Assemblies of aziridinemethanols

Peter J. J. A. Buijnsters,*† Martinus C. Feiters,* René de Gelder,* Peter ten Holte,* Roeland J. M. Nolte,*a,b Arthur M. A. Pistorius,*c Nico A. J. M. Sommerdijk,*a,d Sandy A. C. Verhaegen* and Binne Zwanenburg*

*aDepartment of Organic Chemistry, NSR Center for Molecular Structure, Design and Synthesis, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands. E-mail: N.Sommerdijk@tue.nl
bDepartment of Inorganic Chemistry, NSR Center for Molecular Structure, Design and Synthesis, University of Nijmegen, Nijmegen, The Netherlands
cDepartment of Biochemistry, University of Nijmegen, Nijmegen, The Netherlands
dLaboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands

Received 7th August 2000, Accepted 8th November 2000
First published as an Advance Article on the web 4th January 2001

Two novel long chain aziridinemethanols (1b, c) are described and their molecular organisation in the bulk and self-assembling properties in aqueous dispersion are reported. The orientation of the NH hydrogen of the aziridinealcohol moiety in 1b can be changed by introducing a methyl substituent into the rigid three-membered ring (1c), leading to a change in the hydrogen bonding pattern interconnecting these molecules. This change in configuration leads to marked differences in the ordering of these molecules in the solid state. Although compounds 1b and 1c both form highly organised structures in aqueous media and on the air–water interface, noteworthy differences are observed. Compound 1c yields left-handed helical ribbons whereas no chiral aggregates are found for 1b. However, the addition of 2-acetoxybenzoic acid (aspirin) to an aqueous dispersion of 1b leads to the generation of both left- and right-handed helical structures. Under these conditions a reaction had taken place that was specific for the ortho-isomer of acetoxybenzoic acid.

Introduction

One of the current interests in supramolecular chemistry is the design of well-defined supramolecular architectures by programmed self-assembly of amphiphilic molecules. Surfactants designed to have specific intermolecular interactions have been reported to form highly organised aggregates including ribbons, tubes, toroids, and helical structures.1–7 Assemblies with well-defined shapes and surfaces have been used as templates for the structuring of inorganic8–11 and polymer composite materials12 and as catalysts for (enantio)selective transformations in solution.13 It is well recognised that hydrogen bonding is very important in the generation of supramolecular aggregates.1–7,14

As part of our studies on aziridine ring systems15 we observed that highly ordered structures can be generated from aziridinemethanol moieties by the formation of hydrogen bonds. This is evidenced by the crystal structure of compound 1a (Fig 1a),15 in which the molecules of 1a are organised into linear arrays. Intermolecular hydrogen bonds are formed between the OH groups and the nitrogen atoms of neighboring molecules, while an intramolecular hydrogen bond between the NH group and the oxygen atom locks the aziridine methanol group into a rigid conformation in which the plane through N–C1–C2 is orthogonal to the C2–C3–O plane. We anticipated that the high degree of interconnectivity and rigidity of these molecules would offer prospects for the application of aziridinemethanols as building blocks in the generation of assemblies with organised and potentially reactive surfaces.

Fig. 1 (a) PLUTO drawing of the crystal structure of 1a. (b) Newman projections of the possible configurations of an unsubstituted and a substituted aziridine ring.

1Present address: Department of Medicinal Chemistry, Janssen Research Foundation, Beerse, Belgium.

DOI: 10.1039/b006428i

This journal is © The Royal Society of Chemistry 2001
respect to the substituents. In contrast, both cis- and trans-configurations are possible in monosubstituted aziridines (Fig 1b). Since the inversion of the nitrogen atom can be used to modify the hydrogen bonding pattern and hence the interconnectivity of these molecules, we decided to synthesise two chiral, amphiphilic, long chain aziridinemethanols 1b, e (Scheme 1) which may be expected to show thermotropic as well as lyotropic liquid crystalline behaviour.17,18

In this paper we demonstrate that differences in the organisation pattern of molecules of 1b, e in the solid state are directly linked to the configuration of the aziridine nitrogen. The molecular organisation of 1b is dominated by a hydrogen bonding pattern similar to the one present in the crystal structure of 1a. In the case of 1c, a different, weaker hydrogen bonding network is present as a result of an additional substituent at the aziridine ring, and the organisation of the molecules is predominantly determined by molecular packing. When dispersed in aqueous media 1b forms micellar fibres, whereas in dispersions of 1c helical ribbons are observed. The addition of 2-acetoxybenzoic acid (aspirin) to aggregates of 1b, however, induces the formation of helical structures.

