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We give an explicit proof of the pair partitions formula for the moments of the
g-harmonic oscillator, and of the claim made by Parisi thatdfteformed lattice
Laplacian on thel-dimensional lattice tends to theeharmonic oscillator in distri-
bution ford—«. © 1998 American Institute of Physics.
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I. INTRODUCTION

In 1994, Parisi published his papemD“dimensional arrays of Josephson junctions, spin
glasses and-deformed harmonic oscillators(Ref. 1). It describes a lattice modéo be called
the “Parisi model” here that shows a connection with tlgegharmonic oscillator. We prove some
of the claims and conjectures made by Parisi after setting the stage for them in some detail.

We shall work within the framework of noncommutative probability theory or “quantum
probability” (see, for example, Refs. 2);60 be described briefly in Sec. Il. A fine example of
noncommutative probability is free probability theory, as discovered by Voiculescu.

Here we are concerned with an interpolation between the classical Gaussian distribution and
the “free Gaussian” distribution: Wigner's semicircle law. This is done dpyeforming the
guantum mechanical harmonic oscillator. In Sec. lll we show howgttleformed Fock space, as
introduced by Bogjko and Speicher in Refs. 7 and 8, can be constructed in an algebraic way,
starting from theg-deformed commutation relations. It is shown that the moments of the ground
state distribution of theg-harmonic oscillator can be calculated as a sum over pair partitions
interpolating nicely between the well-known moment formulas of the Gauss and Wigner distribu-
tions.

In Sec. IV we prepare for the Parisi model by introducing dhdimensional latticeZ(N,d),
and its boundary and coboundary operators. The Parisi model itself is introduced in Sec. V.
Section VI shows how we can use pair partitions to describe the walgMyd) that turn out to
be relevant for the Parisi model. Using the possibility of describing walks in terms of partitions,
we show in Sec. VIl that the position operator af-sarmonic oscillator has the same distribution
as the normalized-deformed lattice Laplacian in the Parisi model if we det> .

In Sec. VIII we show that, in fact, sequences of independeBrussians are present in the
Parisi model, although on the grounds of Ref. 9 we hesitate to call thegindependent.”

II. NONCOMMUTATIVE PROBABILITY AND INDEPENDENCE

In this section we shall give a brief outline of noncommutative probability theory and the free
probabilistic example.

We shall first describe the transition from classical to noncommutative probability théory.
This transition follows much the same recipe as the search for “noncommutative versions” of
mathematical objects as initiated by Conf&4. classical probability space will be, following the
axiomatic approach outlined by Kolmogorov, a trigle,>,P), whereQ) is a state space, is a
o-algebra of events, and is a probability measure ab. The transition of classical probability to
noncommutative probability theory is preceded by a replacement of functions by multiplication
operators: or(2,2,I’) we can construct a commutative algebra of functions together with a state
that contains the same information @,2,I) itself. Problems defined on the space can then be
translated to algebraic problems and worked out in the commutative algebra of functions. Then we
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drop the commutativity requirement on the algebra. The noncommutative algebra can no longer be
identified with a space, but it still represents some kind of probability theory.

Definition 1: A general probability space is a unital von Neumann algelratogether with
a normal stateep.

The events in a general probability space are the projecpens* =p? in A, and the prob-
ability that p occurs ise(p). A self-adjoint elemenX e A will be called a random variable and
¢(X) its expectation. The distributiop,y , of a random variablX € A will be a linear functional
on the ring of complex polynomials in one variablgy:([x]—C, that satisfieswuy(f )
= o(f(X)) for everyf e ([x]. Such a linear functional uniquely determines a probability measure
with compact support on the real line, which is also denoted.ly

As an illustration we shall reconstruct the classical probability space from a commutative
general probability spaded, ). First, if ((,3,P) is a classical probability space, then the associ-
ated general probability spaéel,¢) is A:=L"(Q,%,P) and ¢(f ):=ffdP>, the expectation of
with respect tol. Now, we canreconstruct the events ik by considering all projectiong
€ A, which are of the fornp= 15 for someSe 3. Up to equivalence we can then reconstruct the
concrete realization of) we had.

In this paper we choose to extend the classical definition of independence in the following
way.

Definition 2 (independence)®Xandom variables<,,... X, in a general probability space
(A,) are called independent if for ati<m and polynomials,,...,f,,, we have

(P(fl(xk(l))' : 'fn(Xk(n))): @(fl(xk(l)))‘ : '(P(fn(xk(n)))v (1

provided ke {1,...m}" has all components(k), 1<i=<n, different from each other

A completely noncommutative notion paralleling the idea of independence is the concept of
free independence of random variables.

Definition 3 (free independencdRandom variableX,... X, in a general probability space
(A,¢) are called freely independent if for alle N and polynomials,,...,f,, we have

Visn:o(fi(Xgi))=0=@(f1(X1)): * Fa(Xin))) =0,

provided ke {1,...m}" satisfies K1) #k(2)#k(3)#---#k(n).

Proposition 4:Free independence implies independence.

Proof: SupposeX, ..., X, are freely independent. Note tha) is valid forn= 1. Suppose that
(1) is valid for all polynomialsf,,...,f,_; and different indicesk(1),...k(n—1). Now let
fy,....,f, be given polynomials and(1),...k(n) be different indices. Byg; we denote the
difference betweerfi; and the constanp(f;(Xy;)) so thate(g;(X;)))=0. Then free indepen-
dence implies

©(91(Xi(1))" * *Gn(Xkny)) =0.

