Autocatalytic ring opening of N-acylaziridines. Complete control over regioselectivity by orientation at interfaces

Peter J. J. A. Buijsters, Martinus C. Feiters, Roeland J. M. Nolte, Nico A. J. M. Sommerdijk and Binne Zwanenburg

a Department of Organic Chemistry, NSR Centre, University of Nijmegen, Toernooiveld NL-6525 ED Nijmegen, The Netherlands. E-mail: N.Sommerdijk@tue.nl
b Department of Medicinal Chemistry, Janssen Research Foundation, Beerse, Belgium
c Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands

Received (in Cambridge, UK) 20th November 2000, Accepted 20th December 2000
First published as an Advance Article on the web 23rd January 2001

Ring opening of 1-alkanoyl-2-phenoxymethylaziridines by phosphate ions yielding self-assembling phospholipid analogues proceeds in an autocatalytic fashion and with complete regioselectivity at an organic–aqueous interface.

Biological transformations are known to take place with high rates and high degrees of regio- and stereospecificities. This is achieved—amongst others—by positioning the reactants in a well defined manner with respect to each other, e.g. in the active site of an enzyme or at the surface of a biomembrane. Many model systems have been developed in order to mimic the supreme action of biomolecules.2 This has led to important improvements in conversion rates of molecules and in increased regio- and stereospecificities of their reactions. Of special interest in this respect are the autocatalytic3 and self-replicating3 biomimetic systems that have been reported in the literature. In the present communication we describe a reaction, i.e. the synthesis of chiral amide containing surfactants, which proceeds in an autocatalytic manner and with complete regioselectivity by orienting the reactants at an organic–aqueous interface.

The self-assembly of amide-containing phospholipid analogues (e.g. 2 and 3), has yielded a variety of interesting, and in many cases chiral, aggregate morphologies.4 Thus far these compounds have been prepared from enantiopure N-acylaziridines (1) via a nucleophilic ring opening with dibenzyl phosphoric acid in organic solvent (Scheme 1). However, in all cases this procedure led to the formation of the two regioisomeric products, i.e. compounds 2 and 3, in molar ratios ranging from 1:1 to 6:1.5 We hypothesised that in order to achieve a selective ring opening the N-acylaziridine molecules must be preorganised in such a way that only one of the ring carbon atoms is accessible to the nucleophilic species. It was anticipated that compound 1 would orient itself at an aqueous interface such that the C(1) carbon atom of the aziridine ring points towards the aqueous layer while the hydrophobic part of the molecule minimises its contact with water (Fig. 1a).

The ring opening of compound 1 was performed at 40 °C in a two phase system comprising an aqueous phosphate buffer (2.0 mM, pH = 7.0, 4.0 ml) and a top layer in which the starting material (9.0 µmol) is present as an oil. The progress of the reaction was conveniently monitored by determining the concentration of the aziridine in the aqueous phase using reversed phase HPLC.6 The generated products were analysed by capillary electrophoresis using a borate buffer containing β-cyclodextrin.7 As an example the conversion of 1a (R = C12H25) to 2a is given. In the first 9 h of the reaction neither compound 1a nor any reaction products were detected in the aqueous phase, suggesting that at this stage the ring opening was slow since it could only take place at the oil–aqueous buffer interface. After this period vesicles with diameters of 75–350 nm were formed as was demonstrated by electron microscopy (Fig. 1b).

Concomitant with the formation of the vesicles the concentration of 1a in the aqueous phase increased, suggesting that these vesicles facilitated the transfer of the N-acylaziridine to the water layer. The concentration of 1a in the buffer reached a maximum after 24 h (~ 25% of 1a in the aqueous phase). Thereafter, it decreased, and the reaction was completed after approximately 80 h. Increasing the buffer concentration to 10.0 mM led to an enhancement of the reaction rate (complete

DOI: 10.1039/b009294k
pounds facilitate further conversion of the starting material without compromising the selectivity of the reaction and, ultimately, under the appropriate conditions lead to the formation of well-defined self-assembled objects. A detailed investigation of the autocatalytic nature of the system and possible applications are in progress.

The authors thank B. Martens for performing HPLC and Capillary Electrophoresis experiments.

Notes and references

† For synthetic procedures and for the physical data of 1–3b see reference 5. (±)-25-1-Dodecanoylaminoprop-2-yl phosphate, 3a was mp 125–128 °C; [α]D(¯)20 = −33.4 (c 1.1, CHCl3); Calc. for C21H33NO2·2H2O: 495 [M + Na] + , 474 M + 1]. Calc. for 3a (C21H33NO2·2H2O) C 76.09, H 10.03, N 4.23; (±)-6-Dioodylaminopropan-2-yl phosphate, 3a mp 125–128 °C; [α]D(¯)20 = +15.4 (c 1.0, CHCl3); FAB MS: 495 [M + Na]+, 474 M + 1].

‡ The concentration of 1 in the aqueous phase was determined using a RP18 reversed phase column. UV detection at 280 nm and a mobile phase of acetonitrile-phosphate buffer [2 mM, pH = 7.0, 9:1 (v/v)]. Samples (25 μl) of the aqueous phase were diluted with acetonitrile (225 μl) before analysis.

§ The regioselectivity of the reaction was determined by capillary electrophoresis (30 kV, 10 °C, UV detection at 193 nm) using a buffer (Na2HPO4·NaH2PO4 50 mM, pH 9) containing 26.7 mM 5-cyclodextrin to avoid aggregate formation. Samples (25 μl) of the aqueous phase were diluted with sodium borate buffer (150 μl). From authentic samples the retention times of 2 and 3 were determined.


