Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS Detector

The ATLAS Collaboration

Abstract

Measurements of inclusive jet production are performed in pp and Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 pb$^{-1}$ and 0.14 nb$^{-1}$, respectively. The jets are identified with the anti-k_t algorithm with $R = 0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_T < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, R_{AA}, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to pp collisions. The R_{AA} shows a slight increase with p_T and no significant variation with rapidity.
Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV with the ATLAS Detector

ATLAS Collaboration

Measurements of inclusive jet production are performed in pp and Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 pb$^{-1}$ and 0.14 nb$^{-1}$, respectively. The jets are identified with the anti-k_t algorithm with $R = 0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_T < 500$ GeV, and absolute rapidity $|y| < 2.1$ as a function of collision centrality. The nuclear modification factor, R_{AA}, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to pp collisions. The R_{AA} shows a slight increase with p_T and no significant variation with rapidity.

PACS numbers: 25.75.-q

Relativistic heavy-ion collisions at the LHC produce a medium of strongly interacting nuclear matter composed of deconfined color charges [1–4]. Hard scattering processes occurring in these collisions produce high transverse momentum (p_T) partons that propagate through the medium and lose energy, resulting in the phenomenon of “jet quenching.” The partonic energy loss can be probed through measurements of the suppression of jet production rates. The effects of energy loss have been observed through the suppression of single hadrons [5–11] and jets constructed from charged particles [12]. ATLAS has previously reported measurements with fully reconstructed jets [13] by comparing the jet yields in central collisions, where the colliding nuclei have large overlap, to the yields in peripheral collisions. Those results indicate that the rate of jets in Pb+Pb collisions is suppressed by a factor of approximately two in central collisions relative to peripheral collisions. A more sensitive probe of energy loss is provided by measurements of the suppression relative to pp collisions, where there are no quenching effects.

The magnitude of the suppression is expected to depend on both the p_T dependence of the energy loss as well as the shape of the initial jet production p_T spectrum [1]. This spectrum becomes increasingly steep at larger values of the jet rapidity [14]. Thus measurements of jet suppression for jets in different intervals of rapidity provide complementary information about the energy loss. Additionally, parton showers initiated by quarks may be quenched differently than gluons [15], and the fraction of quark-initiated jets is expected to increase with rapidity.

Hard scattering rates are enhanced in more central collisions; the larger overlap results in a higher integrated luminosity of partons able to participate in hard scattering processes, and these hard scattering rates are expected to be proportional to the nuclear overlap function, T_{AA}. The suppression is quantified by the nuclear modification factor

$$R_{AA} = \frac{1}{N_{\text{evt}}} \frac{d^2N_{\text{jet}}}{d^2p_T d^2y}_{\text{central}} / \left(\langle T_{AA} \rangle \frac{d^2\sigma_{\text{jet}}}{d^2p_T d^2y} \right).$$

This Letter presents measurements of the inclusive jet R_{AA} in Pb+Pb collisions at a nucleon–nucleon center-of-mass energy of $\sqrt{s_{\text{NN}}} = 2.76$ TeV. It utilizes Pb+Pb data collected during 2011 corresponding to an integrated luminosity of 0.14 nb$^{-1}$ as well as data from pp collisions recorded during 2013 at the same center-of-mass energy corresponding to 4.0 pb$^{-1}$. Results are presented for jets reconstructed in the calorimeter with the anti-k_t jet-finding algorithm [16] with jet radius parameter $R = 0.4$. The contribution of the underlying event (UE) to each jet, assumed to be uncorrelated and additive, was subtracted on a per-jet basis.