Writing out this product, we find

I1 o(fi(Xkaiy)

ey

e(f1( Xy = Fa( X)) =— > (—ynH
y&{1,..n}

1

I1 fi(xk(j))>'
Jey

Sincey contains less than elements, the expectation O, _ ,f;(X,;)) factorizes by the induction
hypothesis. So all the terms in the sum are equal apart from their sign. Since the sum of these signs
is 1, the result follows. O

lll. g-HARMONIC OSCILLATORS AND THE g-DEFORMED FOCK SPACE

In this section we show how thg-deformed Fock space, as introduced in the papers of
Bozejko and Speichet?is found naturally, starting from the commutation relation. We show how
the moments of theg-harmonic oscillator can be expressed in terms of pair partitions.

We start from the operatofsanda, ,a,,...,an, generating &-algebraA, and satisfying

a;af —qa‘a=4;;1, qe(—1,1). 2
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On A, we introduce a linear functiona, that we require to satisfy
qu(l) = 11 @q(aik aE)ZO, (Pq(aliai)zoa (3)

fori,je{l,...m}, ke{l,.m}", neN, andee{1*}", i.e., a sequence with lengthof 1's and
*'s. S0, bya; we mean the ordered product:

n a if e(i)=1
€__ ) _ k(i) » =4,
ak—i]:[l Ni, Where \; a:(i), if e(i)=+.
Next, we show the connection between pair partitions @g(@y). Let S={1,...n}, for some
nelN. A sequence,

H:{(aliﬂl)!(QZlBZ)!'"l(an/ZIBn/Z)}! for n even,

such thatu!"?{«;, 8} =S, will be called apair partition of S A pair partition will be ordered in
the sense that;<g; for all i e{1,...n/2} and a;<---<a,,. The collection of all such pair
partitions of the seSwill be denoted byP,(S) or P,(n). Forn odd this is just the empty set. A
crossing inll is a subset ofl with two elements{(«;,B;),(«;,8;)}, which satisfies eithew;
<a;<Bi<pj or aj<a;<B;<p;. The set of all crossings of a partitidih can be conveniently
labeled by

c(ID):={(i,j)|1<i<j=n/2{(a;,Bi),(a;,B))} is a crossing

Lemma 5:For allne N, n=1, ee{1x}", andhe{1,...m}", we have

eqa) =2 a*™ ] eq@iiani). @
e Py(n) (i,j)ell

Note that in this notatiofi,j) can stand for an element bF or for a pair of elements. The context
will make clear, which is meant.

A pair partitionII € P,(n) is compatible withe, denoted 1~ e, if pairs («;,B;) € Il are such
thate(a;)=1 ande(B;)=~* for all i e{1,...n/2}. Compatibility of [T with h means that for each
pair («;,B;) e Il we haveh(e«;)=h(B;). Using this notion of compatibility we can rewrite rela-
tion (4) as follows:

eqap=_ > g, (5)
11 EPZ(H)
II~¢€,h

We shall now prove Lemma 5.

Proof: Suppose that e {1,+}" can be written ags,1*,0), whereoe{1+}* andp e {1},
with k+1+2=n. Suppose, furthermore, thia {1,...m}* andje{1,...m}' with (h(1),... h(n))
=(i(1),...i(k),h(k+1),h(k+2),j(1),...§(l)). Then the following holds:

?q(an) = @q(@an(cs 1)@hk+2)27) = Snik+ 1),n(k+ 2 Pq( @7 a%) + deg(@’an 1 2)@nk+ 1al)-

This relation, together witk3), determines the left-hand side @), and thereforep,, completely.

We shall refer to the right-hand side (§) asF(ay) putting F(1)=1, and shall show thé
satisfies the same recursion relation. L&t P,(n). Then, for every pairi(j) eIl we have
oq(an]as])#0 if and only if €(i)=1 ande(j)=+ andh(i)=h(j). There are now two possi-
bilities: (k+1k+2)ell or (k+1k+2)e&Il. In the first casdl’:=II\{(k+1k+2)} is a parti-
tion of {1,...k,k+3,...n} with #c(IT) =#c(Il’). In the second case there mustibek+1 and
j>k+2 such thati,k+2) and k+ 1,j) are crossing pairs ifl. It is then possible to remove the
crossing and construct

"= (I\{(i,k+2),(k+1,))HhU{(i,k+1),(k+2,j)},



J. Math. Phys., Vol. 39, No. 12, December 1998 H. van Leeuwen and H. Maassen 6427

for which #c(I1")=#c(I1)—1. Now we havell”~(o,+,1,0),h”, whereh”=(i,h(k+2),h(k
+1),j). Note that conversely every pair partitionmmfcompatible withe andh but not containing
(k+1k+2), can be found ifP,(n) as an element with a crossing between the two pairs that
containk+1 andk+2. We find

Fap=_ 2> q'h
I e Py(n)
II~¢,h

= E q#C(H> + 2 q#c(H)

1< Py(n) T € Py(n)
II~(o,1%,0)h M~(o,1%,0)h
(k+1k+2)eTl (k+1Kk+2)ell
_ #e(I1’ #o(I")+1
= Oh(k+1),h(k+2) > et + > get+
I’ € Py(n—2) 11" & Py(n)
' ~(o,0),(i.j) I"~(o,%,10),h"

= Shik+ 1),k +2F (@78F) T AF(aan i 2)@nk+ 1))

Relation(5) now follows because the right-hand siééay) satisfies the same recursion relation as
¢(ay) with the boundary condition€3). O

Since the position operator of a harmonic oscillator is usually represented by an operator of
the form

Xi ::ai‘l‘ar y

we defineX; to be the position of g-harmonic oscillator and show that its moments unggcan
be calculated as a sum over partitions. The operaXgrsi e {1,...m}, generate thé-algebra
B,CAq. We shall refer tdB,, as theg-harmonic oscillator algebra. Let, denote the restriction
of ¢4 10 By.

