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Abstract 

This article examines the status of dynamical models of movement coordination qua 
phenomenological models. After a brief outline of the aims, methods and strategic assump- 
tions of the dynamical systems approach, a survey is provided of the theoretical and 
empirical progress it has made in identifying general principles of coordination. Although 
dynamical models are constructed for phenomena at a particular level of analysis for which 
they provide descriptive explanations, their dynamics can sometimes be linked to or 
associated with the dynamics of processes at other levels of analysis. The article concludes 
with a tentative scheme to clarify the position of the dynamical approach relative to other 
extant approaches in movement science. 

Bodily movements occur in the context of the everyday functioning of 
people while realizing specific task goals. As a rule, such movements 
involve the participation of multiple joints and limbs. When in action, these 
body parts are coordinated, that is, they are brought into proper relation to 
one another as well as to the surrounding layout of surfaces (cf. Turvey, 
1990). To the naked eye, this coordination may look relatively simple, as in 
picking up an object, or relatively complicated, as in juggling, performing 
an attacking forehand drive in table tennis or playing the drums. To the 
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movement scientist, however, all coordination is complex in that he or she 
is confronted with the challenge to explain coordinated movements as the 
orderly products of a hybrid biological organization involving a very large 
number of different subsystems (e.g., vascular, neural, muscular, skeletal). 
These subsystems are operating at different rates and are connected in 
intricate ways. Due to this compositional complexity, the problem of 
movement coordination is extremely difficult to resolve in a scientifically 
satisfactory way. Finding an adequate solution is hampered by the fact that 
the field of motor control is still very much partitioned according to the 
traditional disciplines of movement science (mechanics, neurophysiology, 
psychology, and so on), whereas a multidisciplinary or interdisciplinary 
approach is required. 

Broadly speaking, two types of approaches may be distinguished in 
movement science: structural and phenomenological approaches (cf. Otten, 
1991). Structural approaches seek causal explanations of movement in 
terms of dedicated structures within the human body. Phenomenological 
approaches, in contrast, seek noncausal explanations in terms of phe- 
nomenological laws and principles without reference to dedicated mecha- 
nisms and structures within the human body. 

Structural models of motor control are typically (neurojphysiological 
models which attempt to explain different aspects of motor behaviour on 
the basis of hypothetical (neurojphysiological mechanisms for the genera- 
tion of movement (such as an efference copy, an oculomotor coupling, a 
mechanism for the control of threshold values of the stretch reflex, and so 
forth). The aim of these models is to elucidate the structural basis of 
functional properties, while phenomenological models aim at describing 
functional properties without addressing the structural basis of these prop- 
erties. Thus, all models that do not make explicit propositions with regard 
to the neural mechanisms of motor control, but rather attempt to find an 
appropriate mathematical description of the kinematics of movement be- 
long to this class of models. Usually, the aim of such mathematical 
descriptions is to derive hypotheses with regard to the variables that might 
play a central role in the neural control of movement and the principles on 
which this control might be based. Our concern in this article is with a 
special subclass of phenomenological models of movement coordination, 
namely (nonlinear) dynamical models. Dynamical systems theory is cur- 
rently penetrating the sciences at large, including the traditional disciplines 
of movement science, and holds the promise, as we shall see, of providing a 
general, interdisciplinary theory of the formation of spatiotemporal pat- 



P.J. Beek et al. /Human Movement Science 14 (1995) 573-608 575 

terns at the level of movement coordination itself as well as at the level of 
the corresponding neural events. 

In the present contribution we examine the current status of dynamical 
models of movement coordination qua phenomenological models. We use 
the term “status” here in a broadly and loosely defined way. We are 
interested in questions such as: What is the nature of dynamical models? 
How are they derived and what do they contribute to our understanding? 
How do dynamical models for movement develop, and in what sense are 
they empirically progressive? What is the explanatory value of these mod- 
els, and what are their limitations? How are we to think of dynamical 
models in relation to other kinds of models? 

We hope that an attempt to provide accurate answers to these questions 
will help those who are working from other perspectives than dynamical 
systems theory in appreciating the contributions of this approach and in 
comparing these contributions with contributions made by other ap- 
proaches. In this regard, this article has the character of a review of the 
dynamical systems approach, although it is not simply a tutorial ‘. It raises 
several controversial points that are aimed at stimulating discussion among 
movement scientists in general about the sort of models that are required 
to come to terms with the problem of movement coordination. 

Given these aims, the article is structured as follows. First, a brief 
outline is provided of the general goal of the dynamical systems approach 
and the strategic assumptions and methods it has adopted in the pursuit of 
this goal. Subsequently, a survey is provided of the main empirical and 
theoretical findings of the approach in the field of movement. This survey 
is not meant as an exhaustive list of achievements but rather as an 
illustration of the manner in which progress is being made in this particular 
programme of research, how research builds on previous findings, what 
kind of insights are obtained, and so on. This survey is followed by a 
section devoted to a discussion of the explanatory value of dynamical 
models of coordination and two sections on the relationships between 
dynamics and neurophysiology and between dynamics and biomechanics, 
respectively. The article concludes with a tentative conceptual scheme that 
clarifies the position of the dynamical approach relative to other ap- 
proaches. 

-lent tutorials on the dynamical systems approach to movement coordination are provided by 
Kelso and SchGner (1988), Schiiner and Kelso (1988c), and Kelso, Ding and SchGner (1992). 
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1. Brief characterization of the dynamical systems approach 

Nonlinear dynamics is a branch of mathematics that deals with the 
formal treatment of the time evolution of dynamical systems qua number 
systems, such as differential (time-continuous) and difference (time-dis- 
crete) equations of motion. Even relatively simple nonlinear versions of 
these systems can give rise to very complex dynamics, including abrupt 
transitions between different dynamical behaviours when the parameter 
settings of the equations in question are gradually changed. A key concept 
in characterizing these dynamical behaviours is that of an attractor: a stable 
mode of behaviour to which different trajectories in state space (i.e., a 
representation of the system’s behaviour in a coordinate system defined by 
its state variables) are attracted. Four attractor types are known: (i) the 
point attractor or equilibrium point, a stable (“steady”) single-valued state; 
(ii) the periodic attractor, a set of state values that are revisited after a 
fixed time interval, resulting in a stable orbit called a limit cycle; (iii) the 
quasi-periodic attractor, a set of state values that are not perfectly revisited 
after a fixed time interval but almost, resulting in a nearly periodic stable 
orbit, and (iv) the chaotic attractor (or “strange” attractor), a set of state 
values with no immediately apparent spatiotemporal structure, resulting in 
an erratic and unpredictable, but stable orbit. Because it is typically 
impossible to derive analytical solutions of the time evolution of nonlinear 
systems, the identification of their attractor states and transitions between 
these attractor states due to parameter variation are crucial steps in the 
quantitative and qualitative characterization of a particular dynamical 
system. 

In the dynamical systems approach to movement coordination, the 
concepts and tools of nonlinear dynamics are used to study the stability 
properties of movement patterns and perception-action patterns. The aim 
of the approach is to identify principles of coordination that apply gener- 
ally to pattern formation (i.e., pattern stability and instability) in movement 
systems with different architectures and structural properties. These princi- 
ples are identified by mapping observed coordination patterns onto dynam- 
ical equations of motion 

2. 
Involving only a 

characterize the collective dynamics (i.e., 

’ The dynamical equation of motion should not be 

mechanics. The equations of dynamical systems theory 
evolution. 

limited number of variables that 
the coordination patterns). The 

equated with the equations of Newtonian 

refer more generally to any form of time 
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resulting dynamical equations of motion of these characteristic variables 
have the status of “formal analogies” to natural phenomena. The preced- 
ing statements reflect four important strategic assumptions of the ap- 
proach. 

(1) Coordination is an a posteriori consequence of pattern formation or 
physical self-organization (cf. Kelso, 1994a). The notion of self-organization 
implies that coordinated movements are the orderly products of complex 
organizations that are composed of a very large number of interacting 
elements and that may adapt in a flexible manner to changing internal and 
external conditions by adopting a different coordination pattern without 
any explicit prescription of this pattern. 3 

(2) General principles of movement coordination exist; that is, there are 
abstract coordination principles that apply to a variety of movement sys- 
tems, relatively independent of the structural, material properties of the 
system’s components and of the exact mechanism underlying their interac- 
tion. These principles are present at the level of coordinative relations or 
dynamical actions among things rather than at the level of these things 
themselves. 