Experimental

Synthesis

General. Flash column chromatography was performed on Merck silica gel 60H (0.005–0.040 mm) using a pressure of ca. 1.5 bar. Melting points were measured on a Reichert thermopan microscope equipped with crossed polarizers. Optical rotations were determined at 20 °C using a Perkin-Elmer automatic polarimeter. Routine FT-IR spectra were recorded using a Biorad WIN-IR FTS-25 single beam spectrometer. 1H NMR and 13C NMR spectra were recorded on a Bruker AC 200 (300 and 75.1 MHz) spectrometer. Mass spectra were recorded with a double-focusing VG 7070E spectrometer. Elemental analyses were determined with a Carlo Erba Instruments EA 1108 element analyser. Diethyl ether was pre-dried over potassium carbonate. Diethyl ether was pre-dried over potassium carbonate. n-Heptane was dried with NaOH. n-Heptane was dried with NaOH.

Scheme 1

![Scheme 1](image)

Experimental

Synthesis

General. Flash column chromatography was performed on Merck silica gel 60H (0.005–0.040 mm) using a pressure of ca. 1.5 bar. Melting points were measured on a Reichert thermopan microscope equipped with crossed polarizers. Optical rotations were determined at 20 °C using a Perkin-Elmer automatic polarimeter. Routine FT-IR spectra were recorded using a Biorad WIN-IR FTS-25 single beam spectrometer. 1H NMR and 13C NMR spectra were recorded on a Bruker AC 200 (300 and 75.1 MHz) spectrometer. Mass spectra were recorded with a double-focusing VG 7070E spectrometer. Elemental analyses were determined with a Carlo Erba Instruments EA 1108 element analyser. Diethyl ether was pre-dried over potassium carbonate. Diethyl ether was pre-dried over potassium carbonate.

Scheme 1

![Scheme 1](image)

Compound 1a. The synthesis of compound 1a has been described previously.16

Compound 1b. Compound 1b (1.40 g, 1.98 mmol) was dissolved in a mixture of MeOH, water, and concentrated H2SO4 (60:3:200 ml) by sonication for 5 min. After stirring overnight and subsequent addition of ice (50 g), the white precipitate was filtered off and successively washed with hexane (20 ml) and water (20 ml). A white solid was obtained in 110% yield. The white precipitate was dispersed in hexane and triethylamine (5:1, v/v) and the organic layer was washed with saturated ammonium sulfate solution (3 x 10 ml), dried over Na2SO4, and concentrated in vacuo. The pure compound was obtained by flash column chromatography (SiO2, hexane-ethyl acetate, 10:1 (v/v)).

Compound 1c. Compound 1c was calculated for C50H60N3O2: C= 79.82, H= 13.65, N= 3.09%.

Compound 1d. Compound 1d was calculated for C50H60N3O2: C= 79.82, H= 13.65, N= 3.09%.

Compound 1e. Using the same procedure as for 1b, 1e was obtained as a white solid in 35% yield, from 3c.[25] 1H NMR (CDCl3) δ 3.63 (s, 3 H, CH3), 3.59 (s, 3 H, CH3), 3.53 (s, 3 H, CH3), 3.48 (s, 3 H, CH3), 2.06 (s, 6 H, CH2CH3), 1.83 (s, 6 H, CH2CH3), 1.26 (m, 36 H, CH2CH3), 0.88 (m, 12 H, CH2CH3), 0.70 (m, 12 H, CH2CH3), 0.60 (m, 12 H, CH2CH3).

