Search for Scalar Charm Quark Pair Production in $pp$ Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

The ATLAS Collaboration

Abstract

The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 8$ TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from $c$ quarks. Events containing isolated electrons or muons are vetoed. In an $R$-parity-conserving minimal supersymmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm–neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded.
Search for Scalar Charm Quark Pair Production in $pp$ Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

The ATLAS Collaboration

Supersymmetry (SUSY) [1–9] is a theory that extends the Standard Model (SM) and naturally resolves the hierarchy problem by introducing supersymmetric partners of the known bosons and fermions. In the framework of a generic $R$-parity-conserving minimal supersymmetric extension of the SM, the MSSM [10–14], SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP) is stable, providing a possible candidate for dark matter. In a large variety of models, the LSP is the lightest neutralino, $\tilde{\chi}^0_1$.

The scalar partners (squarks) of various flavors of quarks may, rather generally, have different masses despite constraints on quark flavor mixing [15]. Recent searches disfavor low-mass top squarks (stops), sbottoms, and gluinos, so direct scalar-charm ($\tilde{c}$) pair production could be the only squark production process accessible at the LHC. Searches for $\tilde{c}$ states provide not only a possible supersymmetry discovery mode but also the potential to probe the flavor structure of the underlying theory.

Since no dedicated search for $\tilde{c}$ has previously been performed, the best existing lower limits on $\tilde{c}$ masses are obtained from searches for generic squark and gluino production at the LHC [16, 17], and from the reinterpretation of LHC searches [18] for direct pair production of the scalar partner of the top quark followed by decays $t_1 \rightarrow c + \tilde{\chi}^0_1$. The top squark searches have a final state similar to that expected for scalar charm quarks, but are optimized for small $m_{t_1} - m_{\tilde{\chi}^0_1}$ mass differences, and so have good sensitivity to the scalar charm quark only when $m_c - m_{\tilde{\chi}^0_1} \lesssim m_W$.

In this Letter, a dedicated search for direct $\tilde{c}$ pair production is presented. The scalar charm quark is assumed to decay dominantly or exclusively via $\tilde{c} \rightarrow c + \tilde{\chi}^0_1$. The expected signal is therefore characterized by the presence of two jets originating from the hadronization of the $c$ quarks, accompanied by missing transverse momentum ($E_T^{\text{miss}}$) resulting from the undetected neutralinos.

The ATLAS detector is described in detail elsewhere [19]. This search uses $pp$ collision data at a center-of-mass energy of 8 TeV recorded during 2012 at the LHC. After the application of beam, detector and data quality requirements, the data set corresponds to a total integrated luminosity of 20.3 fb$^{-1}$ with a 2.8% uncertainty, using the methods of Ref. [20].

The data are selected with a three-level trigger system that required a high transverse momentum ($p_T$) jet and $E_T^{\text{miss}}$ [21]. While events containing charged leptons (electrons or muons) in the search region are vetoed, single-lepton triggers are used for control regions. Events are required to have a reconstructed primary vertex consistent with the beam positions, and to meet basic quality criteria that suppress detector noise and noncollision backgrounds [22]. Jets are reconstructed from three-dimensional topological calorimeter energy clusters by using the anti-$k_t$ jet algorithm [23, 24] with a radius parameter of 0.4. The measured jet energy is corrected for inhomogeneities and for the noncompensating response of the calorimeter by using $p_T$- and $\eta$-dependent [25] correction factors [26]. The impact of multiple overlapping $pp$ interactions (pileup) is accounted for using a technique, based on jet areas, that provides an event-by-event and jet-by-jet correction [27]. Only jet candidates with $p_T > 20$ GeV within $|\eta| < 2.8$ are retained.

Electron candidates are required to have $p_T > 7$ GeV, $|\eta| < 2.47$ and to satisfy “medium” selection criteria [28]. Muon candidates are required to have $p_T > 6$ GeV, $|\eta| < 2.4$ and are identified by matching an extrapolated inner-detector track to one or more track segments in the muon spectrometer [29]. When defining lepton control regions, muons and electrons must meet additional “tight” selection criteria [29, 30], and must satisfy track and calorimeter isolation criteria similar to those in Ref. [31].