(3) Because coordinated movements are the orderly products of physical 
self-organization, it is both possible and appropriate to describe their 
intrinsic order in terms of one or a few key variables (cf. Kelso and 
Schoner, 1988; Schiiner and Kelso, 1988~1. In synergetics (Haken, 1977; 
Haken, 19831, as well as other dynamical approaches, these variables are 
called collective variables or order parameters because they summarize the 
orderly behaviour that is wrestled out of a large collective of internal 
degrees of freedom. By definition, these variables are ensemble variables in 
that they are composed of a number of local variables corresponding to the 
behaviour of the functional components of the system, i.e., the components 
over which the order is defined. Closely allied to the synergetic concept of 
an order parameter is that of the “control parameter”: the parameter that 
affects the number and/or kind of the attractor states of the order 
parameter without specifying or prescribing those states. 

(4) The dynamics of mathematical models of the order parameter(s) 
formally capture (and correspond to) the behaviour of natural systems, 

3tunately, the notion of self-organization is interpreted by some movement scientists as a kind 

of mystical ability, according to which movements come out of the blue. This is giving an incorrect 

ontological twist to the concept. 



578 P.J. Beek et al. /Human Movement Science 14 (1995) 573-608 

including qualitative changes therein due to the systematic manipulation of 
a control parameter. The control parameters have to be identified in 
conjunction with the collective variables for an adequate account of the 
observed phenomena. In other words, the aforementioned principles of 
coordination are considered formalizable in terms of the dynamics of 
collective variables. 

A first and foremost problem in the application of dynamical systems 
theory to the study a particular phenomenon is to identify one (or a few) 
appropriate collective variable(s) that capture(s) the order (i.e., the attrac- 
tor states) of the system. Even though the phenomenon of interest already 
defines a scale of observation (e.g., neural, electrophysiological, physical, 
hormonal, behavioural) on which the collective variable(s) is (are) to be 
sought, there usually still is a wide range of variables that may or may not 
be essential. Important information about candidate collective variables is 
provided when the system shifts abruptly from one coordinative mode to 
another, that is, from one attractor state to another. Such qualitative 
changes in behaviour, called phase transitions, allow for the identification 
of collective variables because at these points, where order is lost and 
regained, it becomes apparent along which dimension the intrinsic order of 
the system is defined (cf. Kelso, 1994a). Once the collective variable(s) is 
(are) derived it can be attempted to construct a model in the form of a 
potential function and/or dynamical equations of motion for the identified 
collective variable(s). The art of dynamical modelling is to bring out the 
dynamic richness and complexity of the observed phenomena using a 
minimal set of formal constructs. Examples of such models will be dis- 
cussed in the following sections. As we shall see, such models make specific 
predictions regarding the stable modes of operation as well as the loss of 
stability near critical points which can be evaluated empirically. 

2. The Haken-Kelso-Bunz-model 

A primary impetus in the development of the dynamical systems ap- 
proach to movement coordination was provided by the experimental and 
theoretical work of Kelso and colleagues on the coordination of rhythmic 
finger (and hand) movements performed at a common frequency of oscilla- 
tion (Kelso, 1981; Kelso, 1984; Haken et al., 1985). The focus of this work 
was an abrupt shift in the coordination between two oscillating fingers that 
can be induced by increasing the frequency of oscillation. When subjects 
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are instructed to move their index fingers (or hands) rhythmically in 
anti-phase (defined as the simultaneous activation of nonhomologous mus- 
cle groups) and to gradually increase the cycling frequency, an involuntary 
abrupt shift to the in-phase pattern (i.e., in which homologous muscle 
groups are simultaneously active) occurs at a certain critical frequency. 
Beyond this critical frequency, only the in-phase pattern can be stably 
performed. Haken et al. (1985) proposed a theoretical model for the abrupt 
transition in coordinative patterns observed between the hands, using 
concepts from synergetics and nonlinear oscillator theory. In this section 
this model (referred to as the HKB [Haken-Kelso-Bunz-model) is dis- 
cussed. 

The first step in modelling this phenomenon involved the determination 
of the essential variable (or order parameter) and its dynamics. The 
empirical findings suggested that the relative phase 4 (i.e., the phase 
difference) between the two oscillating fingers constituted the order param- 
eter, because it characterized the coordinative modes and changed abruptly 
at the transition. Based on the rather simple dynamics that were observed 
for 4, its stationary states (i.e., C$ = 0 and C$ = r) were modelled as fixed 
point attractors. To account for the observed transition the model had to 
result in a change from bistability (both 4 = 0 and C$ = 7r are stable) to 
monostability (only 4 = 0 is stable) when the control parameter (movement 
frequency) reached a critical value. Furthermore, the dynamics had to be 
2r-periodic and, to account for the observed symmetry between the 
movements of the left and right limb, the model had to be symmetric under 
the transformation C$ + -4 (so that the description remains the same 
when the two hands are reversed). According to synergetics, the equations 
of motion for order parameters are of the form 

dV(4J) 
4=- d4 7 (1) 

where V(C#I> is a potential function that describes the magnitude and the 
direction of the tendency of 4 to change as a function of its own value and 
the dot notation represents differentiation with respect to time. If the 
time-derivative of 4 is zero, the system is in equilibrium. If the equilibrium 
point is a local minimum of V(4), it is stable (i.e., a point attractor), if not, 
it is unstable (i.e., a repeller). The simplest form of V(c)) which explains 
the obtained experimental results proved to be a superposition of two 
cosine functions: 

V(4) = -a cos(4) -b cos(24). (2) 
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Fig. 1. The shape of the potential V(C#J) for different values of b/a to which the values in the upper 

right corners of the panels refer (after Haken et al., 1985, adapted with permission. Copyright 1985: 

Springer-Verlag). 

The two cosine functions in Eq. 2 are associated with potential minima at 
4 = 0 and 4 = r. These minima are the point attractors in the model 
where the values of the order parameter + do not change in time (i.e., 
4 = 0 according to Eq. 1). The system is attracted toward one of these 
values. The stability of the attractors depends on the depth of the minima 
and the steepness of the slope toward the minimal value, which are both 
dependent on the ratio between the parameters b and a. This is graphi- 
cally illustrated in Fig. 1 which shows the shape of the potential function 
for different values of b/a. As can be seen, the minimum at 4 = rr turns 
in a maximum for b/a I 0.25. Thus, gradual scaling of the ratio b/a 
results in loss of stability of the anti-phase coordination followed by a 
sudden transition to the remaining stable state: in-phase coordination (cf. 
the black ball in Fig. 1). This implies that the proposed potential function 
can account for the observed phase transition. In the HKES-model the ratio 
b/a functions as control parameter: gradual decrease of this ratio induces 
a sudden transition in the value of the order parameter. Therefore, the 
increase in movement frequency, which induced the phase transition in the 
experimental situation, was assumed to result in a decrease of b/a. 
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The next modelling step involved the derivation of a system of coupled 
differential equations for the observed movements of the hands of the form 

jt, +f*(x*,&) =Z*,(~*J,)* 

(34 

The left-hand sides of these equations describe the movements of the 
individual hands in terms of their positions x1 and x2, respectively, again 
using the dot notation to indicate time derivatives. The right-hand sides 
represent the coupling between the hands. The dissipative terms in f(x,i) 
are assumed to be weakly nonlinear, involving both positive and negative 
damping: the component oscillators are self-sustaining and their long-term 
behaviour is, thus, independent of the initial conditions. When presented in 
a phase plane (i.e., i plotted against x), the trajectory is attracted to a 
periodically stable orbit (i.e., a limit cycle). The movements of the individ- 
ual hands were modelled as a hybrid oscillator, a particular kind of limit 
cycle oscillator with a nonlinear dissipative structure that accounted for the 
empirically observed decrease in amplitude and increase in peak velocity 
with increasing movement frequency. Haken et al. (1985) showed, both 
analytically and numerically, that this functional form of the individual 
oscillators in combination with the following coupling function 

Iii= (ii-ij)(a +P(Xi-Xj)*), i= 1,2; j= 2~1 (4) 

accounts for the observed phase lockings as well as the sudden transition 
between the coordination modes. In addition, it was demonstrated that the 
derived system of coupled oscillators was consistent with the derived 
potential function (Eqs. 1 and 2). 4 Specifically, the ratio between the 
parameters in the potential function (b /a) could be related to the parame- 
ters (Y and p in combination with the real amplitude of the oscillatory 
movements, in such a way that a decrease in the amplitude resulted in a 
decrease in the value of the ratio b/a. Given the relation between 
movement frequency and amplitude in the component oscillators, the role 
of movement frequency as the control parameter was thus understood. 