Theorem 6: For allhe {1,...m}", neN, we have

po(Xp) = > ™ I niynm -
1 EPy(n) (Imjet

Proof: This follows from Lemma 5 by summation over ale {1,*}". O
Corollary 7: The linear functionap satisfies the following.
(1) For allje{1,..m} andne N, we have

pO=, 3 .
€Po(n

(2) Forie{1,...m}" and a cyclic permutatione S,, we have

Pa(Xicz1))"* Xitz(n)) = Po(Xic) = Xi(n)) -

Proof of 1: Puth(1)=---=h(n)=j in Theorem 6. O
Before proving(2) we first give some considerations concerning pair partitions.

The usual way to visualize a partitiohl, € P,(S), would be to draw the elements 8fon a
straight line and connect every two points belonging to the same painiith an arc above the

FIG. 1. The line representation of the partitibh={(1,5),(2,6),(3,7),(4.8).
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FIG. 2. A circle representation of the partitidh={(1,5),(2,6),(3,7),(4,8).

line in such a way that two different lines cross at most once and no three lines intersect in one
point. As an example, in Fig. 1 we draw the partitids={(1,5),(2,6),(3,7),(4,8). We will refer
to this method of visualization as the line representation of a pair partition.

Another way to visualize a pair partition is its circle representation. This consists in drawing
the points ofS on a circle and connecting them by lines inside the circle, subject to the same
restrictions. An example is given in Fig. 2. We note that this can be done in more than one way.

To make the circle representation of pair partitions explicit, we regard the circle as the unit
circle in C, and we make the map

T:S—(is>edis—Dain

This map converts every paiw(B) €Il to a pair(f,g) on the unit circle inC.

Definition 8: Two pairs (f,g) andf’,g") of different points on the unit circle ifi are said to
be separated if and only if the straight line from f to g crosses the straight line ffamd’ inside
the unit circle.

(See Fig. 3.1t is obvious that two pairsd; ,8;) and (a;,8;) in a partitionlI are crossing if and
only if the pairs(T(«;),%(B;)) and (%(«a;),%(B;)) are separated. Lete S, be a cyclic permu-
tation andll € P,(n) any pair partition. Byr(Il) we denote the rotated partition:

T(H) ::{(T( (11) ’ T(Bl))l e 1(7—( an/2) ’ T(BH/Z))}'
Since separated pairs on the unit circle remain separated under rotation, we have
#c(I1) =#c(7(11)). (6)

We now turn to the proof of the second part of Corollary 7.

Proof of (2): The essence of the proof thaf has this cyclic property is the fact that the circle
representation of a partitiol € P,(n) also has this cyclic property. This is shown in Fig. 4.

More formally, forie {1,...m}" andre S, cyclic, we have the following:

FIG. 3. Two separated and two nonseparated pairs.
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FIG. 4. The linear functionab, satisfies a cyclic property.

X e )= #c(I1) S .
Pa(Xigr(1)y * Xicr(n) He%m)q (I,rTl;[eH i(7(1)),i(x(m)

_ I
= > g ] Sily.i(m)
11EPy(n) (I,m) & ~(IT)

= > gt tan S icm=pa Xy Xicm)-
HEPZ(n)q (|,r11_)[en i(h,i(m = PqlRi(1) i(n)

We shall represent the pai,¢4) on a Hilbert spacéC with inner product -, - ), in which
a unit vector¥, from now on referred to as vacuum vector, is singled out. To make this repre-
sentation explicit, leth be a Hilbert space with difj=m and orthonormal basise,....en}.
Because of3) we require that for all e{1,...m}:

aiquo.
If now we put for allke {1,...m}™
A1)k (2) Ak ¥ = 1€k(1)®" @ E(n)

then we see that fokl we can take the full Fock space ovgrdenoted7(h):
Fb)=D b, 5°0=C,
i=1

with vacuum vectot =1@0®0&--- . We define a bilinear forng-,- ), on K as follows:
_ * * * *
(Ek(1)®" @ C(n) ,€11)®" " @) q= (k1) Bk Vi1 By W )a

.—_— oo * ... *
= @q(Ak(n) "Bk A1) " Bypy))

- n
= 3 e ] eq@ipan,
e Py(n+n’) (p,a)ell

for le{1,..m"", n'elN, h=(k(n),... k(1),I(1),...)(n))e{1,..m}"*"" and ee{1¥}"*"
such thate(1)=---=¢€(n) and e(n+1)=---=¢(n+n’)=*. Bozejko and Speicher in Ref. 7
show positivity of the bilinear forn{-,-), by proving positive definiteness of the functi&
—C: o—>q™(?), Here the sei(o) is the set of inversions of the permutatiore S, :

i(o):={(I,m)|1<lI<m=n,o(l)>0o(m)}.

Because of its positivity, the bilinear forfn, - ), can be regarded as an inner product@rso we
conclude that the linear functional, is, in fact, a state. Therefore the second part of Corollary 7
implies thatp, is a trace state.