Compound 1f. Compound 1f was calculated for C50H60N3O2: C= 79.82, H= 13.65, N= 3.09%.

Compound 1g. Compound 1g was calculated for C50H60N3O2: C= 79.82, H= 13.65, N= 3.09%.

Compound 1h. Using the same procedure as for 1b, 1h was obtained as a white solid in 35% yield, from 3e.[25] 1H NMR (CDCl3) δ 3.63 (s, 3 H, CH3), 3.59 (s, 3 H, CH3), 3.53 (s, 3 H, CH3), 3.48 (s, 3 H, CH3), 2.06 (s, 6 H, CH2CH3), 1.83 (s, 6 H, CH2CH3), 1.26 (m, 36 H, CH2CH3), 0.88 (m, 12 H, CH2CH3), 0.70 (m, 12 H, CH2CH3), 0.60 (m, 12 H, CH2CH3).

Compound 1i. Compound 1i was calculated for C50H60N3O2: C= 79.82, H= 13.65, N= 3.09%.

Compound 1j. Using the same procedure as for 1b, 1j was obtained as a white solid in 35% yield, from 3e.[25] 1H NMR (CDCl3) δ 3.63 (s, 3 H, CH3), 3.59 (s, 3 H, CH3), 3.53 (s, 3 H, CH3), 3.48 (s, 3 H, CH3), 2.06 (s, 6 H, CH2CH3), 1.83 (s, 6 H, CH2CH3), 1.26 (m, 36 H, CH2CH3), 0.88 (m, 12 H, CH2CH3), 0.70 (m, 12 H, CH2CH3), 0.60 (m, 12 H, CH2CH3).

Compound 1k. Compound 1k was calculated for C50H60N3O2: C= 79.82, H= 13.65, N= 3.09%.

Compound 1l. Using the same procedure as for 1b, 1l was obtained as a white solid in 35% yield, from 3e.[25] 1H NMR (CDCl3) δ 3.63 (s, 3 H, CH3), 3.59 (s, 3 H, CH3), 3.53 (s, 3 H, CH3), 3.48 (s, 3 H, CH3), 2.06 (s, 6 H, CH2CH3), 1.83 (s, 6 H, CH2CH3), 1.26 (m, 36 H, CH2CH3), 0.88 (m, 12 H, CH2CH3), 0.70 (m, 12 H, CH2CH3), 0.60 (m, 12 H, CH2CH3).

Compound 1m. Compound 1m was calculated for C50H60N3O2: C= 79.82, H= 13.65, N= 3.09%.
(OH), 3269 (NH), 2950–2552 (CH alkyl)c m

‡

home built trough of dimensions 14

The surface of compressed monolayers was studied with a Wilhelmy plates and for calibration octadecanol was used. An aged (24 h) aqueous dispersion of