The measurements presented here were performed with the ATLAS calorimeter, inner detector, trigger, and data acquisition systems [17, 18]. The calorimeter system consists of a liquid argon (LAr) electromagnetic (EM) calorimeter ($|\eta| < 3.2$), a steel-scintillator sampling hadronic calorimeter ($|\eta| < 1.7$), a LAr hadronic calorimeter (1.5 < $|\eta|$ < 3.2), and a forward calorimeter (FCal) (3.2 < $|\eta|$ < 4.9). Charged-particle tracks were measured over the range $|\eta| < 2.5$ using the inner detector [19], which is composed of silicon pixel detectors in the innermost layers, followed by silicon microstrip detectors and a straw-tube transition-radiation tracker ($|\eta| < 2.0$), all immersed in a 2 T axial magnetic field. The zero-degree calorimeters (ZDCs) are located symmetrically at $z = \pm 140$ m and cover $|\eta| > 8.3$. A ZDC coincidence trigger was defined by requiring a signal consistent with one or more neutrons in each of the calorimeters.

The pp events used in the analysis were selected using the ATLAS jet trigger [20] with multiple values of the trigger p_T thresholds. During pp data taking, the average number of pp interactions per bunch crossing (pile-up) varied from 0.3 to 0.6. The pp events were required to contain at least one primary vertex, reconstructed from at least two tracks, and jets originating from all such vertices were included in the cross section measurement.

Data from Pb+Pb collisions were recorded using either a minimum-bias trigger or a jet trigger. The minimum-
bias trigger, formed from the logical OR of triggers based on a ZDC coincidence or total transverse energy in the event, is fully efficient in the range of centralities presented here. The jet trigger identified jets by applying the anti-k_t algorithm with $R = 0.2$ with a UE subtraction procedure similar to that applied in the offline analysis. The jet trigger selected events having at least one jet with transverse energy $E_T > 20$ GeV at the electromagnetic scale [21]. Event selection and background rejection criteria were applied [22] yielding 53 million and 14 million events in the minimum-bias and jet-triggered samples, respectively.

The centrality of Pb+Pb collisions was characterized by ΣE_T^{FCal}, the total transverse energy measured in the FCal [22]. The centrality intervals were defined according to successive percentiles of the ΣE_T^{FCal} distribution ordered from the most central (highest ΣE_T^{FCal}) to the most peripheral collisions. A Glauber model analysis of the ΣE_T^{FCal} distribution was used to evaluate the $\langle T_{AA} \rangle$ and the number of nucleons participating in the collision, $\langle N_{\text{part}} \rangle$, in each centrality interval [22–24]. The centrality intervals used in this measurement are indicated in Table I along with the values of $\langle T_{AA} \rangle$ and $\langle N_{\text{part}} \rangle$ for those intervals.

The jet reconstruction and UE subtraction procedures described in Ref. [13] were applied to both pp and Pb+Pb data. The anti-k_t algorithm was applied to logical towers with segmentation $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ formed from energy deposits in the calorimeter. An iterative procedure was used to obtain an event-by-event estimate of the average η-dependent UE energy density while excluding actual jets from that estimate. The jet kinematics were obtained by subtracting the UE energy from the towers within the jet. Following reconstruction, the jet energies were corrected for the calorimeter energy response using the procedure described in Ref. [25].

In addition to the calorimeter jets, “track jets” were reconstructed by applying the anti-k_t algorithm with $R = 0.4$ to charged particles with $p_T > 4$ GeV. In the Pb+Pb analysis, the track jets were used in conjunction with electromagnetic clusters to exclude the contribution to the jet yield from UE fluctuations of soft particles incorrectly interpreted as calorimetric jets [13]. The jets were required to be within $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ of a track jet with $p_T > 7$ GeV or an electromagnetic cluster with $p_T > 8$ GeV.

The performance of the jet reconstruction in Pb+Pb collisions was evaluated using the GEANT4-simulated detector response [26, 27] in a Monte Carlo (MC) sample of pp hard scattering events at $\sqrt{s} = 2.76$ TeV. The events were produced with the PYTHIA event generator [28] version 6.423 with parameters chosen according to the so-called AUET2B tune [29] and overlaid with minimum-bias Pb+Pb collisions recorded by ATLAS during the same data-taking period as the data used in the analysis. Thus the MC sample contains a UE contribution that is identical in all respects to the data. A separate PYTHIA sample was produced for the analysis of the pp data with the detector simulation adjusted to match the conditions during the pp data taking including pile-up. Additional MC samples were used in evaluations of the jet energy scale (JES) uncertainty. The PYQUEN generator [30], which applies medium-induced energy loss to parton showers produced by PYTHIA, was used to generate a sample of jets with fragmentation functions that differ from those in the nominal PYTHIA sample in a fashion consistent with measurements of fragmentation functions in quenched jets [31–33].