Following this object reconstruction, overlaps between jet candidates and electrons or muons are resolved. Any jet within a distance $\Delta R = 0.2$ of a medium quality electron candidate is discarded. Any remaining lepton within $\Delta R = 0.4$ of a jet is discarded. Remaining muons...
must have longitudinal and transverse impact parameters within 1 mm and 0.2 mm of the primary vertex, respectively.

The calculation of $E_T^{\text{miss}}$ is based on the vector sum of the calibrated $p_T$ of reconstructed jets (with $p_T > 20$ GeV and $|\eta| < 4.5$), electrons, muons and photons, and the calorimeter energy clusters not belonging to these reconstructed objects [32].

Jets containing $c$-flavored hadrons without $b$-flavored parent hadrons are identified using an algorithm, optimized for charm tagging, based on a neural network that exploits both impact parameter and secondary vertex information and with a $B$ to $D$ decay chain vertex finder [33]. This algorithm achieves a tagging efficiency of 19% (13%, 0.5%) for $c$-jets ($b$-jets, light-flavor or gluon jets) in $t\bar{t}$ events. The efficiency for tagging $b$-jets is determined from measurements of dileptonic $t\bar{t}$ events [34].

The c-jet tagging efficiency and its uncertainty have been calibrated in inclusive jet events over a range of $p_T$ using jets from collision data containing $D^*$ mesons [35]. Jets can be $c$-tagged only within the acceptance of the inner detector ($|\eta| < 2.5$), so only such central jets are retained after the above selection.

Events are then required to have $E_T^{\text{miss}} > 150$ GeV and one jet with $p_T > 130$ GeV to ensure full trigger efficiency, as well as a second jet with $p_T > 100$ GeV. The two highest-$p_T$ jets are required to be $c$ tagged. The multijet background contribution with large $E_T^{\text{miss}}$, caused by mismeasurement of jet energies in the calorimeters or by neutrino production in heavy-quark decays, is suppressed by requiring a minimum azimuthal separation ($\Delta \phi_{\text{min}}$) of 0.4 between the $E_T^{\text{miss}}$ $c$ direction and any of the three leading jets. To reduce the effect of pileup, the third jet is exempted from this requirement if it has $p_T < 50$ GeV, $|\eta| < 2.4$ and less than half of the sum of its track $p_T$ is associated with tracks matched to the primary vertex. In addition, the ratio of $E_T^{\text{miss}}$ to the scalar sum of the transverse momenta of the two leading jets is required to be above one-third. Events containing residual electron or muon candidates are vetoed in order to reduce electroweak backgrounds.

After these requirements, the main SM processes contributing to the background are top quark pair and single top production, together referred to as top production, as well as associated production of $W/Z$ bosons with light- and heavy-flavor jets, referred to as $W$+jets and $Z$+jets. A selection based on the corrected-contrasted transverse mass $m_{\text{CT}}$ [36] is employed to further discriminate scalar-charm pair from top production. For two identical decays of heavy particles into two visible particles $v_1$ and $v_2$, and into invisible particles, the transverse mass $m_{\text{CT}}$ is defined as

$$m_{\text{CT}} = \left( \frac{m_T^2 - m_{\chi_1^0}^2}{m_{\chi_1^0}} \right).$$

For $t\bar{t}$ production, if both $b$-jets are mistagged as $c$-jets, the $m_{\text{CT}}$ is built using those two jets expected to have a kinematic endpoint at 135 GeV.