Since oq(afPagd) only yields something different from 0 fos(p)=1 ande(q)=*, we
know that(-,-)4#0 only in casen=n’, and that the partitionsl € P,(2n) contributing to this
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inner product have to be compatible with This only happens for partitions where, for all
e{1,...n}, we have Eqa;<n andn+1<pg;<2n. There are exactly! of these partitions in
P,(2n), to be labeled by permutationsof {1,...n}. We find

oo(af) =6, E #e(I1) H S =5 ,E #i(a) 5 S .
ql@n n,n HeP2(2n)q e h(p),h(q) = %n,n Ue%q h(1),h(o(1)) h(n),h(c(n))

IM~e
Repeated use of the commutation relati¢®sand the fact thag, ¥ =0 for all i e{1,...m}
yields, for allhe{1,...m}", the following action ofa; :

n

aieh<1>®---®eh<n>==j21 A1 ()€1 © " Cn(jy @) »

where byeh(1)®'-—éh(j)-~~®eh(n) we mean the tensor produet1)®- - ®en(j—1)®€n(j+1)®---
®eh(n) .

IV. THE DISCRETE LATTICE 7(N,d)

Ford, Ne N we will define the Parisi model on a discratelimensional lattice:
T(N,d):={—N,...,0,...N}".

Define the set oh-dimensional,he N, elementary facetsi.e., points, edges, planes, gt
7(N,d) as follows:

Xn={(v,y) € TIN,d) X Pp({1,...d})[j € y=v(j) # N},

whereP,({1,...d}) is the collection of all subsets ¢f.,...d} that contain exacthh elements. In

this notation ¢,vy) stands for the elementary facet, which bas7(N,d) as its lowest vertex, and
whose spatial orientation is defined by the set of spatial directjan&l,2,...d}. ThenX, stands

for the set7(N,d) of vertices itself,X; is the set of edges iff(N,d), and &, is the set of

two-dimensional planes ii(N,d), from now on referred to as plaquettes. By we shall mean

the set of all functions frond, to Z:

gh::Zth
and by(),, the set of all functions frond}, to C:
Qh3=‘th.

Then (},, is the set of “forms” onA;},. They are a discrete analog of the differential forms of
Cartan. The sef) of all differential forms will be denoted b :=&/_,Q,,. Similarly, we define
G=®_,Gn. Note that #,) =dim G,=dim Q,=(%)(2N)"(2N+1)4"". An element ofG, will

be called a curvg¢on 7({N,d)] and an element ofj, will be called a surfacgon 7(N,d)]. The
mapping,

L:Gi—N:il— > [1(j)],

jeX

associates to a curve its length, and the mapping,

A:G,—Nik— > [k(j)],

jedXy

sends a surface to its area. Bywalk of lengthne N on 7(N,d) we shall mean a series of
consecutively neighboring pointse(,...,a;) in 7(N,d) that trace out a curvee G, . This curve
| assigns to every edgee X;, the number of times the walkaf,...,a,) runs throughx in
positive direction minus the number of times this walk runs thraxghthe negative direction. So
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a curve is thought of as just any configuration of edges equipped with a direction and a multiplic-
ity. A surface is conceived of analogously. A walk will be caliddsedif o=« .

We define the integral of ah-form w € (), over some elemerke G,, as follows.

Definition 9:

jkan:(k,w): > K(X)w(X).

XEXh

We define the boundary and coboundary operafgrsi,— G, and 8y,: Qp— Qp. 4 as fol-
lows:

(0n0)(v,7):= >, €(j, M) (9(v—e;,yU{i})—g(v,yU{j}) h=1,

JEy
(8nf ><v,y>==j27 (i, MiDF(w+e , WiH—fv,n\{i}), h=0,

wheree(j,0)=(—1)*1<eli<i} ande;, j e{1,...d}, denotes the unit vector in the¢h direction in
7(N,d). We define the operata$ on Q) as &, for a differential form inQ,,, so é,= 5|Qh. The

operatoré can be considered the discrete version of the derivative operatdr fooms. The
operatord on G, defined asﬂh=a|gh, will be referred to as the boundary operator, since it yields

the (h—1)-dimensional boundary of ah-dimensional object foh=1. Stokes’ theorem is the
statement thab and J are each other’s adjoints.
Theorem 10(Stoke9: For w e )}, andke G, 1, we have

f&o:f .
k ak

Proof: By 1, ,,) we denote the characteristic function af, ) € X;. Then to prove this
theorem it suffices to show tha#l, ,),0)=(1, ,),0w) for every ©,y) € X, andwe Qy:

(01(y0), @)= 2 (31, (W,0)0(W,0)
(w,0) e &,

= 2 2 e(j,0)Qp,(w—e,eU{jH— 1 ,(w,eU{i})o(w,e)

_(w,g)eXh jee
:Ey e(j, MiD(w(w+e, Wih) -, Wi})=(60)(v,7)=(1y,,0w). O

Theorem 11: 5 ?=0.
Proof: For w € (), andi<j we have, for all ¢,y) e X}, »:

<5h+15hw><v,y>=i2y €(i,y) (Sho(v+e, Nib)— 5hw<v,y\{i}>)=ij2y F(i,))G(i.)),
o

where
F(i,))=e(i,y)e(j, i}
and
G(i,j)=w(w+e+e , Wi,j})—o(w+e,\i,j})—w(w+e,Wi,j})+o(v, \Mij}).

Note thatG is symmetric and- is antisymmetric:
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FGL,DFG, D =€, y)e(, yibe(j,y) e, »i})
— ( _ 1)#{1(5 y\k<i}(_ 1)#{ke y\{i}\k<j}( _ 1)#{ke y\k<j}(_ 1)#{ke Witk<i}_— _ 1.

Thereforedy , 16h0=2; ;. ,F(i,])G(i,]) =0 for all w e Q. O
Because)= 6*, viewed as (#},) X (#4X},, 1) matrices, Corollary 12 immediately follows.

Corollary 12: 9>=0.

Definition 13:An elementp e G, is called closed if7,(p) =0.