The jet spectra, defined to be the average differential yield in a given p_T bin, were constructed from a mixture of minimum-bias (Pb+Pb only) and jet-triggered samples. In each p_T bin, the trigger with the most events and that was more than 99% efficient for that bin was used. The jet spectra were unfolded [13] to account for the p_T bin migration induced by the jet energy resolution (JER) using a method based on the Singular Value Decomposition [34]. The effects of the JER, which receives contributions from both the detector response and UE fluctuations, were evaluated by applying the same procedure to the MC samples as was applied to the data and by matching the resulting reconstructed jets and “generator jets” that are reconstructed from final-state Pythia hadrons. For each pair, the p_T of the generator and reconstructed jets were used to populate a detector response matrix. Separate response matrices were obtained for each centrality interval.

The response matrix is generally diagonal, indicating that jets are likely to be reconstructed in the same p_T bin as the generator jets. The average p_T difference between reconstructed and generator jets, is $\lesssim 1\%$, independent of centrality. However, the response distributions broaden at low p_T as the relative JER increases due to the larger UE fluctuations. At $p_T = 200$ GeV, the relative JER is approximately 10% and is independent of centrality. However at $p_T = 40$ GeV, it varies from 20–40% between

<table>
<thead>
<tr>
<th>Centrality [%]</th>
<th>$\langle T_{AA} \rangle$ [mb$^{-1}$]</th>
<th>$\langle N_{\text{part}} \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
<td>23.45 ± 0.37</td>
<td>356.2 ± 2.5</td>
</tr>
<tr>
<td>10–20</td>
<td>14.43 ± 0.30</td>
<td>260.7 ± 3.6</td>
</tr>
<tr>
<td>20–30</td>
<td>8.73 ± 0.26</td>
<td>85.4 ± 3.9</td>
</tr>
<tr>
<td>30–40</td>
<td>5.04 ± 0.22</td>
<td>52.9 ± 3.1</td>
</tr>
<tr>
<td>40–50</td>
<td>2.7 ± 0.17</td>
<td>15.4 ± 1.6</td>
</tr>
<tr>
<td>50–60</td>
<td>1.33 ± 0.12</td>
<td>12.0 ± 1.5</td>
</tr>
<tr>
<td>60–70</td>
<td>0.59 ± 0.07</td>
<td>30.1 ± 2.5</td>
</tr>
<tr>
<td>70–80</td>
<td>0.24 ± 0.04</td>
<td>15.1 ± 1.7</td>
</tr>
<tr>
<td>0–1</td>
<td>20.04 ± 0.46</td>
<td>400.1 ± 1.3</td>
</tr>
<tr>
<td>1–5</td>
<td>25.62 ± 0.40</td>
<td>374.6 ± 2.2</td>
</tr>
<tr>
<td>5–10</td>
<td>20.59 ± 0.34</td>
<td>390.3 ± 3.0</td>
</tr>
<tr>
<td>60–80</td>
<td>0.41 ± 0.05</td>
<td>22.6 ± 2.1</td>
</tr>
</tbody>
</table>

TABLE I. The $\langle T_{AA} \rangle$ and $\langle N_{\text{part}} \rangle$ values and their uncertainties in each centrality bin.
peripheral and central collisions. The unfolding is most sensitive in this region and the range of jet p_T used in the unfolding was chosen separately in each centrality interval to be as low as possible while maintaining stability in the unfolding procedure. The statistical covariance of each unfolded spectrum was evaluated using the pseudo-experiment procedure described in Ref. [13]. Systematic uncertainties in the unfolding procedure were evaluated by varying the choice of regularization parameter used in the unfolding.