To maximize the sensitivity across the $\tilde{c} - \tilde{\chi}^0_1$ mass plane, three overlapping signal regions (SR) are defined: $m_{\text{CT}} > 150, 200$, and 250 GeV. The remaining $t\bar{t}$ background after the $m_{\text{CT}}$ requirement mostly comprises events with one true $c$-jet from a $W$ decay and a mistagged $b$-jet from a top quark decay. Events in which a $Z$ boson is produced in association with heavy-flavor jets where the $Z$ boson decays into $\nu\bar{\nu}$ also enter the high-$m_{\text{CT}}$ regions. The heavy-flavor jets often originate from a gluon splitting, $g \to c\bar{c}$, which can lead to a small angular separation between the resulting $c$-jets and therefore a small invariant mass $m_{cc}$. Consequently, following a second jet and any of the three leading jets is required to be above one-third. Events containing residual electron or muon candidates are vetoed in order to reduce electroweak backgrounds.

After these requirements, the main SM processes contributing to the background are top quark pair and single top production, together referred to as top production, as well as associated production of $W/Z$ bosons with light- and heavy-flavor jets, referred to as $W$+jets and $Z$+jets. A selection based on the corrected-contrasted transverse mass $m_{\text{CT}}$ [36] is employed to further discriminate scalar-charm pair from top production. For two identical decays of heavy particles into two visible particles $v_1$ and $v_2$, and into invisible particles, the transverse mass $m_{\text{CT}}$ is defined as

$$m_{\text{CT}} = \left( \frac{m_T^2 - m_{\chi_1^0}^2}{m_{\chi_1^0}} \right).$$

For $t\bar{t}$ production, if both $b$-jets are mistagged as $c$-jets, the $m_{\text{CT}}$ is built using those two jets expected to have a kinematic endpoint at 135 GeV.

To maximize the sensitivity across the $\tilde{c} - \tilde{\chi}^0_1$ mass plane, three overlapping signal regions (SR) are defined: $m_{\text{CT}} > 150, 200$, and 250 GeV. The remaining $t\bar{t}$ background after the $m_{\text{CT}}$ requirement mostly comprises events with one true $c$-jet from a $W$ decay and a mistagged $b$-jet from a top quark decay. Events in which a $Z$ boson is produced in association with heavy-flavor jets where the $Z$ boson decays into $\nu\bar{\nu}$ also enter the high-$m_{\text{CT}}$ regions. The heavy-flavor jets often originate from a gluon splitting, $g \to c\bar{c}$, which can lead to a small angular separation between the resulting $c$-jets and therefore a small invariant mass $m_{cc}$. Consequently, following a second jet and any of the three leading jets is required to be above one-third. Events containing residual electron or muon candidates are vetoed in order to reduce electroweak backgrounds.

After these requirements, the main SM processes contributing to the background are top quark pair and single top production, together referred to as top production, as well as associated production of $W/Z$ bosons with light- and heavy-flavor jets, referred to as $W$+jets and $Z$+jets. A selection based on the corrected-contrasted transverse mass $m_{\text{CT}}$ [36] is employed to further discriminate scalar-charm pair from top production. For two identical decays of heavy particles into two visible particles $v_1$ and $v_2$, and into invisible particles, the transverse mass $m_{\text{CT}}$ is defined as

$$m_{\text{CT}} = \left( \frac{m_T^2 - m_{\chi_1^0}^2}{m_{\chi_1^0}} \right).$$

For $t\bar{t}$ production, if both $b$-jets are mistagged as $c$-jets, the $m_{\text{CT}}$ is built using those two jets expected to have a kinematic endpoint at 135 GeV.

To maximize the sensitivity across the $\tilde{c} - \tilde{\chi}^0_1$ mass plane, three overlapping signal regions (SR) are defined: $m_{\text{CT}} > 150, 200$, and 250 GeV. The remaining $t\bar{t}$ background after the $m_{\text{CT}}$ requirement mostly comprises events with one true $c$-jet from a $W$ decay and a mistagged $b$-jet from a top quark decay. Events in which a $Z$ boson is produced in association with heavy-flavor jets where the $Z$ boson decays into $\nu\bar{\nu}$ also enter the high-$m_{\text{CT}}$ regions. The heavy-flavor jets often originate from a gluon splitting, $g \to c\bar{c}$, which can lead to a small angular separation between the resulting $c$-jets and therefore a small invariant mass $m_{cc}$. Consequently, following a second jet and any of the three leading jets is required to be above one-third. Events containing residual electron or muon candidates are vetoed in order to reduce electroweak backgrounds.