was subjected to flash column chromatography (SiO₂, ethyl acetate), which afforded 4 as a white powder in 30% yield. Mp 59–60°C. [α]D-27 +25.4 (c 2.3, CHCl₃). IR(KBr) 3600–3000 (C=O)(OH), 3407 (OH), 3337 (NH), 2920, 2850 (CH alkyl), 1683 (C=O(OH)), 1645 (amide I), 1522 (amide II), 1254 (arom. ether) cm⁻¹. H NMR (CDCl₃) δ 10.6 (s, 1 H, COOH), 7.79–7.75 (m, 1 H, H₆a,b), 7.47–7.42 (m, 1 H, H₆a,b), 6.98–6.95 (m, 1 H, H₅), 6.90–8.85 (m, 1 H, H₅), 1.65 (d, J = 9.2 Hz, 1 H, CHN(J=O)), 4.58–4.43 (m, 2 H, OCH₂CHN), 4.35–4.30 (m, 1 H, OCH₂CH(NH), 2.09 (s, 1 H, OHT), 2.01 (s, 3 H, CH₃CH₃), 1.57 (m, 4 H, 2 × CH₂(OH)CH₃), 1.25 (m, 48 H, 2 × (CH₂)ₙCH₃), 0.87 (t, J = 6.3 Hz, 6 H, 2 × (CH₂)ₚCH₃). ¹³C NMR (CDCl₃) δ 172.86 (NH(O)CH₃), 165.5 (COOH), 155.63 (CPₐₙ), 129.59 (CPₐₙ), 127.3 (CPₐₙ), 118.71 (CPₐₙ), 118.04 (HOOCCH₂ONₐ), 109.25 (Cₙ), 86.44 (COH), 68.07 (OCH₂CH₃), 55.66 (OCH₂CH(NH), 34.69 (2 × CH₂(1H)₂), 30.86–22.11 (2 × (CH₂)ₙCH₂), 23.15 (NH(O)CH₂), 13.6 (2 × CH₃CH₂). CI-MS (m/z) 645 [M⁺], 627 [(CH₃H₂NO₄)⁺], 508 [(CH₃H₂NO₄)⁻], 423 [C₃H₆O₅], 310 [C₃H₅N₄], 121 [C₂H₄O₂], 85 [C₂H₅NO₄]. Anal. calcd. for C₃H₇N₂O₄: C 73.93, H 10.96, N 2.27%. ¹³C NMR (CDCl₃) δ 172.86 (NH(O)CH₃), 165.5 (COOH), 155.63 (CPₐₙ), 129.59 (CPₐₙ), 127.3 (CPₐₙ), 118.71 (CPₐₙ), 118.04 (HOOCCH₂ONₐ), 109.25 (Cₙ), 86.44 (COH), 68.07 (OCH₂CH₃), 55.66 (OCH₂CH(NH), 34.69 (2 × CH₂(1H)₂), 30.86–22.11 (2 × (CH₂)ₙCH₂), 23.15 (NH(O)CH₂), 13.6 (2 × CH₃CH₂). CI-MS (m/z) 645 [M⁺], 627 [(CH₃H₂NO₄)⁺], 508 [(CH₃H₂NO₄)⁻], 423 [C₃H₆O₅], 310 [C₃H₅N₄], 121 [C₂H₄O₂], 85 [C₂H₅NO₄]. Anal. calcd. for C₃H₇N₂O₄: C 73.93, H 10.96, N 2.27%.

Electron microscopy

A 2% (w/v) methanolic solution (50 µl) of 1b, c was injected in 1.0 ml of water of 60°C adjusted to pH 3.0 with H₂SO₄. After 1 h the dispersion was cooled to room temperature and left for 24 h before EM samples were prepared. When organic counter ions were used a 2% (w/v) methanolic solution (50 µl) of 1b (to which 1 equivalent of the organic acid had been added) was injected in 1.0 ml of water of 60°C. After 1 h the dispersion was cooled to room temperature and left for 24 h before EM samples were prepared. Pt-shadowed samples were prepared by bringing a drop of the dispersion on to a Formvar-coated microscope grid. The excess of the dispersion was blotted off with a filter paper after 1 min and the sample was shadowed under an angle of 45° by evaporation of Pt. Negatively stained samples were prepared in an analogous manner and stained with a 1% (w/v) solution of uranyl acetate. All samples were studied with a Philips TEM201 microscope (60 kV).

Monolayer experiments

Monolayers were spread on a themostatted double barrier Riegler & Kirstein trough of dimensions 6 × 25 cm using a chloroform solution of the surfactant (~ 10 µl, 1 mg ml⁻¹) and compression was started after 10 min at a rate of 7.0 cm² min⁻¹. The surface pressure was measured using Wilhelmy plates and for calibration octadeacanol was used. The surface of compressed monolayers was studied with a Brewster Angle Microscope (NIFT BAM-1) mounted on a home built trough of dimensions 14 × 21 cm.