We shall call a closed curvelaop. The boundary of a surfadeis always a loop sincé®k
=0. We shall say that,k spans kWith every loopl we can associate a class of surfatgs
:={ke G,|d,k=1}, the class of surfaces spanned IbyA surfacepeI'; will be called minimal
with respect td, if its areaA(p) is minimal in A(T")).

Definition 14:By the areaA(l) of a loop we shall mean the area of a surface that is minimal
with respect td.

A closed walk traces out a loop. By the area of a closed walk (..,«,= «a1) we shall mean
the area of the loop traced out by this walk, and denote iBtyx,...,a;)).

V. THE PARISI MODEL

In the description of the Parisi model we try to stay as close as possible to the notation used
in Ref. 1.

Consider7(N,d) and put on every plaquette a magnetic field, i.e., we define a 2-Brm
e (), with strengthBe[0,7], the sign of which will be chosen independently for every pair of
spatial directions:

B(v,{i,j})=S; B,

whereS;; j, is a random variable depending on the daji. The random variabl&;; j, is a coin
toss, i.e., the value @&, j, is chosen fron{—1,1} with distribution{1/2,1/2. It is obvious that, for
any of the 24172 choices forS, the constant field® on 7(N,d) is divergence-freesB=0. We
put q:=cosB; thenqe[ —1,1].

By ®(k) we denote the magnetic flux through some surflaedj,. This flux is simply the
sum of the fluxes through the plaquettekjrwhich, by Definition 9, equals

dk)= D, k(x)B(x)=JkB.

Xe Xy

We define the magnetic flux enclosed by a ldepg; as the fluxd (k) for somek spanned by,
and denote it byb(I). Since the field is divergence-free there must exist sofe (), for which
5,A=B. Indeed, if, forke{1,...d} we choose any¥,,....C4e R, and put

k—1
A(w,{|<})=c0+;l (C+W(j)S; 1 B);

then the requiremend;A=B is fulfilled, as can be checked easily by calculatingjX) at
(v,{i,j}) explicitly. By Stokes’ theorem we find, fab(l),

q>(|)=fk5A= IA= > 1(X)AX),

Xe Xy

forallkeI';. So®(l) is well defined and does not depend on the choick. of

Let the magnetic fiel® on 7(N,d) induce a deformation of the nearest-neighboN ¢21)¢
X (2N + 1)%-interaction matrix or lattice Laplacian, leading to the deformed lattice Laplakian
This matrix Ay), wend is defined by

(A ol 1, if [v—w|=1, foruv,wediy,
9/v.wl™ 1 0, otherwise,
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where the phases are determined by the field

(Aq)v,u+ek::eiA(v’{k})y
(Aq)u+ek U ::e—iA(v,{k}),

for all (v,{k}) e &;. From this definition it is clear thatA(), w=(Aq)w,,- Now let

W(l):=e'*M= H el COAMX)

Xe X

be the product of th’'s along a loopl. W(I) is known as the “Wilson loop,” althoughv(l)
itself is not a loop but a complex number assigned to the loér a closed walk’ that traces
out a loopl € G, we have that the product of thie,’s alongl’ equals the product of thi,’s along
[, henceW(l")=W(I). .

We define an operatof as follows:

A 1
X=—=A (7)

Vad

where the overcaret symbolizes the dependencl andd. ThenX is an element in the algebra
A of matrix-valued functions,

d
{=1+1}9 =M ns1y, (8)

where{—1,+ 1}(3) is the space of outcomes of the coin tosses Bhgl ;1)d denotes the (R
+1)9% (2N+1)¢ matrices with complex entries. OM ;- 1yd We have a normalized trace tr
=(1/(2N+1)%) Tr, where Tr is the standard trace by 1yd- Since we have here a trace that
satisfies tr{) =1, its expectation can serve as a generalized probability meésstate ¢ on A,
and it is therefore possible to calculate generalized expectations of eleme#ts of

e 1 A
QD(Xn) ::E(tr(X“))=WWE(Tr(A3)), for all neN.

Herel yields the expectation value with respect to tifel — 1)/2 coin tosses. The standardization
factor 1A/2d in (7) ensures thaK has variance 1 in the limiN—c. It remains to show that
indeede(X"™) can be interpreted as a sum over walksZ@N,d):

A 1 A A 1 A ~ -
- ny — ny — . D
(XN = G P X)= Gy E ile%d) inEZN’d) Xi i Xi i Xi i |- (9)

The produci)A(il,iZ---Xin i, on the right-hand side of this equation yields something different from
0 if and only if

lig—ip|=lip—ig|=""=lin_1—ig|=|in—i4=1;

(iq1,ip,ig,...,in,iq) is a closed walk or7{N,d) that starts from; and returns td, and hence
describes a loop i, . If the walk crosses some point i{N,d) more than once, then there is
more than one walk yielding the same loop. Therefore the sum over walk) inannot be
reduced to a sum over loops easily. However, we shall see that in thedlimit only a narrow
class of walks survive.

VI. PAIR PARTITIONS, WALKS, AND LOOPS

In this section we shall describe the connection between pair partitions, as described in the
Introduction, closed walks ofi{N,d), and loops inG; .
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Suppose we have somH e P,(S) consisting of n pairs («1,81),---,(a,,B,) for S
={1,...,2n}. To every pair ¢1,81), i €{1,...n}, we assign the unit vector in theh direction,e; .
Now for every elemense S, starting with 1, we make a step in the lattice in the direction
assigned to the pair ill to which this number belongs. #fis the first element of such a pair, then
the step will be taken in the positive direction.slfs the second element of such a pair, then the
step will be taken in the negative direction. If we choose the origin as a starting point for our
walks, then we always get a loop ¢8,1}", the corners of the unit cube imdimensions.