The effects of any inefficiency in the jet reconstruction, including inefficiency introduced by the UE jet rejection requirement, were corrected for by a multiplicative correction applied after unfolding. This factor, obtained from the MC sample, is unity for $p_T > 100$ GeV and reaches a maximum of 1.3 in the most central collisions at the lowest p_T. For values larger than unity, an uncertainty of 0.5% was assigned to this correction based on the comparison of the jet reconstruction efficiency with respect to track jets between the data and MC sample.

Uncertainties on the JER and JES have been evaluated using data-driven techniques in pp collisions [21, 35]. A systematic uncertainty of 1.5% on the JES was assigned to account for potential differences, not described by the MC simulations, between the two data-taking periods. This value was obtained by comparing the calorimetric response with respect to the p_T of matched track jets in pp and peripheral Pb+Pb collisions.

A centrality-dependent uncertainty on the JES due to differences between pp and Pb+Pb in the partonic composition of jets and in their fragmentation was estimated with the PYQUEN sample. The jet response in that sample was found to differ by up to 1% from that in the PYTHIA sample. The magnitude of this variation was checked with a similar study using track jets to compare central and peripheral Pb+Pb data. The uncertainty was taken to be 1% in the most central collisions with the uncertainty decreasing in more peripheral collisions.

The impacts of the JER and JES uncertainties on the spectra were assessed by constructing new response matrices with a systematically varied relationship between the reconstructed and generator jet kinematics and repeating the unfolding. Correlations in the JES and JER uncertainties across the pp and Pb+Pb samples were accounted for in the propagation of the uncertainties to the R_{AA}.
Uncertainties on the T_{AA} and integrated luminosity affect the overall normalization of the yields and thus are independent of jet p_T and rapidity. The uncertainties on $\langle T_{AA} \rangle$ vary between 1% and 10% in the most central and peripheral collisions, respectively, with the full set of values given in Table I. The uncertainty on the integrated luminosity is estimated to be 3.1%. It is determined, following the same methodology as that detailed in Ref. [36], from a calibration of the luminosity scale derived from beam-separation scans performed during the 2.76 TeV operation of the LHC in 2013.

The total systematic uncertainty on the pp cross sections is dominated by the JES uncertainty, which is as large as 15%. For the Pb+Pb jet yields this uncertainty is also dominant and in the most central collisions is 22%. In the R_{AA}, much of this uncertainty cancels. However the dominant contribution is due to the JES in most centrality and rapidity intervals and is typically 10%. The uncertainties due to the unfolding are generally a few per cent, but for some p_T values near the upper and lower limits included in the measurement the contributions from this source are as large as 15%. The contributions of the JER to the total uncertainty on R_{AA} are less than 3% except in the most central collisions at low p_T where they are as large as 10%. In the most peripheral bins the $\langle T_{AA} \rangle$ uncertainties that affect the overall normalization are the dominant contribution.

The pp differential jet cross sections are shown in Fig. 1 for the following absolute rapidity ranges: 0–0.3, 0.3–0.8, 0.8–1.2, 1.2–2.1 and 2–2.1. These results are consistent with a previous measurement with fewer events [37]. The differential per-event jet yield in Pb+Pb collisions, multiplied by $1/\langle T_{AA} \rangle$, is shown in Fig. 2, in selected rapidity and centrality bins in the lower and upper panels, respectively. The dashed lines represent the pp jet cross sections for that same rapidity bin; the jet suppression is evidenced by the fact that the jet yields fall below these lines.

The jet R_{AA} as a function of p_T is shown in Fig. 3 for different ranges in collision centrality and jet rapidity. R_{AA} is observed to increase weakly with p_T, except in the most peripheral collisions. In the 0–10% and $|y| < 2.1$ centrality and rapidity intervals, which have the smallest statistical uncertainty, the R_{AA} is 0.47 at $p_T \sim 55$ GeV and rises to 0.56 at $p_T \sim 350$ GeV. These distributions were fit, accounting for the point-wise correlations in the uncertainties, to the functional form $a \ln(p_T) + b$. The slope parameter was found to be significantly above zero in all but the most peripheral collisions. The magnitude and weak increase of the R_{AA} in central collisions are described qualitatively by recent theoretical calculations [38, 39]. The results of this measurement are consistent with measurements of the jet central-to-peripheral ratio [13], although in those measurements the uncertainties are too large to infer any significant p_T dependence.