Differential scanning calorimetry (DSC)

Thermograms were recorded at 1°C min⁻¹ using a Perkin Elmer DSC7 instrument and were baseline corrected. Samples were prepared using stainless steel large volume pans. FT-IR spectroscopy

IR samples were prepared by depositing a small amount of solid on an AgCl window and subsequently heating the sample in an oven above the melting temperature. FT-IR spectra were measured using a Mattson Cygnus 100 single beam spectrometer, equipped with a liquid nitrogen cooled mid low band MCT detector, interfaced to a microcomputer. The optical bench was continuously purged with dry nitrogen gas (201 min⁻¹). The following acquisition parameters were used: resolution, 4 cm⁻¹; moving mirror speed, 2.53 cm s⁻¹; wave-number range, 4000–750 cm⁻¹; number of co-added interferograms, 128. Signal to noise ratios (2000–2200 cm⁻¹) were better than 4 ×10. Data acquisition was performed using EXPERT-IR software (Mattson). For data analysis PeakFit® software (Jandel Scientific Software) was used. Baselines were corrected and peak positions were determined using second derivative spectra. Curve fitting procedures were repeated several times and the quality of the fitted spectra was checked by comparing the generated spectra before and after deconvolution.

Powder diffraction experiments

Samples were prepared by placing an drop of an aggregate dispersion on a silicon wafer. The instrument was a commercial Philips X-ray powder diffractometer of the Bragg Brentano type that was optimized for measurements at low angle. The X-ray tube was ceramic with a long focus length and gave Cu-Kα radiation (generator 40 kV, 40 mA). The goniometer had a variable divergence and antiscatter slits, with the receiving slits set at 0.1 mm. The detector was of the Peltier-cooled Si-Li type. During the measurements, the sample was mounted in a chamber the relative humidity of which could be controlled by a humidifying instrument flushed with N₂ gas.¹⁹

Results and synthesis

Compounds 1b, c were prepared starting from the methyl N-tritylazidin-carboxylic acid esters 2b, c (Scheme 1).¹¹ The compounds 2b, c were converted into the corresponding N-tritylazidinemethanols 3b, c, using an excess of tetradeetyl-magnesium bromide in ether. Deterilation using 6 M sulfuric acid in methanol with sonication, followed by treatment with base and subsequent chromatography afforded the pure amidrazine-2-methanols.

Characterisation of the solid state structures of long chain amidrazinemethanols 1b, c

Differential scanning calorimetry (DSC) experiments showed that compound 1b exhibits two minor phase transitions between 28 and 40°C (not detected by polarisation microscopy or variable temperature FT-IR, vide infra) and a melting transition at 55°C (onset temperature) which was also observed with polarisation microscopy. In contrast, upon heating, compound 1c showed pronounced exo- and endothermic solid state transitions between 30 and 36°C and a melting point at 44°C (Fig. 2a). Between 30 and 36°C polarisation microscopy revealed a spherulitic structure, transforming first into an isotropic state and subsequently into a needle-like morphology (Fig. 2b, c). The reorganisation was accompanied by a net decrease in entropy (ΔS = 74 ± 1 kJ mol⁻¹) indicating that a more ordered structure was formed. Comparison of the melting entropies (ΔSₘ) of the two compounds (Table 1) suggested that in the solid state 1c possesses a higher degree of organisation than 1b, both before and after the transition.

Although related long chain amino alcohols have been described to form thermotropic liquid crystalline phases,¹⁸,²¹

- Downloaded by Radboud Universiteit Nijmegen on 07 February 2013
- Published on 04 January 2001 on http://pubs.rsc.org | doi:10.1039/B006428I
- View Article Online
revealed a very broad band between 3600 and 3100 cm\(^{-1}\) for the CH\(_2\) deformation band (1468 cm\(^{-1}\))

interdigitated solid state structure (Fig. 4a). The position of the region was nearly identical to that of 1a.

The textures observed between crossed polarisers of the (b) spherulitic and y conformation. At 55 \(^{\circ}\)C, all-trans conformations in the alkyl chains, but excluded an all-trans conformation.

Hydrogen bonding increases. The position of the CH\(_2\) deformation band can be used to assess the organisation of the molecules and imposes an increased upon heating as was evidenced by the shift of the CH\(_2\) deformation band, going from 1468 to 1471 cm\(^{-1}\).