4 The mathematical proof of this step is beyond the scope of this article. 
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3. Generalizations of the HKB-model and new directions of research 

Generality of phase transitions. It is important to recognize the intrinsi- 
cally abstract nature of the HKB-model. Several studies have demonstrated 
that the model is generalizable to coordinations other than those involving 
two fingers or hands, such as the coordination between an arm and a leg 
(Kelso and Jeka, 19921, an arm and a visual stimulus (Byblow et al., 1995; 
Wimmers et al., 1992) and two legs belonging to different people (Schmidt 
et al., 1990). These results suggest that the same coordination principles 
apply to systems with different functional and material components and 
that the identified coordination dynamics are informational in nature 
(Kelso, 1994b). 

Critical fluctuations and critical slowing down. Immediately following the 
introduction of the HKB-model the nature of the phase transition was 
investigated in more detail. Schoner et al. (1986) generalized the model by 
including stochastic forces that were modelled theoretically as continuous 
perturbations of the order parameter arising from the microscopic interac- 
tions within the system. Because the effects of these stochastic forces are a 
function of the stability of the attractor state in which the system is 
prepared, a temporary increase in the resulting deviations away from the 
attractor state, a phenomenon called critical fluctuations, was predicted to 
occur when the transition point is approached. These critical fluctuations 
were indeed observed empirically by Kelso et al. (1986). Also the prediction 
of a closely related phenomenon, called critical slowing down, was con- 
firmed empirically (Scholz et al., 1987). This is the phenomenon that, prior 
to a transition, the time it takes the system to return to its stationary state 
after an external perturbation of the order parameter also increases tem- 
porarily due to the loss of stability of the attractor state. 

Behavioural information. Another line of investigations on the basis of 
the HKB-model is concerned with the fact that the coordination dynamics 
described by the model may change as a function of learning. In an attempt 
to deal with this phenomenon, Schijner and Kelso (1988a; SchGner and 
Kelso, 1988b; see also Schijner et al., 1992) distinguished between the 
already existing pattern dynamics, which they termed “intrinsic dynamics”, 
and the to-be-learned pattern dynamics, which was labelled “extrinsic 
dynamics”. Subsequently, they modelled the learning process as a mapping 
from the intrinsic dynamics onto the extrinsic dynamics. The to-be-learned 
dynamical pattern is always specified by behavioural information, i.e., there 
is always information about the required coordination, be it in the form of 



P.J. Beek et al. / Human Movement Science 14 (1995) 573-608 583 

a perceptual stimulus or in the form of a person’s memory or intention. By 
casting the extrinsic dynamics or behavioural information in the same 
collective variables that characterize the intrinsic dynamics (e.g., relative 
phase), it was possible, by combining the intrinsic and extrinsic dynamics, 
to derive a unified dynamical model for the dynamics of the learning 
process. Empirical findings with respect to the effects of behavioural 
information on the pattern dynamics justified this modelling step (Scholz 
and Kelso, 1990; Zanone and Kelso, 1992). 

Oscillators with different eigenfrequencies. The HKB-model was formu- 
lated for a symmetrical system, in which the two component oscillators and 
their eigenfrequencies are identical. However, coordination of different 
limbs (e.g., the combination of arm and leg movements; see Kelso and 
Jeka, 1992) involves oscillators with different characteristics such as their 
eigenfrequencies. The HKB-model was therefore extended to capture the 
rhythmic coordination of limbs (or, more generally, component oscillators) 
with different eigenfrequencies (Fuchs et al., 1995; Kelso et al., 1990a; 
Kelso et al., 1990b). These differences in the eigenfrequencies of the 
oscillators result in systematic shifts in the location of the attractor states of 
relative phase in state space (Kelso et al., 1990a,b). The magnitude of these 
shifts depends on the parametrization of the coupling function, which in 
turn depends on the movement frequency. The predicted shifts in attractor 
phase as well as the influence of movement frequency have been empiri- 
cally demonstrated in anatomically coupled systems (Schmidt et al., 1993; 
Sternad et ,al., 19921, as well as in visually and auditorily coupled systems 
(Kelso et al., 1990a,b; Schmidt and Turvey, 1994). Although inertia and 
inertial loadings have been the most common way to manipulate the 
eigenfrequencies of the limbs, it is important to recognize that any influ- 
ence that causes differences in eigenfrequencies may act as a source of 
symmetry breaking in the coordination dynamics, including handedness and 
hemispheric asymmetries (Kelso and Ding, 1993). This shows that although 
biomechanical properties can shape the coordination dynamics, the princi- 
ples of coordination dynamics transcend the biomechanical level. 

Discrete movements. Although the HKB-model provides a description for 
the coordination between oscillating limbs, the dynamical analysis of move- 
ment coordination did not remain restricted to rhythmic movements. Saltz- 
man and Kelso (19871, for example, showed how discrete movements (such 
as picking up a cup and bringing it to the mouth) could be modelled as the 
result of a series of coupled point attractors and limit cycle oscillators 
corresponding to the joints. In an analogous fashion, Schijner (1990) 
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proposed a dynamical model for the coordination of discrete movements in 
which the starting point and the end point of the movement are modelled 
as point attractors and the trajectory between them as a part of a limit 
cycle followed by a transient to the end point. Later, Schijner (1994a; 
Schoner, 1994b) extended this initial modelling attempt by including the 
dynamical effect of perceptual information on trajectory formation. These 
models suggest that discrete movements are amenable to a similar type of 
dynamical analysis as rhythmic movements (and that there are common 
principles at work (Schoner, 1994a)) but, to date, they lack the kind of 
empirical support that is available for dynamical models for rhythmic 
movement. It remains to be seen whether the difficulties encountered in 
deriving appropriate dynamical models for discrete movements stem from a 
principled shortcoming of the approach or not. 

4. Multifrequency tasks 

Another direction in which the dynamical study of movement coordina- 
tion has been developed is rhythmic multifrequency coordination. We 
discuss this work in a little more detail because it nicely illustrates the 
evolution of dynamical models. In a series of recent studies we examined 
the dynamics of multifrequency coordination in the context of bimanual 
rhythmic tapping. During multifrequency tapping the two hands tap at 
different, but fixed, frequencies. The resulting rhythm can be characterized 
by the ratio between the frequencies at which the hands tap (e.g., 3:2 or 
5:3). In general, lower-order ratios (i.e., ratios with smaller numerator and 
denominator) are performed with less temporal variability than higher-order 
ratios (e.g., Deutsch, 1983; Summers et al., 1993a; Summers et al., 1993b). 
In our experimental work we examined this apparent differential stability 
of rhythmic patterns in relation to the effect of movement frequency. In 
these experiments skilled male drummers participated, who tapped with 
their hands on a low resonance tabletop (rotation about the wrist), while 
their lower arms rested on its surface. One hand had to tap a fixed 
externally specified frequency, while the other hand had to synchronize to 
another externally specified frequency that was scaled in a stepwise fash- 
ion. Under these experimental conditions, the drummers did not always 
succeed to perform the externally specified frequency ratio. If the specified 
ratio could not be performed stably, attraction to a lower-order ratio 
occurred. These attractions manifested themselves graphically as fre- 
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Fig. 2. Stably performed frequency ratios as a function of the externally specified (i.e., required) ratio, 
as obtained for one of our subjects. In Panel A the ratios were performed slower than in Panel B 
(indicated by the periods for the “steady” hand). The required frequency of the other hand was 
increased during the trial. Thus, the required ratio was scaled along the x-axis, which is indicated by the 
arrow. The thin line represents the location of correct responses (i.e., the line y = x). Comparison of 
the two panels reveals that the platforms, indicating attraction to lower-order ratios, are larger in the 
faster condition. (After Peper et al., 1995c, adapted with permission. Copyright 1995: APA.) 

quency-ratio platforms in plots of the actually performed frequency ratio 
against the required frequency ratio (see Fig. 2, Peper et al., 1995~). In 
general, more attractions to lower-order ratios were observed if the speci- 
fied frequency ratios had to be performed at higher movement frequencies 
(compare Fig. 2A versus Fig. 2B). 