For fixed I1, define a mappingri;:S—{1,...n} that indicates to what paise S belongs:
on(s)=i if se(«;,B;). Furthermore, define a mappidly; : S—{—1,+ 1} that indicates whether
it is the first or the second element of this paiii(s)=1 if s=a; andd(s)=—1 if s=4;. To
keep track of our walk we define a mappingS— A, as follows:

v(s)=2 dn()ey, g, with v(0):=0.

To fix the starting point and direction of every edge in the walk, we need the following mapping:
W:S— Xy :imin(v (i —1),v(i)),

where miu(i—1),0(i)) is the component-wise minimum af(i—1) and v(i). Now, let
v1:Po(S)— G, associate tdl the loop inG; traced out by the walkOwv(1),0(2),...0(2n
-1),0):

2n
71(H)==j21 (D Lwi) fog (D) -

Then one easily checks thai(II) is indeed a loop, i.e4;y,(11)=0.

Apart from y;, we shall also need an injective mappipg: P,(S)— G, that maps a partition to
a surface spanned by (IT). To this end let us regard the pair partition in the circle representation
as a planar graph with a closed outer edge. For every planar graph we can construct a dual by
regarding every sector inside the outer edge of the graph as a vertex in the dual graph. The vertices
in the dual graph are then connected by edges when the corresponding sectors have an edge in
common.

Definition 15: The dual graph of a pair partition is the dual of the planar graph generated by
its circle representation

Figure 5 shows the construction of the dual graph of the partitibh
={(1,9,(2,6),(3,7),(4,8). To constructy,, consider a planar graphi, given by a circle repre-
sentation of a pair partitiohl € P,(S). The disk sectors in this graph represent elemensg,ofas
is clear from the construction of the circle representation. Namely, we assign to sectors in

FIG. 5. The dual graph of the pair partitidd={(1,5),(2,6),(3,7),(4,8). The orientation of the walk that traces out
v,(I1) is indicated by arrows.
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H a vertex in space as follows: denote Ay the sector irH that has an edge in common with the
circle segment between 1 anch.2Then to every sectoA in H we associate a vertey
=(y(1),...y(n)) according to the rule.

|0, if A and A, lie on the same side of the connecting line with indix
y(h= 1, otherwise.

As a consequence t4, is associated 8{0,1}". This procedure is illustrated in Fig. 6, which
shows a picture of the partitidd ={(1,5),(2,4),(3,6) with the corner points in every sector as an
element of{0,1}3. Since two sectors in the graph that have an edge in common can be associated
to points inX, that differ only one step in the direction corresponding to the shared edge, we can
connect two such points by an edge in the dual gréph,of I1, corresponding to an edge it .

This way the sectors i’ point at plaquettes itt,,, since every crossing of connecting lines in

H has four sectors iRl that share that point. Since any two lines cross at most once, the number
of plaquettes enclosed hiy’ is equal to #(II), the number of crossings dil. In fact, H’
contains a plaquette, based upon the minimum of its four corner pointsfor every pair (,j)

e c(IT). We can now define

H = 1 il .
y2(1I) (i,j)eZc(H) (CIRinD)

Note that every plaquette in,(IT) receives positive orientation in this definition.

Theorem 16: For everylIl e P,(2n) we haved,y,(II) =y, (II).

The content of this theorem becomes apparent if one realizes that the outer edge of the dual
graph of the pair partitiodl represents the wali (0),v(1),...v(2n)), as shown in Fig. 5. It is
immediately clear that noncrossing partitidis= P,(2n) yield y,(IT)=0, so we havel,y,(II)
=0. This agrees withy;(I1)=0: every step that is taken is retraced later. This, however, will be
a special case of the proof we shall give.

Proof: Let H be the planar graph given by the circle representatiol.dfix an edge ¢,{i})
in the dual graphiH’, of I1. This edge crosses a segmentof theith connecting line irH. There
are now three possibilities.

(1) The segmenk is theith connecting line itself, i.e., theh connecting line crosses no other
connecting lines irH.

(2) The segmenk connects the edge of the circle to a crossing withjtheconnecting line in
H.

(3) The segmenk connects 2 crossings, say with thgh and thej,th connecting line.

In the first case the connecting line in the circle representation correspondigptits the
circle into two separate parts connected by one eglgie,H'. Theith connecting line therefore
crosses no other connecting lines. This means that there exikteRa,...n} such that {,k)

e c(I1); thereforey,(IT) (v,{i})=0. Since the walk that traces out(Il) is closed, it has to visit
{ twice; once in the positive direction and once in the negative directiony,$bl)({) also
vanishes.

FIG. 6. The corner points of the surface generated by the parfitier{(1,5),(2,4),(3,6).
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In the second case the edge{(i}) is in the boundary of the plaquette;(,{i,j}), so
(2v2(ID)(v {i}) = €(i {1 1) Qyy +e fin (0T = Ly gip (A1) (10

First suppose <j; then the crossing pairse,8;) and (¢;,B;) in II satisfy o;<a;<g;<p;.
Now if v =uj;, meaning that andu;; lie on the same side of thi¢h andjth connecting line as
0, then the walk that traces oy{(IT) reaches before crossing thgth connecting line. Therefore
the step this walk takes from onward corresponds @, , soy,(IT)(v,{i})=1. From(10) we see
that also(d, y,(IT))(v,{i}) =1. If, on the other hand; =uj; +¢;, thenv andu;; lie on the same
side of theith connecting line, but not on the same side of jttieconnecting line. This means that
the walk that traces oug, (IT) has to cross thgth connecting line before it can reach But this
means that a step in théh direction has also been taken. Therefore we know that the step in the
ith direction corresponds tg3;, so y,(II)(v,{i})=—1. From (10) we see that also
(9272(I1))(v {i})=—1. Now supposé>], then the crossing pairse(,B;) and (@;,B;) in 11
satisfy aj< ;< B;<B;. The same type of argument as used for the caseyields

v=U;;= (d272(ID)(v {i}H) = y1(ID (v {iph = -1,

v=Ujj+&=(dyo(ID)(v {i})=y.(ID) (v {i})=1.