In both a weak intra molecular and a strong intermolecular H-bond, respectively. This proposed reorganisation was also supported by the fact that the packing of the alkyl chains increased upon heating as was evidenced by the shift of the CH\(_2\) deformation band, going from 1468 to 1471 cm\(^{-1}\), indicating that above 35 \(^{\circ}\)C the alkyl chains adopt an all-trans conformation.

Hence from the DSC and IR data we conclude that the reordering of the hydrogen bonding network leads to a higher degree of organisation of the molecules and imposes an all-trans conformation upon the alkyl chains. We propose that above the transition temperature the molecules of 1c have intramolecular H-bonds between the OH and the nitrogen atom and are organised in arrays held together by intermolecular hydrogen bonds between the NH hydrogen atom and the neighboring OH group. In addition inter-array hydrogen bonds (alcohol dimers and NH-N hydrogen bonds, see Fig. 4e) further enhance the ordering of the molecules, resulting in a tight packing that forces the alkyl chains to adopt an all-trans conformation.

It should be noted that in this scenario while going through the isotropic state a conversion takes place to a state in which the alkyl chains are no longer interdigitating, but all become localised on the same side of the plane through the hydrogen bonds.

Based on the molecular requirements formulated by Jeffrey\(^{17}\) and Van Doren et al.\(^{18}\) we expected compounds 1b, c to show liquid crystalline behaviour. Jeffrey\(^{17}\) has suggested that in the liquid crystalline phase the weaker van der Waals interactions are broken while the stronger hydrogen bonds remain intact, and that at the liquid crystalline-to-isotropic transition the hydrogen bonded structure breaks down. In contrast to this model, Van Doren et al.\(^{18}\) proposed that the melting point is determined by the breaking up of the network of hydrogen bonds.

Table 1 Data derived from calorimetric experiments

<table>
<thead>
<tr>
<th>Temperature/(^{\circ})C</th>
<th>(\Delta H_{m}/kJ) mol(^{-1})</th>
<th>(\Delta S_{m}/J) mol(^{-1}) K(^{-1})</th>
<th>K–I</th>
<th>(\Delta H_{m}/kJ) mol(^{-1})</th>
<th>(\Delta S_{m}/J) mol(^{-1}) K(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>Not observed</td>
<td>—</td>
<td>—</td>
<td>59.9</td>
<td>33.5</td>
</tr>
<tr>
<td>1c</td>
<td>30–35</td>
<td>-23.1</td>
<td>-74</td>
<td>44.1 (^{\circ})C</td>
<td>61.3</td>
</tr>
</tbody>
</table>

bonds. Upon entering the liquid crystalline phase molecules are held together by lateral cohesive forces, which break up when at the clearing point an isotropic liquid is formed.

In the case of 1b the hydrogen bonding network is strong enough to maintain an ordered arrangement in which melting of the alkyl chains is inhibited until a temperature of 55 °C reached. At this temperature the hydrogen bonding arrangement weakens and the system enters the isotropic state at 59 °C. In contrast, the weaker hydrogen bonding pattern in films of 1c apparently cannot prevent the molecules from rearranging already at 23 °C. The consequent reordering of the hydrogen bonds leads to a much more efficient packing of the alkyl chains which subsequently prevents the formation of a mesophase until the melting point is reached. However, in contrast to 1b, for 1c the breaking of the hydrogen bonds and the melting of the alkyl chains occur simultaneously.

Aggregation behaviour of aziridinemethanol surfactants

Compounds 1b, c did not dissolve in water of neutral or basic pH. Aqueous dispersions (0.1% w/w), therefore, were prepared by injecting a 2.0% (w/v) methanolic solution of 1 into water of 60 °C adjusted to pH 3.0.\(^{26}\) Transmission electron microscopy demonstrated that both 1b and 1c formed vesicles with diameters between 75 and 300 nm (not shown). Upon standing, dispersions of 1b were transformed into fibers with diameters of approximately 5 nm and lengths of several micrometres (Fig. 5A). After ageing for several days at room temperature, vesicles of 1c were transformed into ribbon-like bilayer structures, which rolled up to form right-handed helical ribbons with lengths >10 μm (Fig. 5B).