In another experiment the influence of movement frequency on the 
performance of multifrequency relations was examined in a more direct 
manner (Peper et al., 199%; see also Beek et al., 1992, and Peper et al., 
1991). In this experiment the subjects performed either a 83 or a 85 
frequency ratio, while the movement frequency at which the ratio had to be 
performed was gradually increased. For all subjects this increase in fre- 
quency resulted in a breakdown of performance of the initial ratio, which 
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Fig. 3. A typical transition route. The subject performed the frequency ratio 8:3. On the y-axis the 
observed mean frequency ratio (fright /ftert) per rhythmical cycle (i.e., the period in time in which 8 taps 
by the right hand and 3 taps by the left hand were to be performed) is presented. Along the x-axis the 
tapping frequency increases in frequency platforms consisting of 3 rhythmical cycles. The figure shows 
that this increase in movement frequency resulted in a sudden transition from 8:3 (i.e., 2.67) to the ratio 
3:l (i.e., 3.0). (After Peper et al., 1995b, adapted with permission. Copyright 1995: Springer-Verlag.) 

was, in a majority of trials, followed by a transition to another ratio (see 
Fig. 3). Analysis of the observed transition routes revealed that almost all 
transitions were to lower-order ratios. The transitions occurred at move- 
ment frequencies that were circa 1 Hz lower than the maximal tapping 
frequencies that could be attained unimanually. This implied that the 
observed transitions resulted from genuine coordination constraints rather 
than from threshold constraints associated with the separate hands. 

The main features of these two experiments, i.e., entrainment (attraction 
to lower-order ratios) and frequency-induced transitions between coordina- 
tion patterns, show some clear resemblances to the phase transitions 
studied by Kelso (1981, Kelso, 1984). Again, a bottleneck appeared in the 
coordination between the hands, obstructing specific coordination patterns 
and favouring others. In both experimental tasks, movement frequency 
acted as a control parameter, in the sense that it guided performance in an 
unspecific manner from one collective state (i.e., frequency ratio) to an- 
other state through loss of stability of the initial state. Some differences 
with Kelso’s work are worth mentioning. First, in our experimental task the 
observed transition routes were much more diverse than the highly repro- 
ducible transition from anti-phase to in-phase observed in Kelso’s experi- 
ments, revealing that the system operated in a regime in which multiple 
coordination modes provided stability. Second, multifrequency tasks are 
hard to perform and, therefore, this behaviour depends to a large degree 
on practice. Through learning, the subjects acquire a repertoire of coordi- 
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nation patterns from which they may intentionally select the to-be-per- 
formed ratio. Whereas in the study of 1:l frequency locking the effects of 
learning and intention may be addressed as relatively isolated issues 
(Scholz and Kelso, 1990; Zanone and Kelso, 1992), in the performance of 
frequency ratios of even relatively low order (e.g., 52 or 5:3) the learning 
history and intentions of the subject play an essential role. In line with the 
dynamical work on 1:l frequency coordination, we modelled the tapping 
hands as a system of coupled oscillators. From this perspective two models 
proved to be useful for explaining our data. These models differ with 
respect to the degree of simplification of the rather complex problem of 
multifrequency coordination. In the next section both models are briefly 
discussed. 

5. Two dynamical models for multifrequency coordination 

The behaviour of coordinated limb movements which is captured by two 
coupled differential equations (e.g., the HKB-model), may also be studied 
by means of a single difference equation in a time-discretized analysis. 5 In 
a difference equation the state of the system at time t + 1 is a function of 
its state at time t. In other words, the state of the system is mapped onto 
itself or ‘iterated’. A general expression of such a difference equation is, 
thus, 

X t+1 = F(X,). (6) 
A system of coupled oscillators, which may be considered a generalized 
version of the more familiar periodically forced oscillator, can be studied 
with a special kind of difference equations, called circle maps (cf. Epstein, 
1990), which are defined through 

@II+1 =fo(On) = 0, +R +s(@,), (7) 
where the variable 0, represents the phase of the oscillating system 
measured stroboscopically (at strobe n), 0 is the ratio between the eigen- 
periods of the forcing and the forced oscillators (i.e., the ratio of the 

5 In general, difference equations have the advantage that less independent state variables are 

required to describe a dynamical behaviour of a certain complexity than in differential equations. For 

example, at least three one-dimensional differential equations are required to create chaos, whereas a 

single one-dimensional difference equation suffices for generating this type of behaviour. 
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periods of the oscillators in the absence of coupling), and g is a periodic 
function of 0, with period 1: 

g(0,) =g(O,, + l)(mod 1) (8) 

(using the convention of a period of 1 rather than 27r: 0 I 0 < 1). As in Eq. 
6 the state of the system is mapped onto itself. The phase of the oscillator 
is influenced periodically (“forced”), which is described mathematically by 
the forcing function g(O,> (Eq. 8). The effect of this forcing is a function of 
the phase of the forced system (0,). We focus here on the sine circle map, 
the smoothest of all one-dimensional circle maps, for which the forcing 
function g(O,) is defined as (--)(K/2r)sin2~@,. During iteration the 
phase and, hence, the period of the forced oscillator changes due to the 
coupling effect of the forcing oscillator. The resulting behaviour is charac- 
terized by the average ratio between the forcing period and the period of 
the forced oscillator, the so-called (dressed) winding number, which is 
defined as W(K,0) = (0, - O,)/ n in the limit as the number of iterations 
IZ approaches infinity. Under iteration the variable 0, may converge to a 
series which is either periodic, with W being rational; quasiperiodic, with 
W being irrational; or chaotic, where the series behaves irregularly. The 
quantity W is determined by the settings of the parameters of the iteration 
process: the amplitude (or strength) of the coupling function K and the 
ratio between the eigenperiods 0. The system is attracted to a specific 
periodicity (specified by a rational value of IV) if its parameter values (i.e., 
K and 0) fall within the boundaries of the associated attraction regime (or 
“Arnold tongue”) as depicted in Fig. 4 (cf. e.g., Hilborn, 1994; Jackson, 
1989; Jensen et al., 1984). This implies that the stability of a frequency ratio 
is associated with the width of the attraction regime. The widths of these 
regimes vary, implying differential stability of the frequency ratios. In 
general, lower-order ratios are more stable than higher-order ratios. In 
addition, Fig. 4 reveals that the widths of the Arnold tongues are a function 
of the strength of coupling between the oscillators: Stronger coupling is 
associated with larger stability. 

The stability of multifrequency tapping may, thus, be understood in 
terms of attraction regimes in the sine circle map. The differences in 
stability observed in the tapping tasks are in general agreement with the 
identified differential stability of the mode-locked regimes in the sine circle 
map. To understand the effects of movement frequency, we recall the 
relation between coupling strength and movement frequency (cf. the 
HKB-model). Movement frequency has been demonstrated to be inversely 
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Fig. 4. Regime diagram of the sine circle map which was obtained by performing large numbers of 

iterations for different combinations of the coupling strength K and R, the frequency ratio when the 

oscillators are uncoupled: the “bare” winding number. The Arnold tongues that demarcate the 

parameter values of K and R at which the system is attracted to a particular frequency ratio are clearly 

visible. Darker displays correspond to stronger attraction and the larger a particular range the more 

stable is the associated mode-locked ratio. 