The rapidity dependence of the R_{AA} is shown in the top panel of Fig. 4 for jets with $80 < p_T < 100$ GeV for three centrality bins. The R_{AA} shows no significant rapidity dependence over the p_T and rapidity ranges presented in this measurement. The $\langle N_{part} \rangle$ dependence...
is shown in the bottom panel of Fig. 4 for jets in the same \(p_T \) interval and with \(|y| < 2.1\). The \(R_{AA} \) decreases smoothly from the most peripheral collisions (smallest \(\langle N_{\text{part}} \rangle \) values) to central collisions, where it reaches a minimal value of approximately 0.4 in the most central 1\% of collisions. A similar \(\langle N_{\text{part}} \rangle \) dependence is observed for jets in different ranges of \(p_T \) and rapidity.

In summary, this Letter presents measurements of inclusive jet production in pp and Pb+Pb collisions over a wide range in \(p_T \), rapidity and centrality. The jet nuclear modification factor, \(R_{AA} \), obtained from these measurements shows a weak rise with \(p_T \), with a slope that varies with collision centrality. No significant slope is observed in the most peripheral collisions. The \(R_{AA} \) decreases gradually with increasing \(\langle N_{\text{part}} \rangle \). At forward rapidity, the increasing steepness of the jet production spectrum is expected to result in more suppression of the jet yields. In this kinematic region, the production is increasingly dominated by quark jets, which may lose less energy than gluon jets [15]. The observed lack of rapidity dependence in the \(R_{AA} \) places constraints on relative energy loss for quark and gluon jets in theoretical descriptions of jet quenching.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CPNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT, CR, MPO and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DRF and IRFU, France; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRSR, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSE, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Tai-wan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Department of Physics, Indiana University, Bloomington IN, United States of America

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

(a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Louisiana Tech University, Ruston LA, United States of America

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden

Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst MA, United States of America

Department of Physics, McGill University, Montreal QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America

(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America

Group of Particle Physics, University of Montreal, Montreal QC, Canada

P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

(a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy

Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb IL, United States of America

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Department of Physics, New York University, New York NY, United States of America

Ohio State University, Columbus OH, United States of America

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Tokyo, Japan

157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

159 Department of Physics, University of Toronto, Toronto ON, Canada

160 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

162 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

163 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

164 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

165 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

166 Department of Physics, University of Illinois, Urbana IL, United States of America

167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNМ), University of Valencia and CSIC, Valencia, Spain

169 Department of Physics, University of British Columbia, Vancouver BC, Canada

170 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

171 Department of Physics, University of Warwick, Coventry, United Kingdom

172 Waseda University, Tokyo, Japan

173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

174 Department of Physics, University of Wisconsin, Madison WI, United States of America

175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

177 Department of Physics, Yale University, New Haven CT, United States of America

178 Yerevan Physics Institute, Yerevan, Armenia

179 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom

b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

d Also at TRIUMF, Vancouver BC, Canada

e Also at Department of Physics, California State University, Fresno CA, United States of America

f Also at Tomsk State University, Tomsk, Russia

g Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

h Also at Università di Napoli Parthenope, Napoli, Italy

i Also at Institute of Particle Physics (IPP), Canada

j Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia

k Also at Chinese University of Hong Kong, China

l Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece

m Also at Louisiana Tech University, Ruston LA, United States of America

n Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain

o Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America

p Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia

q Also at CERN, Geneva, Switzerland

r Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan

s Also at Manhattan College, New York NY, United States of America

t Also at Novosibirsk State University, Novosibirsk, Russia

u Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

v Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

w Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

x Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

y Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India

z Also at Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

aa Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Department of Physics, Nanjing University, Jiangsu, China
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased