxes through different plaquettes ing2(P) are
independent. It is now possible to writeŵ(X̂2r) as a sum over partitions in the limitd,N→`:
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lim
d→`

lim
N→`

ŵ~X̂2r !5 lim
d→`

1

~2d!r (
i 2PZd

¯ (
i 2rPZd

Ê„~Dq!0,i 2
¯~Dq! i 2r ,0

…

5 (
PPP2~2r !

qA„g1~P!…5 (
PPP2~2r !

q#c~P!, h

where we used Corollary 18.

VIII. NONCOMMUTATIVE INDEPENDENCE IN THE PARISI MODEL

Until now we concerned ourselves with only oneq-Gaussian random variable. In order to
illustrate the concept ofq independence in this model, we shall have to define more, sayNPN,
q-Gaussian random variables. The Parisi model allows for such an extension in a straightforward
way.

If d is divisible byN, the latticeT(N,d) can be decomposed as a product ofN sublattices as
follows:

T~N,d!5M13M23¯3MN,

where dimMj5d/N for j P$1,...,N%. We can now use theq-deformed lattice LaplacianDq

defined in Sec. V to defineN q-Gaussian random variablesX̂1 ,...,X̂NPA as follows:

~X̂i !u,w5HAN
2d

~Dq!v,w , if v2wPMi ,

0, otherwise.

In this way X̂i ,i P$1,...,N%, is the standardized deformed lattice Laplacian onMi . From the
previous section we can deduce that the operatorsX̂1 ,...,X̂N defined in this way converge, in
distribution, to theq-Gaussian random variablesXi5ai1ai* for d→` and N→`. Now fix N
52 and letX̂5X̂1 and Ŷ5X̂2 .

Theorem 20„independence…: For n,mPN we have that

lim
N→`

ŵ~X̂nŶm!5 lim
N→`

ŵ~ŶmX̂n!5 lim
N→`

ŵ~X̂n!ŵ~Ŷm!.

Proof: Write out ŵ(X̂nŶm) to find

ŵ~X̂nŶm!5
1

~2N11!d ÊS (
i 1 ,...,i n
PT~N,d!

(
j 1 ,...,j m
PT~N,d!

X̂i 1 ,i 2
¯X̂i n , j 1

Ŷj 1 , j 2
¯Ŷj m ,i 1D .

Now, obviously the nonvanishing terms all satisfy

~ i 12 i 2!1¯1~ i n2 j 1!1~ j 12 j 2!1¯1~ j m2 i 1!50.

The firstn differences all lie inM1 and the lastm differences all lie inM2 therefore,

~ i 12 i 2!1¯1~ i n2 j 1!5~ j 12 j 2!1¯1~ j m2 i 1!50,

and it follows thati 15 j 1 . With reference to the proof of Theorem 19, we can choosei 15 j 1

50, so we find

lim
N→`

ŵ~X̂nŶm!5ÊS (
i 2 ,...,i n

PZd

(
j 2 ,...,j m

PZd

X̂0,i 2
¯X̂i n,0Ŷ0,j 2

¯Ŷj m,0D
5ÊS (

i 2 ,...,i n
PZd

X̂0,i 2
¯X̂i n,0D ÊS (

j 2 ,...,j m

PZd

Ŷ0,j 2
¯Ŷj m,0D 5 lim

N→`

ŵ~X̂n!ŵ~Ŷm!.
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Sinceŵ is a trace state, we have thatŵ(X̂nŶm)5ŵ(ŶmX̂n). h

The same type of proof shows that, for generalN, we have

ŵ~X̂k~1!

n1
¯X̂k~N!

nN !5ŵ~X̂k~1!

n1 !¯ŵ~X̂k~N!

nN !,

provided the valuesk(1),...,k(N) are all different.
We conclude that in the sense of Definition 2, theX̂i tend to independent random variables in

the limit N→`, and to independentq-Gaussians in the limitN→`, d→`.
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