After these requirements, the main SM processes contributing to the background are top quark pair and single top production, together referred to as top production, as well as associated production of $W/Z$ bosons with light- and heavy-flavor jets, referred to as $W$+jets and $Z$+jets. A selection based on the corrected-contrasted transverse mass $m_{\text{CT}}$ [36] is employed to further discriminate scalar-charm pair from top production. For two identical decays of heavy particles into two visible particles $v_1$ and $v_2$, and into invisible particles, the transverse mass $m_{\text{CT}}$ is defined as

$$m_{\text{CT}} = \left( \frac{m_T^2 - m_{\chi_1^0}^2}{m_{\chi_1^0}} \right).$$

For $t\bar{t}$ production, if both $b$-jets are mistagged as $c$-jets, the $m_{\text{CT}}$ is built using those two jets expected to have a kinematic endpoint at 135 GeV.

To maximize the sensitivity across the $\tilde{c} - \tilde{\chi}^0_1$ mass plane, three overlapping signal regions (SR) are defined: $m_{\text{CT}} > 150, 200$, and 250 GeV. The remaining $t\bar{t}$ background after the $m_{\text{CT}}$ requirement mostly comprises events with one true $c$-jet from a $W$ decay and a mistagged $b$-jet from a top quark decay. Events in which a $Z$ boson is produced in association with heavy-flavor jets where the $Z$ boson decays into $\nu\bar{\nu}$ also enter the high-$m_{\text{CT}}$ regions. The heavy-flavor jets often originate from a gluon splitting, $g \to c\bar{c}$, which can lead to a small angular separation between the resulting $c$-jets and therefore a small invariant mass $m_{cc}$. Consequently, following a second jet and any of the three leading jets is required to be above one-third. Events containing residual electron or muon candidates are vetoed in order to reduce electroweak backgrounds.
Noncollision backgrounds are found to be negligible.

The estimation of the main background processes is carried out by defining a set of three data control regions (CR) that do not overlap with each other or with the signal regions. The CRs are kinematically close to the SRs and each of them is enhanced in one or two of the backgrounds that is dominant in the CRs, while having low expected signal contamination (less than 1%). A statistical model is set up in which the background expectation in the CRs and SRs depends on several parameters of interest: the normalizations of the dominant backgrounds, $m_{\ell\ell}$, and $m_T^{miss}$, as well as on nuisance parameters including the effect of uncertainties on the jet energy scale (JES) and resolution, calorimeter resolution for energy clusters not associated with any physics objects, energy scale and resolution of electrons and muons, c-tagging and mistagging rates, pileup, and luminosity. A profile likelihood fit of the background expectation to the data is performed simultaneously in all CRs [49], and from it the background normalizations are extracted. The normalization factors, which are consistent with unity within uncertainties, are then applied to the MC expectation in the signal regions.