In the third case «,{i}) is in the boundary of two plaquetteg;xl:l(u_j iy and p;
ijt
=1(uij21{iyjz}) . Since we are free to choo$e<j,, we can distinguish three cases:
@ i<ji<ja,
(b) j1<ii<j,, and
© ji<jz<i.
To prove casda) we note that in this case we hauqzzuiler e, andvzuijz. Now calculate

(d2pD) (v fi})=€(ja ’{i})(l(uij1+ejl,{i})(v A - 1(uijl,{i})(v AiD)=-1,
(d2p2) (v, {i}) =€(j2 a{i})(l(uij2+ejz,{i})(v A= Ly ain(v AiD)=1.

Therefore we have th&,(p,+p,))(v,{i})=(d,y,(I1))(v,{i})=0. Since ¢,{i}) is not an outer
edge ofH', we also have thay,(I1)(v,{i})=0. The reader can now easily verify cagbsand
(c), since the method of proof for these cases is the same as fofaase

Finally, there are the edges if; that are not part of the dual graph &f. We have
v,(IT)(u,) =0 for everyu, e X, not corresponding to a plaquetteiti. For every suchu;, we
have d,(y,(II)(u;))=0. Furthermore, we have,(I1)(u,)=0 for everyu, not in the walk
{w(1) {og(L)}),....,(w(2n),{or(2n)}}, so on the edges that are not in the dual grapH efe
have that,y,(I1) = y,(I1) =0, since every, e {(w(1) {on(1)}),....(w(2n),{om(2n)})} is rep-
resented in the dual graph bF. O

Theorem 17: For everyll e P(2n) the surfacey,(1I) is minimal inT"., ().

Proof: In casen=1 the loopy,(IT) cannot enclose a plaquette. It follows from the definition
of y,(II) that in this casey,(11)=0, so the theorem holds for=1. In the following we assume
n=2 andi<j fori,je{1,..n}.

On the unit vectorge,,...,e,} we introduce the following projection operator:

Qijer=1; jp(k)e.

Then the elemeny,(I1) will be minimal inFyl(H) if for every pairi,j € {1,...n} the projection of

the closed walk that traces oyt (IT) is a closed walk around ({,j}) e X,, provided that
(i,j) e c(Il). We now introduce

2n
Yij= Ejl{QijU(s)}1
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the set of elements A}, the projection to thdi,j} plane of the walk that traces o (IT) visits,
and note that the proof is finished if we showj{ e c(I1)=#Y;=4.
Suppose i(j) e c(1l), then («;,B;) and (a;,B;) are crossing pairs idl, so a;<a;<p
<Bj. This means tha¥';;={0.e; ,e;+¢;,e;}, S0 #j;=4. O
Corollary 18: For all ITe P,(2n) we have that AL(IT)) =A(y(I1)) =#c(1).

VIl. THE PARISI MODEL AND THE g-HARMONIC OSCILLATOR

To show the connection between théharmonic oscillator and the Parisi model, we prove
that, ford—o andN—c<, the moments oK converge to the moments &f=a-+a*. In short,X
converges in distribution tX.

Theorem 19:Let ¢, be the vacuum state on the g-harmonic oscillator algebra generated by
X=a+a*. Then for all ne N the following holds:

eq(XM)=lim lim $(X").

d—o N—oo

Corollary 7 states how the moments of tiirarmonic oscillator can be calculated as a sum
over pair partitions. Therefore, here it suffices to show that

lim lim (XM= > g,
d—o N—oo ITePy(n)

Proof: From Eq.(9) we know thatp(X") can be interpreted as a sum over closed walks in
7(N,d). The theorem then is trivial fon odd since an odd number has no pair partitions and a
closed walk cannot return to its starting point in an odd number of steps. So we may assume
=2r, rel, in the following.

We define a sublatticé” (N,d) of 7{N,d) as follows:

T'(N,d):={—N+(r+1),...N—(r+1)}9
The set of all walks that start from some= 7' (N,d) and have lengtm will be defined as
W) :={ (6] 150 ofn-1:X)] 10 ojno1€ TN, IX=jo=j1—jol="=]jn-1—Xx|=1}.
Note that we have
#W(x,n)=2"d(d—1)---(d—r+1).
To every walkw e W(x,n) we can assign some surfaseI',,, the set of minimal surfacesthat
have the closed wall as a boundary. We can then choose a%&tn) that contains exactly one
surfaceseI', for everyw e W(x,n), i.e., #5(x,n) =#W(x,n). Every surfacese S(x,n) has to
be minimal with respect to its corresponding walke WW(x,n) in order for the surface to have the

corner points of the plaquettes in this surfaceZ{iiN,d).
With the use of these definitions we can rewrite the sum oyén Eq. (9) as follows:

~ 1 ~ ~ ~ ~
H(X") = E Xi o Xi X
(P( ) (2N+l) ilE'ZZ(N,d) i,e T(N,d) ine 7(N,d) .17 003 In'|l>
S Xi i X iooX 11
N+ i g \pefivg T 22l Tl @)
i1¢ 7 (N,d)

and calculate
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~ A - 1 - 1 a
R Y = iIZpe x,WPA(P)
ECKG iy Xi i) Ww%&,n) EW(w)) WWE%}M) E(e'=pets )
- ety == S el
(Zd)n we W(x,n) (Zd)n se S(x,n) '

where we used Stokes’ theorem. A walk that startg iN,d) can never reach the boundary of
7(N,d), so we can identify every walkveV(x,n) with a walk w' e W(y,n), for x,y
e7'(N,d), via

W:(X!j21"'!jn !X)H(yvj2_(X_y)!"'1jn_(X_y)!y):W,-
From the fact thaB is constant, it follows that the magnetic flux througa S(x,n), correspond-

ing to w, is equal to the magnetic flux througsl € S(y,n), corresponding tow’, for X,y
e 7'(N,d). This implies that we have

> k= Y RSB,

se S(x,n) seS(y,n)

We can therefore perform the first sum overin (11), yielding

(2(N=(r+1)+1)9 .
(2N+1)¢ i, eTINd)  ineZIN,d)

N XinYo .

i,z

Xo,,X
Since for every point inZ(N,d)\7’(N,d) we have, at most, as many loops as for points in

7'(N,d) we can estimate an upper bound for the second sumigvar(11):

(2(N—=(r+1))+1)%—(2N+1)°
(2N+1)¢

#FW(0,n).

This term tends to 0 foN—, so we find

lim XM =E[ X - 2 Xoi Xi i Xi ol
d

N—o iezd ez

We now turn to the limitd—«. There are exactly 715’2(n)(?)2r walks that start in 0, have
lengthn, and go through different spatial directions. The number of closed walks that go through
less thanr, sayr’, spatial directions is less tham’Q”(?A), so the contribution of these walks
vanishes in the limid—o due to the standardization &f. The closed walks that go through
spatial directions take a step in each direction exactly twice, and therefore correspond to a pair
partition IT e P,(2r). The expectation value of the magnetic flux through the area of the loop
v1(IT) such a walk traces out, is given by

E(W()@(H)))=]E( H eiyz(H)(x)B(x)) - H ]E:(ei}/z(ﬂ)(x)B(x)):(COSB)A(yz(H)):qA(yZ(H)),

! !
Xe X, xe X,

whereX,:={(v,7y) € Z9XP,({1,...d})} with the same conventions we have 5. In the above
calculation the expectation of the product overis interpreted as a product of expectations. To
justify this we note thaty,(II) has, at most, one plaquette for every pair of spatial directions and
that the sign of the magnetic fieRlfor a pair of spatial directions is independent of that for every
other pair of directions. This implies that the fluxes through different plaquettes (i) are
independent. It is now possible to wrifgX?") as a sum over partitions in the lirrdt N— o:
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fim-lim $(X*") = lim (Zd)r 2 2 E(Bgos,(Ag),,0

d—o N—oo d—w in e7d ior e7d

O
= 2 ghn= > g,
e Py(2r) e Py(2r)
where we used Corollary 18.

VIII. NONCOMMUTATIVE INDEPENDENCE IN THE PARISI MODEL

Until now we concerned ourselves with only ogesaussian random variable. In order to
illustrate the concept off independence in this model, we shall have to define moreA&ay,
g-Gaussian random variables. The Parisi model allows for such an extension in a straightforward
way.

If dis divisible by, the latticeZ(N,d) can be decomposed as a produci\6§ublattices as
follows:

ﬂN,d):MlxszxM/\ﬁ

where dimM;=d/N for je{1,..N}. We can now use the-deformed lattice Laplacian
defined in Sec. V to defind/ g-Gaussian random variables ,...,X e A as follows:

(X)UW \/ (Aq)vw, if v—weM;,

0, otherwise.

In this way 5<i Jie{l,.N}, is the standardized deformed lattice LaplacianMp. From the
previous section we can deduce that the operafars.. X, defined in this way converge, in
distribution, to theg-Gaussian random variablé§=a;+a’ for d—o~ andN—o. Now fix N/
=2 and letX=X; andY=X,.

Theorem 20 (independence: For n,me N we have that

lim (XY™ = lim H(Y™XM = lim (XM (Y™).

N— o N— o N— o

Proof: Write out (X"Y™ to find

I | B R I U S AR
¢ NFL)° | = = e i iy Vi |
e7(N,d) eT(N,d)
Now, obviously the nonvanishing terms all satisfy
(ig—=ip)+- -+ (=) +(1=J2) +- -+ (jm—i1)=0.
The firstn differences all lie inM; and the lasin differences all lie inM,, therefore,
(ig=ip)+-+(in=j)=(1=J2) -+ (jm—i1) =0,

and it follows thati;=j,. With reference to the proof of Theorem 19, we can chaqgsej;
=0, so we find

lim <zv<xnvm>=E(i 2 ;2; xo,iz-~-xin,oYo,12---ij,o)
N— o 2100 nl2i- m

=E(i 2 Koy ,o)lﬁi(j 2 Yo, 0)—“m PXG(Y™).

..... im N—soe
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Since{ is a trace state, we have tha¢X"Y™) = p(Y™X"). O
The same type of proof shows that, for genexalwe have

~.0n SN ~. N iy
Xy Kithy) = €(Xifp)) - (K )

provided the value&(1),... k(N) are all different. A
We conclude that in the sense of Definition 2, ¥jegend to independent random variables in
the limit N—oo, and to independerg-Gaussians in the limiN—oco, d—oo,
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