related to the strength of interaction between the oscillating limbs (Peper 
et al., 1995a; Schmidt et al., 1993; Sternad et al., 1992). This implies that 
manipulation of movement frequency scales the system along the y-axis of 
the regime diagram depicted in Fig. 4. For higher frequencies (weaker 
coupling) the attraction regimes are narrower, which is associated with less 
stable behaviour. Hence, qualitative predictions for the behaviour of coor- 
dinated rhythmic movements can be formulated. If movement frequency is 
increased, stability of the initial coordination pattern may be lost and the 
system may be attracted to a lower-order ratio that is still sufficiently 
stable. Because the spatial layout of the attraction regimes is known, the 
transition routes can also be predicted. In general, our data were in 
agreement with the predictions based on the sine circle map (Peper et al., 
1991; Peper et al., 1995b,c). Data supporting a similar conclusion were 
reported by Treffner and Turvey (1993). 
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The sine circle map provides a rather general account of the behaviour 
of coupled oscillators. Whereas it has proved an adequate model in 
understanding the basic phenomena in coordinated multifrequency be- 
haviour (e.g., frequency locking, differential stability of frequency-locked 
states, and frequency-induced transitions between them), it does not allow 
for a more detailed examination of the coordination principles. One of the 
problems in applying this model to our data is that the exact relation 
between movement frequency and K is unknown. Although converging 
results indicate that the system is operating in the domain where attraction 
regimes overlap, resulting in phenomena like multistability and hysteresis 
(Peper et al., 1995b; Peper et al., 1995~1, the precise location of the system 
in the diagram cannot be determined. A second problem concerns individ- 
ual tendencies in the empirically obtained frequency-induced transition 
routes, which were in some cases even in disagreement with our theoretical 
predictions (Haken et al., 1995; see also Beek et al., 1992; Peper et al., 
1991). The richness observed in multifrequency performance cannot be 
fully accounted for by this simple map. However, the model may be 
adapted by modification of the coupling function g(O,) so that the dynam- 
ics of the system change. On the basis of the HKB-model, for example, 
Kelso et al. (1990a,b; see also deGuzman and Kelso, 1991) formulated a 
version of the circle map that accounted for the frequently observed 
tendencies to momentary phase-attraction during multifrequency perfor- 
mance (to the anti-phase or the in-phase mode; e.g., deGuzman and Kelso, 
1991; Summers et al., 1993a,b). In order to identify the necessary changes 
in the coupling function we opted for a similar approach. By constructing a 
four-dimensional system of differential equations, comparable with the 
HKB-model, we elaborated on the coupling function in order to gain 
insight in the influences of learning history and intentions of the individual 
subject. A number of tools are available to analytically solve nonlinear 
differential equations (e.g., the rotating wave and the slowly varying ampli- 
tude approximations, Haken, 1985). Using this analytically more powerful 
approach to unravel the mathematical form of the coupling function, we set 
out to come to terms with the observed individual tendencies in multifre- 
quency performance (Haken et al., 1995). 

A new model was developed, based on the same assumptions as the 
HKB-model. The hand movements were modelled as nonlinear oscillators 
in a system of coupled differential equations and were identical to those in 
the HKB-model (the left-hand sides of Eqs. 3). The analysis concentrated 
on the coupling function through which the equations interact (cf. the 
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right-hand sides of Eqs. 3). It was demonstrated theoretically and numeri- 
cally that specific coupling terms allow for specific frequency locks. Conse- 
quently, the observed transitions between frequency ratios imply that the 
coupling function consists of a large number of coupling terms, each with 
its own coefficient. These coupling coefficients are associated with the 
(normalized) amplitudes of oscillation (r) which are raised to a specific 
power (i.e., associated with T;~T;), in combination with a gain parameter 
(a,) 6. Haken et al. (1995) demonstrated that the powers m and IZ are 
directly related to the frequency ratio that is supported by the coupling 
term in question, in such a way that higher powers are present in the 
coefficients associated with a higher-order ratio. Given the functional form 
of the component oscillators, increase in movement frequency results in a 
decrease in the amplitude of the movements. Coupling coefficients which 
involve higher powers will thus show a stronger decrease than those with 
lower powers, which is associated with a larger reduction of stability. As a 
consequence, higher-order ratios loose stability sooner than lower-order 
ratios, which constitutes the basic mechanism underlying the frequency-in- 
duced transitions. In order to stably perform a specific frequency ratio the 
subject has to (learn to) set the coupling parameter (a,) associated with the 
required coupling term. In general, due to the frequency dependence of 
the amplitudes of the movements, larger values of a, are required for 
higher-order ratios (involving coefficients with larger powers). 

As described above, in the model proposed by Haken et al. (1995) the 
coupling between the oscillators consists of a large number of coupling 
terms. The relative weights of these terms are assumed to depend on 
intrinsic dynamics, learning, and intention. An important feature of this 
model is that transitions following loss of stability involve detuning of the 
stiffness parameters. In other words, if stability of the initial pattern is lost, 
the system “searches” for a new stable solution. In general the detuning 
will be small, which implies that the newly established ratio will be situated 
either near the required ratio (on the unit interval) or it may be a ratio with 
large weights (e.g., a lower-order ratio or an extensively practiced ratio of 
relatively high order). Although this model was formulated along similar 

6 
To be specific, the coupling terms were defined as a,r;“r$exp[ - i(mw,-nw,)] or, alternatively, 

a,rImr;sin(mo, - nw,), where a, is a gain parameter, rl and rz the amplitudes of the slow and the fast 

hand, respectively, or and w2 their frequencies, and where the ratio m:n is related to the ratio between 

these frequencies (e.g., for the coupling from the fast to the slow hand while performing the ratio p:q, 

m=pkl and n=q). 
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lines as the HKE3-model, some important differences can be singled out: (i) 
the coupling function consists of a larger number of terms, so that more 
coordination modes are supported; and (ii) the system is actively involved 
in the search for stable solutions (i.e., through detuning of the stiffness 
parameters). Due to the latter two aspects, and in contrast to the task 
studied by Kelso, marked inter- and intraindividual differences are ex- 
pected to occur in the transition routes. 

The model of differential equations is clearly more complex than the 
sine circle map. Not only is the dimensionality of the system higher, the 
coupling function is by far more elaborate. To a large extent the qualitative 
predictions of the models coincide (e.g., differential stability of frequency 
ratios, loss of stability when movement frequency is scaled up, and transi- 
tions to lower-order ratios). However, certain phenomena can be under- 
stood exclusively from the perspective of one of the models. For instance, 
the circle map readily allows for overlap between frequency locks, resulting 
in multiple solutions for the same parameter settings (i.e., multistability) a 
phenomenon that is less easy to study in a nonlinear system of two coupled 
second-order differential equations. On the other hand, the elaborate 
coupling function and the possibility for stiffness detuning in the latter 
model, which provide the starting points for incorporating the influence of 
learning and intention in the dynamical modelling of multifrequency be- 
haviour, lead to interpretations that are not supported by the sine circle 
map. 

As they stand now, these two models have their own domain of validity 
and one should avoid making discourse switches within a single analysis. 
Our purpose of these different lines of modelling, however, was not to 
arrive at two alternative models, each accounting for a specific subset of 
the empirically observed phenomena. On the contrary, the goal of these 
modelling exercises is to develop a unified version. With the help of the 
analytical tools that are available for systems of differential equations we 
were able to unpack the coupling function in more detail. The intended 
future step involves incorporation of this knowledge in a lower-dimensional 
discrete map, which comprises the explanatory ranges of both models. 

6. Explanatory value of dynamical models 

Now that the reader may have an impression of what the dynamical 
systems approach to movement coordination is about, and how it has 
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matured during the last decade or so into a full-fledged research pro- 
gramme, we are in a better position than before to evaluate the explanatory 
value of dynamical models for coordination phenomena. We begin our 
discussion with a quote from Rosenbaum’s (1991) book on human motor 
control that probably summarizes the tacit or explicit appreciation of 
dynamical systems theory of many movement scientists: 

“Synergetics is not a theory of the cause of nonlinearity, however. Nor is 
it a theory that attempts to say in advance which systems will exhibit which 
kinds of nonlinearity or what their order parameters or control parameters 
will be. The theory’s aims are purely descriptive, and in that sense modest. 
On the other hand, synergetics can and does make predictions about 
individual systems subjected to consistent control-parameter variations. 
Phase transitions and critical fluctuations in two-finger oscillations are 
highly replicable, for example”. (Rosenbaum, 1991, p. 372, his italics). 

Although this statement is correct in that, as we have seen, dynamical 
models are mathematical, phenomenological models and not structural 
models that provide an account of the observed phenomena in terms of 
their underlying material causes, the statement is theoretically incorrect, or 
at least biased, in that, as we shall argue shortly, the aims of dynamical 
systems theory are neither “purely” descriptive in the implied sense that 
theoretical explanations are absent, nor in any way “modest” (although we 
must admit that the accusation is an original one). We would like to finesse 
the assessment of the explanatory value of dynamical systems theory by 
underscoring the following points. 