The first control region is populated largely by $t\bar{t}$ and $W+jets$. It contains events with exactly one isolated electron or muon with $p_T$ above 50 GeV. The leading two jets, with $p_T > 130$ and 50 GeV respectively, must be c-tagged. To select events containing $W \rightarrow \ell\nu$, the transverse mass of the system is required to be between 40 and 100 GeV. The upper bound reduces possible signal contamination from SUSY models that produce leptons in cascade decays. Finally, it is required that $E_T^{miss} > 100$ GeV and $m_{CT} > 150$ GeV. The second control region is populated by $Z \rightarrow \ell^+\ell^-$ events with two opposite-sign, same-flavor leptons, where the minimum $p_T$ requirement is 70 GeV for the leading lepton and 7(6) GeV for the subleading electron (muon). The transverse momenta of the leptons are added vectorially to the $E_T^{miss}$ to mimic the $Z \rightarrow \nu\bar{\nu}$ decay, and the modulus of the resulting two-vector is required to be larger than 100 GeV. The leading two jets are required to be c-tagged and their $p_T$ must each be above 50 GeV. The invariant mass $m_{\ell\ell}$ of the two leptons is required to be between 75 and 105 GeV (Z-mass interval). A third control region, populated almost exclusively by dileptonic $t\bar{t}$ events, contains events with two opposite-sign, different-flavor leptons, where the leading lepton has $p_T > 25$ GeV and the subleading lepton $p_T$ is above 7(6) GeV for electrons (muons). It is required that $E_T^{miss} > 50$ GeV and $m_{\ell\ell} > 50$ GeV. The leading two jets are required to be c-tagged and have $p_T > 50$ GeV. In all CRs, events with additional lepton candidates beyond the required number of signal leptons are vetoed using the same lepton requirements used to veto events in the SRs.

The subdominant background contributions from dibosons, $Zt\bar{t}$ and $Wt\bar{t}$ are estimated by MC simulation. Finally, the residual multijet background is estimated using a data-driven technique based on the smearing of jets in a low-$E_T^{miss}$ data sample with jet response functions [50].

The experimental and theoretical uncertainties affecting the main backgrounds are correlated between control and signal regions, and the data observed in control regions constrain the uncertainties on the expected yields in the signal regions. The residual uncertainty due to the theoretical modeling of the top-production background is about 7%. It is evaluated using additional MC samples generated with AODMC (where initial- and final-state radiation parameters are varied) an alternative fragmentation model (HERWIG), an alternative generator (MC@NLO), and by using diagram subtraction rather than diagram removal to account for the interference between $t\bar{t}$ and single top $W$t-channel production [51]. After the fit, the residual uncertainties on the $W+jets$ and $Z+jets$ theoretical modeling account for less than 20% of the total uncertainty. The dominant contributions to the residual uncertainty on the total background are from c-tagging (~20%), normalization uncertainties related to the numbers of events in the CRs (10%–20%), and JES (~10%).

For the SUSY signal processes, theoretical uncertainties on the cross section due to the choice of renormalization and factorization scales and from PDFs are found to be between 14% and 16% for $\tilde{c}$ masses between 100 and 550 GeV. Prior to the fit, the detector-related uncertainties with largest impact on the signal event yields are those for c-tagging (typically 15%–30%) and JES (typically 10%–30%).

Table I reports the observed number of events and the SM predictions for each SR. The data are found to be below the SM background expectations, but consistent with them given the uncertainties. Figure 1 shows the measured $m_{CT}$ and $m_{cc}$ distributions in the $m_{CT} > 150$ GeV region compared to the SM predictions. Monte Carlo estimates are shown after the normalizations extracted from the profile likelihood fit are applied. For illustrative purposes, the distributions expected for the simplified model with ($\tilde{c}$, $\tilde{\chi}_1^0$) masses of (400, 200) GeV and (550, 50) GeV are also shown.

Since no significant excesses are observed, the results are translated into 95% confidence-level (C.L.) upper limits on contributions from non-SM processes using the CLs prescription [52]. Figure 2 shows the observed and expected exclusion limits at 95% C.L. on the $\tilde{c}$-$\tilde{\chi}_1^0$ mass plane, assuming a single accessible $\tilde{c}$ particle with BR($\tilde{c} \rightarrow c + \tilde{\chi}_1^0$) = 100%. The SR with the best expected sensitivity at each point in the plot is adopted as the nominal result. In the region where the c-tagged analysis of the ATLAS $\ell \rightarrow c + \tilde{\chi}_1^0$ search [18] provides a stronger expected limit, i.e. for $m_{\tilde{c}} > m_{\tilde{\chi}_1^0} \lesssim m_W$, that result is used. The region excluded by the ATLAS monojet search described in Ref. [18] is shown separately as a grey
TABLE I. Expected and observed number of events for an integrated luminosity of 20.3 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. Top, Z+jets and W+jets contributions are estimated using the fit described in the text. For comparison, the numbers obtained using MC simulations only are shown in parentheses. The row labeled “Others” reports subdominant electroweak backgrounds estimated from MC simulations. The total uncertainties are also reported.