Powder diffraction patterns of cast films of aged 0.1% (w/w) dispersions of compounds 1b and 1c revealed a repetitive distance of 40.6 and 41.6 ± 0.2 Å, respectively, indicating that the aggregates consisted of intercalated bilayers. Different levels of relative humidity (0, 50 and 90%) had no effect on the bilayer periodicity of these films, indicating that no water molecules are bound to the head groups.

Monolayer experiments

In order to obtain information about the ordering of the molecules in the aggregates, surface pressure–surface area (p–A) isotherms of 1b, c were recorded on an aqueous sub-phase adjusted to pH 3.0 (Fig. 6A). Both isotherms showed a plateau representing the coexistence of two phases during the transition of a liquid expanded (LE) to a liquid condensed (LC) phase. Brewster angle microscopy (BAM)\(^{30}\) on the monolayers of 1b revealed that in the LE–LC coexistence phase two-dimensional dendritic solid-like domains were formed with diameters of 300 μm (Fig. 6A, inset), whereas no domains were observed in the plateau region of 1c.\(^{31}\) The occupied area per molecule before and after this transition suggested that the head groups of both compounds rearrange going from a parallel to a perpendicular orientation with respect to the interface (Fig. 6B).
The high collapse pressure observed for monolayers of 1b (~ 70 mN m$^{-1}$) indicates that this compound forms a rigid film. It appears that specific intermolecular interactions between the head groups of 1b are responsible for the formation of domains on the microscopic scale. Remarkably, this also results in a higher molecular area per molecule for surfactant 1b compared to 1c. Apparently, the methyl substituent of 1c prevents such a highly organised structure and enables a close packing of the molecules at the air–water interface governed by van der Waals forces, but leads to films of low stability. The fact that compound 1c forms more densely packed monolayers compared to those of 1b is in line with the difference in ability of these compounds to form helical aggregates in aqueous dispersions.

Reaction with aspirin

In the course of our efforts to fine-tune the molecular packing and thereby the morphology of the aggregates, we attempted to induce the formation of chiral aggregates through the addition of salicylate ions following procedures described by Hoffmann and Ebert, and by Saikaigudin et al. This experiment, however, was not successful and only ill-defined aggregates were observed. However, when a methanolic solution of 1b and 2-acetoxybenzoic acid (aspirin) was injected into water at 60°C, electron microscopy revealed the formation of helical structures (Fig. 7a, b). Although enantiopure (S)-1b was used in all experiments, remarkably, both left- and right-handed helices were generated. Analysis of the dispersion showed that approximately 30% of 1b had been converted into 4 (Scheme 2). This suggests that under the action of aspirin the aziridine ring of 1b was activated by acylation of the aziridine nitrogen atom, and subsequently opened in a regioselective manner by nucleophilic attack of the salicylate.

1H NMR investigation revealed that reaction of 1b and aspirin in CD$_3$OD indeed leads to the acylation of the aziridine, although at this stage no ring opening was observed. Only after
transfer of the methanolic reaction mixture to an aqueous medium is compound 4 formed, which suggests that aggregation plays an important role in the nucleophilic ring opening by salicylic acid.

Remarkably, the reaction of 1b was specific for aspirin. No reaction was observed upon addition of 3- or 4-acetoxybenzoic acid to methanolic solutions of 1b and no distinct aggregate morphologies could be detected. We propose that the reaction proceeds via acylation of the alcohol which, due to the rigidity of the aziridinemethanol head group and the preorganisation of the molecules in the aggregate can only occur in the case of 2-acetoxybenzoic acid. Subsequent acyl transfer from the hydroxy group to the aziridine nitrogen then may lead to activation and opening of the aziridine ring.

In order to unravel the origin of helix formation it was attempted to generate these structures by dispersion of 4, or mixtures of 4 and different amounts of 1b, in water. This did not, however, lead to the formation of helical aggregates. Rod-like structures were observed instead for pure 4 (Fig. 7c), whereas in dispersions of mixtures containing different ratios of 1b and 4 no distinct morphologies could be detected. The role of (unreacted) aspirin was further investigated by adding this compound to aqueous dispersions of mixtures containing different amounts of 1b and by injecting methanolic solutions of mixtures of 1b and 4 into aqueous solutions of aspirin. Helix formation was not observed in any of these cases, leaving the precise effect of aspirin as yet unexplained.