First, it should be emphasized that dynamical models of the type 
discussed in this article have to be appreciated in relation to the physical 
theories of complexity and self-organization in the context of which they 
are developed. What these theories have in common is the goal to come to 
terms with the manner in which order arises in complex systems. Because, 
by definition, these systems have so many elements that it is impossible to 
describe all the corresponding microscopic degrees of freedom (or mi- 
crostates), the adopted theoretical strategy has been to describe the pat- 
terns of nature at a higher level of abstraction so as to bring out the 
essential properties of pattern formation. Invariantly, these descriptions 
are based on specific theoretical ideas about the relationship between the 
microscopic elements of the system and its macroscopic order. Haken’s 
(1977, 1983) synergetics, for example, postulates a circular causality: the 
macroscopic order arises out of the nonlinear interactions between the 
microscopic elements, but governs in turn, once established, the mi- 
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crostates (the so-called “slaving principle”). Furthermore, the time scale of 
events at the macroscale of a complex system (be it a neuron, a brain or a 
human) is assumed to be different from the time scales of the events at the 
microscale. When combined, these two ideas not only lead to specific 
predictions with regard to the transition, such as critical fluctuations and 
critical slowing down, but also provide a theoretical explanation of these 
phenomena. Although one can have different opinions as to what extent 
this explanation is causal, i.e., to what degree it refers to underlying 
material processes, it certainly adds to the explanatory power of dynamical 
models such as the HKB-model in that it constitutes a “description of the 
facts in terms of other facts at another level of experience”, the definition 
provided by Koenderink (1980, p. 390) for “explanation in science”. In this 
sense, Rosenbaum’s adjective “purely” in front of “descriptive” is mislead- 
ing: there are many kinds of explanation besides causal explanations and 
there are many ways of answering why questions (see Bunge, 1979; Casti, 
1991; Van Wieringen, 1988). Also lawful regularities that are not causal 
may have explanatory value, even, in our opinion, when Koenderink’s 
(1980) somewhat restricted criterion for scientific explanation is not satis- 
fied (cf. Van Wieringen, 1988). Consider for instance the special theory of 
relativity (cf. Bunge, 1979). The basic axioms of this theory are the 
invariance of physical laws relative to the choice of inertial systems of 
reference and the principle of constancy of velocity of light in a vacuum. 
Neither of these principles is causal in the strict sense of the word, but the 
special theory of relativity certainly has explanatory power. 

In other words, it is difficult to know what exactly Rosenbaum had in 
mind with his remark that the aim of synergetics qua dynamical systems 
approach is “purely descriptive”, but it seems to us that it is definitely not 
a pure description of the dynamical enterprise. Clearly, the approach does 
not simply present the kinematic properties of movement, which would 
come closest to what we see as pure descriptions, but attempts to account 
for these properties in terms of theoretical constructs such as potential 
functions of collective variables. 

Another point that has to be emphasized in response to Rosenbaum’s 
statement is that there is 110 satisfactory theory of the causes of nonlinear- 
ity in nature. Even the causal antecedents of seemingly simple transitions 
from monostable to bistable flow of a gas through a fluid or from laminar 
flow to turbulence in hydrodynamics are very poorly, if at all, understood. 
In fact, the limitations inherent to the traditional reductionist programme 
in explaining natural phenomena have been a strong incentive for abandon- 
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ing this programme in favour of a programme aimed at identifying general 
principles of pattern formation at an abstract level of analysis and to look 
for communalities in the dynamics of systems with different material 
constituents. In doing so, theoretical classifications of systems will be 
developed in the dynamical systems programme of research that might 
eventually allow one to predict which systems will exhibit which kinds of 
nonlinearity, which, again, no existing theory is capable of doing. 

The previous remarks, of course, do not imply that it is not valid or 
legitimate to ask why a particular transition occurred once it has been 
observed. Of course it is. The relevant question however is: what would be 
a satisfactory answer? This is probably the dimension along which scien- 
tists, and especially movement scientists, seem to disagree most. With 
regard to Kelso’s finger experiments, for example, Rosenbaum (1991) 
proposed the following explanation for the observed transition: Because 
flexion-extension movements are harder to programme than paired flexion 
movements and paired extension movements, respectively, it takes longer 
to initiate the former movements than to the initiate the latter movements. 
As cycling rate increases, a threshold in the processing of information is 
reached in that there is not sufficient time any more to initiate flexion-ex- 
tension movements which causes a transition to a mode of coordination in 
which the two fingers are flexed and extended simultaneously. That we see 
something in this explanation is apparent from the fact that it resembles 
the account we gave for the transition from anti-phase to in-phase coordi- 
nation while tracking a visual stimulus (cf. Wimmers et al., 1992). Nonethe- 
less, one may ask what exactly is gained by this kind of exercise. A serious 
problem is that the possible number of information processing models that 
can be so constructed that they incorporate a phase transition is presum- 
able very large (e.g., the threshold could also be located in the sensory or in 
the motor channels rather than in the central programming stage, or even 
in all three of them). Even if we ignore the problem of how to differentiate 
empirically between these hypothetical models, it will be difficult, in this 
kind of analysis, to find the most parsimonious information processing 
model. In the context of the dynamical systems approach, methods are 
available that can be used (and have been used, for instance, in the 
derivation of the HKB-model) to find the simplest dynamics that includes 
all observed intrinsic patterns as well as their instabilities (see, e.g., 
Guckenheimer and Holmes, 1983). More importantly, however, dynamical 
models provide a detailed account of all spatiotemporal properties of the 
observed movement patterns, including the loss of stability and the finger- 
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prints of instability near the transition point. While stability and the loss of 
stability are naturally accounted for by dynamical systems theory, they are 
not the prime focus of information processing models. At least to us, the 
lack of theoretical constraints on the construction of motor programmes 
and the absence of generic concepts to deal with stability-related phenom- 
ena renders accounts of phase transitions in these terms not very satisfac- 
tory. 

In a sense, Van Ingen Schenau et al. (1995) are correct in stating that 
the discussed phase transitions in interlimb coordination require an inter- 
nal representation, at least when we assume that they use this term in a 
broad sense (as we understand they do) to refer to the structural properties 
of neurons and groups of neurons (or “CPG’s”) that define the necessary 
conditions for phase transitions to occur, such as connectivity, synaptic 
strengths and activity thresholds. This does not imply, however, that the 
concept of a motor programme is a useful explanatory construct, because 
this is a very different kind of internal representation, implying a very 
different approach. Rather than attempting to substitute or complement 
one phenomenological construct that captures the main features of phase 
transitions quite well with another construct that captures it less well, it 
seems a more productive strategy to attempt to uncover the processes that 
underlie or give rise to specific dynamics. Unlike motor programming 
approaches, the dynamical systems approach has the advantage that its 
descriptive apparatus is applicable to phenomena at different scales of 
analysis, including between-person coordination, perception-action cycles, 
intra- and interlimb coordination, the brain, subsystems in the brain, small 
groups of neurons and individual neurons (cf. Beek and Bingham, 1991). 
With this property the dynamical systems approach is well equipped to deal 
with the difficult task of linking phenomena at different levels of observa- 
tion. Examples of how this problem is confronted, and the results it can 
produce, are provided in the following sections, which discuss the relation- 
ships between dynamics and neurophysiology and the relationships be- 
tween dynamics and biomechanics, respectively. 

7. Neural dynamics 

Neural dynamics have been studied at different levels of organization, 
such as large collectives of neurons (e.g., the brain), groups of neurons and 
individual neurons. At the level of large collectives of neurons, the analyti- 
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cal tools of dynamics have been instrumental in identifying chaos and other 
attractor states and changes therein during, e.g., sleep and epileptic seizures 
(mostly on the basis of the electroencephalogram (EEG); see, e.g., Basar, 
1990; Basar and Bullock, 1989; Haken and Koepchen, 1991). Going beyond 
the mathematical analysis of attractor states (and following Kelso et al., 
1991), Fuchs et al. (1992) simultaneously examined pattern formation and 
switching between self-organized states in sensorimotor coordination and 
brain activity. They observed the theoretically expected phenomena of 
critical fluctuations and critical slowing down near the instability point in 
both the movement kinematics and the magnetically observed brain signals. 
The brain and behavioural data were subsequently modelled by Jirsa et al. 
(1994). The derived model, which involved a slightly amended version ’ of 
the coupling function of the HKB-model described by Eq. 4, described the 
main experimental findings very well. According to the authors, the modi- 
fied HKB-model constitutes a fundamental biophysical coupling for bistable 
states that applies to all cases in which a switch from one coordinative state 
to another occurs. 