<table>
<thead>
<tr>
<th>$m_{\text{CT}}$ (GeV)</th>
<th>&gt;150</th>
<th>&gt;200</th>
<th>&gt;250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>7.4 ± 2.7 (7.1)</td>
<td>3.9 ± 1.6 (3.7)</td>
<td>1.6 ± 0.7 (1.5)</td>
</tr>
<tr>
<td>Z+jets</td>
<td>14 ± 3 (13)</td>
<td>7.7 ± 1.7 (7.0)</td>
<td>4.3 ± 1.2 (3.9)</td>
</tr>
<tr>
<td>W+jets</td>
<td>7.2 ± 4.5 (7.4)</td>
<td>4.1 ± 2.6 (4.2)</td>
<td>1.9 ± 1.2 (1.9)</td>
</tr>
<tr>
<td>Multijets</td>
<td>0.3 ± 0.3</td>
<td>0.2 ± 0.2</td>
<td>0.05 ± 0.05</td>
</tr>
<tr>
<td>Others</td>
<td>0.5 ± 0.3</td>
<td>0.4 ± 0.3</td>
<td>0.4 ± 0.3</td>
</tr>
<tr>
<td>Total</td>
<td>30 ± 6</td>
<td>16 ± 3</td>
<td>8.2 ± 1.9</td>
</tr>
<tr>
<td>Data</td>
<td>19</td>
<td>11</td>
<td>4</td>
</tr>
</tbody>
</table>

FIG. 1. Distributions of $m_{\text{CT}}$ (top) and $m_{cc}$ (bottom), and their corresponding SM predictions. Signal region selections ($m_{\text{CT}} > 150$ GeV for the $m_{cc}$ distribution) are applied, other than for the variable plotted. Arrows indicate the SR requirements on $m_{\text{CT}}$ and $m_{cc}$. In the ratio plots, the grey bands correspond to the combined MC statistical and experimental systematic uncertainty.

FIG. 2. Exclusion limits at 95% C.L. in the $\tilde{c} \tilde{\chi}_0^0$ mass plane. The observed (solid red line) and expected (dashed blue line) limits include all uncertainties except for the theoretical signal cross-section uncertainty (PDF and scale). The band around the expected limits show ±1σ uncertainties. The dotted lines around the observed limits represent the results obtained when moving the nominal signal cross section up or down by the ±1σ theoretical uncertainty.

tends the results of previous flavor-blind analyses [16, 17], which provide no exclusion for $m_{\tilde{\chi}_1^0} > 160$ GeV, nor for single light squarks with masses above 440 GeV. The signal regions are used to set limits on the effective cross sections $\sigma_{\text{vis}}$ of any non-SM processes, including the effects of branching ratios, experimental acceptance, and efficiency, neglecting any possible contamination in the control regions. Values of $\sigma_{\text{vis}}$ larger than 0.44 fb, 0.36 fb, and 0.23 fb are excluded at 95% C.L. for $m_{\text{CT}}$ greater than 150, 200, and 250 GeV respectively.