Conclusions

The experiments described above demonstrate that molecules containing an aziridinemethanol moiety can form highly organised structures. The rigid, specific and strong hydrogen bonding pattern of 1b, similar to that of 1a, dominates the organisation of these molecules in the solid state and prevents
the molecules from displaying thermotropic liquid crystalline behaviour.

The interconnectivity of these molecules can be disrupted by the introduction of an additional methyl substituent at the aziridine ring. This leads to a change in the configuration of the NH hydrogen atom (trans with respect to the substituents) and consequently to a change in the hydrogen bonding pattern of the aziridinemethanol moieties. The hydrogen bonding network of 1c is not as rigid and strong as that of 1b and therefore the molecules reorganise into a more stable structure when the compound becomes less than the point where the alkyl chains start to melt. In this structure it is the efficient packing of the alkyl chains rather than the hydrogen bonding pattern that keeps the molecules in the solid state until the melting point is reached at 45 °C.

We have demonstrated that the introduction of the methyl substituent has a profound effect on the aggregation behaviour of the molecules in water and at the air–water interface. The specific intermolecular interactions of the head groups of 1b lead to a highly ordered monolayer, i.e. the formation of two-dimensional crystalline domains. However, this rigid orientation of the head groups prevents the close packing of the molecules and hence the expression of molecular chirality in the aggregates. In contrast to that of compound 1b, the organisation of 1c is predominantly determined by the close packing of molecules resulting in the expression of chirality at the supramolecular level. Our experiments show that it is possible to fine-tune the aggregate morphology of 1b by the addition of aspirin. The specific nature of this reaction is most probably related to the rigid conformation of the head group, although the helix formation remains as yet unexplained.

Acknowledgements

The authors wish to thank F. J. Dommerholt for the kind donation of compound 1a. H. P. M. Geurts for his assistance in performing electron microscopy experiments, A. M. Roelofsen, for performing the Langmuir film balance studies, D. S. J. van der Gaast (NIOZ, Netherlands Institute for Sea Research) for assistance with the powder diffraction experiments and L. Thijs and G. J. F Chittenden for fruitful discussions.

References

15 (a) The spirulina shows a characteristic pattern (Maltese cross) under cross polarization, which may be similar to the patterns commonly observed in the smectic phase of liquid crystals see e.g. G. W. Gray and J. W. Goodby, Smeatic Liquid Crystals, Leonard Hill, Philadelphia, 1984, pp. 9-17; (b) Recently a “spiral crystal” was observed when an amphiphilic single chain azacrown ether crystallized from its melt (see ref. 20c). This spiral crystal or spiral herringbone has a hierarchal structure: it consists of solid cylinders, and the cylinders are composed of the bilayers of the amphiphilic molecules; (c) R. Tang and Z. Tai, Chem. Mater., 1998, 10, 1638.
In general, the frequency shift of an intramolecular hydrogen bond is less pronounced than for intermolecular hydrogen bonding, see ref. 22.

The enhanced degree of order after reorganisation of the molecules was confirmed by powder diffraction experiments, which showed an increase in the number of peaks as well as a sharpening. However, a sub-cell structure has not yet been deduced from these complicated diffractograms.

The pK_a values of 1b, c in methanol–water (95:5; v/v) were determined by potentiometric titration and amounted to 8.5. Hence, it may be assumed that in water adjusted to pH 3.0 the molecules are protonated.

The dimensions of the condensed phase domains of 1c are in the sub-microscopic scale ($<1-2 \mu m$) and therefore cannot be detected with BAM, see e.g. D. Vollhardt, Adv. Colloid Interface Sci., 1999, 79, 19.

Other organic counter ions, e.g. oxalate, maleate and phthalate also did not lead to any distinct aggregate morphologies.