The last-cited study nicely illustrates the advantage of the dynamical 
systems approach in making connections between the neural level and the 
behavioural level that was mentioned in the previous section, namely that 
the mathematical techniques and concepts that are invoked to examine the 
observed patterns are the same, which is an advantage when integrating 
results. Order parameters and their dynamics that have been identified and 
that are empirically established at the behavioural level can be postulated 
or hypothesized to govern the behaviour of collectives of neurons as well 
(as has been suggested, e.g., by Kelso et al., 1991). To the extent that this 
can be demonstrated, it may be possible to derive the collective variables at 
the behavioural level from the dynamics of the subsystems. Thus, having a 
good dynamical model of a coordination phenomenon may be helpful in 
making plausible predictions about the basis of order in the collective 
states of the brain, and in linking levels of observation. 

Also at the level of groups of neurons it is possible in principle to relate 
the dynamical capabilities of a neur(on)al network (i.e., its nonlinearities 
and bifurcation conditions) to the architecture of the network (i.e., its 
connectivity) and the synapse characteristics of the neurons. At least some 

7 Specifically, two adjustable constant parameters were added to the coupling described by Eq. 4 to 

generalize its application to two different kinds of oscillators (i.e., the brain and the stimulus). 
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modest progress has been made in this regard (see Mpitsos and Soinila, 
1993, p. 272). It is long known that synaptic activation of neurons leads to 
nonlinear responses due to the firing threshold in the driven neuron. More 
recently, it is also known how to simulate individual synapses by digital 
integration, by describing the kinetics mathematically, and by examining 
the interactions between different kinds of neurons. Much more work 
needs to be done, however, before the implications of different network 
architectures and synaptic properties for the collective dynamics of the 
electrical activity of neurons in these networks will be transparent. Even so, 
the promise of this work is of great significance: namely achieving a proper 
theoretical understanding of the pattern dynamics exhibited at the level of 
groups of neurons in terms of the physiological properties of neurons and 
their connections. Evidently, the availability of well-established models for 
the dynamics of neural networks are helpful, if not essential, in understand- 
ing the manner in which physiological and architectural properties of 
neurons and neuronal groups determine these patterns. 

An example of the latter statement in the study of movement comes 
from a series of articles by Collins and Stewart (1992, Collins and Stewart, 
1993a,b), who investigated the dynamics of systems of four and six coupled 
nonlinear oscillators as possible models for locomotor central pattern 
generators (CPGs) in quadrupeds and hexapods, respectively. They showed 
some remarkable parallels between the generalities of systems of coupled 
oscillators and the dynamics of gait patterns, including symmetry proper- 
ties, symmetry breaking bifurcations (transitions between gaits), and 2:l 
frequency-locked oscillations. Natural hierarchies of gaits, ordered by sym- 
metry, and natural sequences of gait bifurcations followed from the mathe- 
matical analysis of the model systems. An important implication of this 
work for the neurophysiological study of CPGs is that the same CPG may 
control a whole range of apparently very different gaits because small 
variations in the parameters of the (neural) network are already sufficient 
to produce different oscillation patterns. 

At the level of individual neurons, particularly the study of the dynamics 
of excitable nerve cell membranes is interesting for the present discussion 
because it nicely illustrates how dynamical models of a particular behaviour 
can precede detailed knowledge of microscopic structural elements. This 
scientific success story dates back to the work of Bernstein (19121, who 
anticipated, at a time that the instrumentation was lacking to verify so, that 
neuronal excitation had to depend on changes in membrane permeability. 
In 1939, Hodgkin and Huxley published the first direct measurements of 
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transmembrane potentials in living excitable cells (Hodgkin and Huxley, 
1939). These and the rapidly following results triggered an intensive search 
for a descriptive mechanism behind the phenomenon of propagating action 
potentials without loss of amplitude, culminating in the nonlinear dynami- 
cal Hodgkin and Huxley (1952) model for membrane excitation and propa- 
gation. This model, which lent its authors the Nobel prize for medicine in 
1963, fitted the experimental data with remarkable accuracy by assuming 
voltage-dependent membrane permeability mainly for sodium and potas- 
sium ions. In the model, the membrane current for sodium depends on the 
resting voltage for sodium and on the membrane permeability for sodium 
according to G,, = C,,m3h, while the membrane permeability for potas- 
sium was described by G, = C,n4 (where C,, and C, are constants; 
Brown, 1984). The parameters m, h and IZ obey a simple first-order 
differential equation with voltage-dependent parameters (Y, and p,: 

A? = (Y,(l -X) - pxx, (9) 

where x is m, h or it and CX, and p, are membrane voltage dependent in 
an exponential way and differ for m, h and n. The kinetics of dh can be 
interpreted physically as an ion channel with three identical (fast) and 
another (slower) gate which must be open simultaneously to let an ion pass. 
For n4 the channel is formed by four identical gates. Hodgkin and Huxley 
postulated this channel concept without having ever seen one, let alone the 
specific ion gates. The significance of the Hodgkin-Huxley model for the 
present context is two-fold. On the one hand, a relatively simple dynamical 
description was derived for the complex behaviour of a living structure 
which was later largely confirmed, extended and filled in at a structural 
molecular level, showing that it is sometimes possible to study the dynamics 
in connection to the underlying biochemical processes. On the other hand, 
a way of dealing with membrane dynamics was proposed that later led to 
the construction of more refined dynamical models (e.g., Chay and Keizer, 
1983) and to the experimental identification of empirically relevant dynami- 
cal properties, including intermittent beating and chaos (e.g., Chay, 1985; 
Chay and Rinzel, 1985). 

This brief overview of the application of the dynamical systems approach 
at different neural levels highlights that the more microscopic the level at 
which a particular behaviour is examined, the better the opportunities are 
to link the dynamics to structural properties of the system over which these 
dynamics are defined. This is exemplified by the Hodgkin-Huxley story. In 
such a case the distinction between phenomenological and structural mod- 
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els begins to crumble. Whenever and wherever this can be achieved, an 
important step is made in science. This, however, is a rare event. Usually, 
groups of neurons, such as the interneurons in the spinal cord, are already 
so complex that their collective dynamics cannot be linked to their struc- 
tural properties. It must be emphasized in this context that the CPGs 
postulated by Collins and Stewart are a mathematically defined ring of 
coupled oscillators and not a concrete structure that has been identified as 
such. In that sense, their model is still fully phenomenological. It needs 
little further argumentation that at the level of brain activity an under- 
standing of the connection between dynamics and structural properties is 
remote at best. The strategy from which we expect the most in this regard 
involves the identification of macroscopic variables and their dynamics at 
multiple levels of neural organization, and the attempt to link the identi- 
fied level-specific collective variables across their corresponding levels of 
observation. 

8. Dynamics and biomechanics 

Unfortunately, the difference between the meaning of the term dynamics 
in dynamical systems theory and in mechanics has been a persistent source 
of confusion which has troubled thinking about the relationship between 
dynamics and biomechanics. In dynamical systems theory, the term dynam- 
ics refers to the time evolution of a system at any level of description (e.g., 
cell, brain or behaviour). In mechanics, in contrast, the term is used as a 
synonym of kinetics, i.e., the realm of forces and moments, the causes of 
motion (kinematics) 8. The difference between the two meanings is exem- 
plified by the observation that it makes sense to talk about the dynamics of 
brain events but not about the kinetics of brain events. The need to 
appreciate this difference is amplified when terms like energy, dissipation, 
stiffness and difference in eigenfrequencies are used in the abstract sense 
of dynamical systems theory: these terms need not correspond to any 
observable biomechanical quantities. As has been emphasized by several 
authors (Kay et al., 1987; Kelso, 1994b; Saltzman and Kelso, 19871, in 
nonlinear dynamics terms such as stiffness and difference in eigenfrequen- 
ties are abstract control parameters that refer to the space-time behaviour 

B 
In mechanics, the term dynamics is also used as the opposite of statics, which is another distinction 

than between kinetics and kinematics. 
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of the system as a whole, whereas in (bio)mechanics they refer to locally 
identifiable forces and properties of specific structures. To reiterate, an 
essential assumption of the approach is that, in the study of coordination in 
complex living systems, appropriate variables at a given level of description 
exist in the form of collective variables, which are usually not provided by 
Newtonian mechanics (Kelso, 1994a). 