In summary, this Letter reports results of a search for scalar-charm pair production in 8 TeV $pp$ collisions at the LHC, based on 20.3 fb$^{-1}$ of ATLAS data. The selected events have large $E_T^{\text{miss}}$ and two $c$-tagged jets. The results are in agreement with SM predictions for backgrounds
and translate into 95% C.L. upper limits on scalar-charm and neutralino masses in a simplified model with a single accessible $\tilde{c}$ state for which the exclusive decay $\tilde{c} \rightarrow c + \chi^0_1$ is assumed. For neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded, significantly extending previous limits.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; MIROS and the Neutral Currents, Portugal; MINE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTDF, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[25] ATLAS uses a coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. Cylindrical coordinates $(\rho, \phi)$ are used in the transverse plane, with $\phi$ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle $\theta$ as $\eta = -\ln(\tan(\theta/2))$, while $\Delta R \equiv [(\Delta \eta)^2 + (\Delta \phi)^2]^{1/2}$.


G. Jarlskog, S. Javado,
J. Jejelava, G.-Y. Jung,
D. Jennies, P. Jenni,
J. Jentsch, C. Jeske,
H. Ji, J. Jia, Y. Jiang,
J. Jimenez, S. Jin,
O. Jimmouchi, M.D. Joergensen,
P. Johansson, K.A. Johns,
K. Joo-And,
G. Jones,
R.W. Jones, T.J. Jones,
J. Jongmans, P.M. Jorge,
K.D. Joshi, J. Jovicic,
X. Ju,
C.A. Jung, P. Juste,
M. Kaci, A. Kaczmarka,
M. Kado, H. Kagani,
M. Kagan, S.J. Kahn,
E. Kajomovitz,
G. Kali,
S. Kamaya, M. Kaneda,
S. Kani, V.A. Kantsarov,
J. Kazuki, B. Kaplan,
A. Kapli,
D. Karakostas,
A. Karanamou, N. Karastathis,
M.J. Karent, M. Karnevski,
S.N. Karpov, Z. Karczykhi,
K. Kartikhi, V. Kartvelishvili,
A.N. Kashiwagi, T. Kawauchi,
A. Katr, J. Katzy,
K. Kawamoto, G. Kawamura,
S. Kazaama, V.F. Kazanin,
M.Y. Kazanin, R. Keeler,
R. Kehoe, M. Keil,
A.M. Kessler, J. Kemister,
O. Keplak,
B.P. Keresve,
S. Kersten, R.A. Keyes,
F. Khaliil-zada,
H. Khandani,
A. Khano,
A. Khlanamov,
A. Khodinov, A. Khomich,
T. Kho,
E. Khranov,
J. Khinuk,
H. Kim,
S. Kim,
O. Kind,
B.T. King,
M. King,
R.S.B. King, Z. King,
A. Kiryunin, T. Kishimoto,
D. Kisielewski,
F. Kiss, K. Kichi,
E. Klabad, M.H. Klei,
M. Klein, U. Klei,
K. Kleinhech,
P. Klimk,
A. Klimento,
R. Klingenberg,
D. Krasnopevtsev,
A. Krasznahorkay,
H. Kruger,
K. Kruh,
D. Kruse,
J. Kun,
M. Knezi,
T. Kurochkin,
V. Kusouka,
A. Koutsman,
R. Kowaleski,
T.Z. Kowalski,
A. Kozhini,
A.M. Kozhin,
V.A. Kramenek,
G. Kramberger,
D. Krueger,
A. Krumholz,
L. Kruse,
J. Krysztof,
K. Kuehn,
A. Kugel,
A. Kuhl,
V. Kulshitski,
V. Kulysh,
A. Kunig,
A. Kupco,
H. Kurashige,
Y.A. Kurochkin,
R. Kurumida,
A. Kurushin,
E. Kuwertz,
M. Kuza,
J. Kvita,
T. Kwan,
D. Kyrizopoulos,
A. La Rosa,
J.L. La Rosa,
L. La Rotonda,
C. Lacasta,
F. Lacaba,
J. Lace,
H. Lacker,
D. Lacou,
V.R. Lacen,
E. Ladygin,
B. Lafage,
T. Lagouri,
S. Lai,
C. Lamp,
W. Lamp,
C. Laplace,
S. Lapoire,
J.F. Laporte,
T. Lati,
F. Lasagni Manghi,
M. Lassig,
P. Laurelli,
W. Lavrijsen,
A.T. Law,
P. Laycock,
O. Le Dortz,
E. Le Guirriec,
E. Le Menedeu,
T. LeCompte,
F. Ledroit-Guillon,
C. Lee,
G. Lefebvre,
F. Lefebvre,
F. Legger,
C. Leggett,
A. Lehan,
G. Lehmann-Miotto,
X. Lei,
W.A. Leight,
A. Leisso,
A.G. Leister,
M.A.L. Leite,
R. Leitner,
D. Lellouch,
K.J. Leem,
B. Lenz,
G. Leenzen,
B. Lenzi,
R. Leone,
S. Leone,
S. Leonidopoulos,
S. Leontis,
C. Leroy,
C.G. Lester,
M. Leveneko,
J. Levêque,
D. Levin,
A. Lewis,
A.M. Leyko,
M. Leyton,
B. Li,
H. Li,
H.L. Li,
L. Li,
S. Li,
Z. Liang,
H. Liao,
B. Liberti,
K. Lienbach,
M. Limosan,
S. Lin,
T.H. Lim,
F. Lind,
B.E. Lindquist,
J.T. Linnek,
I. Lippeles,
A. Lipniacka,
M. Lisovyi,
D. Lissau,
A. Listo,
A.M. Litka,
B. Liu,
D. Liu,
J. Liu,
J.B. Liu,
K. Liu,
L. Liu,
M. Liu,
Y. Liu,
M. Livani,
A. Lleres,
J. Llorente Merino,
S.L. Lloyd,
F. Lo Sterzo,
E. Lobodzinska,
P. Loch,
W.S. Lockman,
F.K. Loeber,
A.E. Loewschijl,
A. Loghno,
T. Lohse,
K. Lohwasser,
M. Lokajicek,
B.A. Long,
J.D. Long,
R.E. Long,
K.A. Looper,
L. Lopes,
D. Lopez Mateos,
B. Lopez Paredes,
I. Lopez Paz,
J. Lorenz,
N. Lorenzo Martinez,
M. Losada,
P. Louscutoff,
J. Low,
A. Lounis,
J. Love,
P.A. Love,
F. Lu,
N. Lu,
H.J. Lubatti,
C. Luci,
A. Lucotte,
F. Luehring,
W. Lukas,
L. Luminari,
D. Lundberg,
B. Lund-Jensen,
H. Lung,
S. Lysak,
E. Lytken,
H. Ma,
L.M. MacLeod,
G. Macarrone,
A. Macchiolo,
J. Machado Miguens,
D. Macina,
D. Maddalena,
R. Madar,
H.J. Maddocks,
W.F. Mader,
A. Madsen,
T. Maeno,
A. Maevski,
E. Magradze,
K. Mahboub,
J. Mahlstedt,
S. Mahmoud,
C. Maedentchik,
A.A. Maie,
A. Maio,
Y. Makida,
1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (c) Istanbul Aydin University, Istanbul; (d) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Physics Department, Harvard University, Cambridge MA, United States of America
9 Physics Department, Humboldt University, Berlin, Germany
10 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
11 Institute of Physics, Hebrew University, Jerusalem, Israel
12 Institute of Physics, Humboldt University, Berlin, Germany
13 Department of Physics, University of Utrecht, Utrecht, The Netherlands
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 University ofPhysics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Bogazici University, Istanbul;
20 (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
21 INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
22 Physikalisches Institut, University of Bonn, Bonn, Germany
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 Universidad Federal de Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America

Petersen Nuclear Physics Institute, Gatchina, Russia

(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America

Laboratorio di Instrumentazione e Fisica Experimental de Particulas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Departamento de Física, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Física and CEFITEC de Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Department of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Czech Technical University in Prague, Prague, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Ritsumeikan University, Kusatsu, Shiga, Japan

(a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

(a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

(a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
Also at Department of Physics, Oxford University, Oxford, United Kingdom

Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia

* Deceased