It is probably useful to note in this context that there are some impor- 
tant differences between the dynamical models discussed in the present 
articles and the equilibrium-point models proposed by Bizzi (1980; Bizzi et 
al., 1976; Polit and Bizzi, 1979) and Feldman (1966, Feldman, 1986). In the 
latter kind of models limb movements are understood as the outcome of 
the qualitative behaviour of a damped mass-spring system with a set of 
parameters that are adjusted on the basis of control commands from the 
brain. The goal is to identify the nature of these control commands by 
analysing the properties of the biomechanical periphery of the motor 
system to disentangle the aspects of the kinematics that arise from central 
control and those which arise from the biomechanics and are not con- 
trolled directly. To date, dynamical models of movement coordination, in 
contrast, have typically not been concerned with tying the observed coordi- 
nation dynamics to the underlying physiological control structures and the 
biomechanics, at least not in this kind of way. Instead, they were con- 
cerned, as we have seen, with the identification of coordination principles 
that apply quite generally to systems with different neurophysiological and 
biomechanical properties, which motivated the use of a more abstract 
language of description. 

As we have seen in the example of symmetry-breaking due to differences 
in eigenfrequencies, biomechanical factors such as moments of inertia, 
joint compliance, and damping characteristics can shape the coordination 
dynamics. They do not, however, define the identified principles of coordi- 
nation; these are defined at a higher level of abstraction and also apply to 
cases in which variations of the relevant parameters are induced by 
manipulations and factors other than biomechanical (such as handedness 
and hemispheric dominance in the case of symmetry-breaking). 

In the same way as it was valid for the psychologist to ask why phase 
transitions occur in bimanual coordination, it is valid for the biomechanicist 
to ask how biomechanical factors shape the stability properties of move- 
ment patterns. In a recent effort to clarify how the macroscopic order of 
motor patterns is generated from the dynamic interactions between the 
nervous system, the musculo-skeletal system and the environment, Taga et 
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al. (1991) analyzed how the stability properties of walking movements, 
including transitions between gait patterns, followed from the “global 
entrainment” between the rhythmic activities of a nervous system com- 
posed of coupled neural oscillators and the rhythmic movements of a 
musculo-skeletal system interacting with the environment. They modelled 
the neural rhythm generator in terms of a set of differential equations for a 
network of coupled oscillators and the musculo-skeletal system in terms of 
a set of Newton-Euler equations and showed how the stable and flexible 
properties of locomotion followed from the interaction (afferent-efferent 
coupling) between the two nonlinear dynamical structures. Although the 
proposed model suffers to a certain degree from the inconsistent use of the 
term “dynamics” warned against in the preceding, it is highly significant in 
that it attempts to bridge the gap between the coordination dynamics 
approach and the more traditional biomechanics-neurophysiology ap- 
proach to motor control - attempts that have so far been few and far 
between in the dynamical study of phase transitions and other stability 
phenomena. 

9. Conclusion 

In the present article we have examined the status of dynamical models 
of movement coordination. We have seen that the dynamical systems 
theory offers an approach that can be applied to a variety of disciplines and 
that generalizes the description of phenomena across a broad range of 
systems and scales of analysis. The approach allows, in principle, for a 
rigorous study of complex phenomena such as nonequilibrium phase transi- 
tions and multistability. In doing so, it constitutes a generic and empirically 
progressive research programme. The approach breaks away from the 
reductionistic tradition in science in postulating order parameters that 
define a particular level of analysis at which a rigorous, formal characteri- 
zation of the dynamics is sought. The approach does not provide causal 
explanations, neither does it provide mere descriptions in the ordinary 
sense of the word because it is rooted in the mathematical-physical 
theories of the emergence of order in complex systems. 

For movement scientists that are working from other, often more disci- 
plinary, perspectives it may be difficult to appreciate the merits of the 
dynamical systems approach because its aims, problems, methods and 
concepts are fundamentally different from those associated with their 
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INFORMATION 

ECOLOGICAL 
PSYCHOLOGY NETWORKS 

COORDINATION 

FORCE/ENERGY 
BIOMECHANICS 

Fig. 5. Tentative scheme for ordering approaches to movement control and coordination. 

perspectives. In a final attempt to elucidate these differences we have 
tentatively constructed the scheme depicted in Fig. 5. The corners of the 
triangles in this scheme correspond to the primary entities in answering the 
question how movements come about: information, force/energy and mat- 
ter. The traditional disciplines of movement science (i.e., (biojmechanics, 
psychology, anatomy and physiology) as well as the modern, interdisci- 
plinary approaches in this field of study (i.e., neural networks and dynam- 
ics) can be positioned in this scheme. Traditionally, psychology is con- 
cerned with information, mechanics with force and energy, and anatomy 
and physiology with matter (the structural components of the movement 
system). From each of these corners, attempts have been made to establish 
meaningful linkages between the three primary concepts. Ecological psy- 
chology, for instance, originally an approach predominantly concerned with 
perceptual information per se (Gibson, 1966, Gibson, 1979), developed into 
an attempt to link (the pick up of> perceptual information to the control 
and generation of force and, vice versa, the generation of force to the 
generation of information (Kugler and Turvey, 1987, see Beek and Van 
Wieringen, 1994, for an overview). (Bio)mechanics has witnessed a compa- 
rable development in that it originally constructed purely mechanical 
models, such as Hill’s muscle model (Hill, 19531, but later attempted to 
incorporate the structural properties of specific components of the human 
body, such as striate muscle (cf. Otten, 19911, into these models so as to 
elucidate the mechanisms for force generation. Conversely, psychologists 
working in the field of motor control have become increasingly aware of 
the implications of the biomechanical and physiological properties of the 
human effector system for the postulation of control structures at a more 
central level of analysis (e.g., Van Galen and De Jong, 1995). Neural 
networks, finally, may be viewed as a specific attempt to link information to 
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matter, i.e. to understand how information can be represented symbolically 
in a configuration of neurons (or nodes) and their connection strengths 
(with all the semantic confusion that one might expect from such an 
enterprise, cf. Smolensky, 1988). An interesting result of this kind of 
tentative analysis is that it not only reveals the strong points of these three 
approaches in movement science but also their limitations. Ecological 
psychology ignores the problem of how the transactions between informa- 
tion and force in perception-action are supported by neurophysiological 
processes (matter); biomechanics has a hard time to come to terms with 
putative control structures (information) that regulate the generation of 
force by material structures, while connectionism tends to overlook the 
problem of how the mechanical properties of the musculo-skeletal system 
(force/energy) are anticipated by the control structures and co-determine 
the movement outcome. 

In Fig. 5, we have positioned dynamics in the middle, not because we 
believe that it occupies centre stage in the study of movement, but because 
it transcends the level of description (and abstraction) at which the other 
approaches operate. Dynamics describes the orderly patterns of behaviour 
that arise out of the interactions between information, force/energy and 
matter without, at least at first pass, the aspiration to understand the 
deterministic relations between these three primary entities and the result- 
ing patterns. Obviously, in movement experiments one can manipulate each 
of the three identified poles (e.g., by withdrawing or supplying information, 
by changing the inertial properties of the effector system or the friction 
between surfaces, and by injecting a chemical substance). Invariantly, these 
manipulations will affect or shape the resulting pattern dynamics at the 
coordinative level, but these relations are not straightforward from a 
modelling point of view. It remains a theoretical challenge to appropriately 
incorporate the effects of such manipulations in the dynamical models by 
introducing new terms and/or parameters, and to link the resulting pattern 
dynamics to dynamical events at more microscopic, neurophysiological 
levels of observation. 
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