KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission

Genomics Institute of the Novartis Research Foundation, San Diego, California, USA; Swiss Tropical and Public Health Institute, Parasite Chemotherapy, Basel, Switzerland; University of Basel, Basel, Switzerland; Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York, USA; Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA; Radboud University Nijmegen Medical Center, Medical Microbiology Department, Nijmegen, The Netherlands; Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia; Eijkman Institute for Molecular Biology, Jakarta, Indonesia; Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research, Biopolis, Singapore; Shoklo Malaria Research Unit, Mae Sot, Tak, Thailand; Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; Department of Veterinary Medicine, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; Entomology Department, AFRIMS, Bangkok, Thailand; Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA; Division of Pharmacology and Drug Discovery, University of California, San Diego; School of Medicine, La Jolla, California, USA; Novartis Institute for Tropical Diseases, Singapore.

Received 2 January 2014 Returned for modification 3 March 2014 Accepted 5 June 2014 Published ahead of print 9 June 2014

Address correspondence to Thierry T. Diagana, thierry.diagana@novartis.com.

* Present address: Arnab K. Chatterjee, California Institute for Biomedical Research, La Jolla, California, USA.

Supplemental material for this article may be found at http://dx.doi.org/10.1128/AAC.02727-13.

Widespread resistance to most antimalarial drug classes has led to a global adoption of artemisinin-based combination therapies (ACTs) as first-line therapies (1, 2). However, recent reports of delayed rates of parasite clearance after administration of artemisinin derivatives raise concerns that ACTs efficacy might soon be compromised (3–7). In addition to having to overcome artemisinin resistance, next-generation antimalarial drugs are also expected to target multiple stages of the parasite life cycle. The Malaria Eradication Agenda Initiative has defined the ideal antimalarial drug profile as a Single Encounter Radical Cure and Prophylaxis (SERCaP) that could be used in mass administration programs (8). Upon administration of a single dose, SERCaP therapy should eliminate all asexual and sexual (mature gametocyte) blood stages of the parasite, as well as the hepatic forms, thereby providing a combined therapeutic radical cure, disease-transmission blocking and prophylactic activities (9, 10). There are currently very few antimalarial drugs with the pharmacological profile required for these next-generation therapies (11).

As an initial step toward development of a next-generation antimalarial therapy, we have previously described the imidazolopiperazines, a novel class of antimalarial drugs class with potent blood-stage (12) and liver-stage (13) activity. Here, we describe the preclinical antimalarial profile of the drug candidate, KAF156, which emerged from an extensive lead-optimization program of the imidazolopiperazine class (14). Compared to other compounds in its class, KAF156 was selected for its overall superior profile which balances the adequate physicochemical properties required for oral tablet formulation and excellent bioavailability. Like other imidazolopiperazine compounds, KAF156 has potent activity on blood and hepatic stage parasites which translates into therapeutic and prophylactic activity in mouse models of infection. Furthermore, KAF156 displays cidal activity against mature Plasmodium falciparum gametocytes and thus blocks parasite transmission to Anopheles mosquitoes. Taken together, our data suggest that KAF156, currently under evaluation in clinical trials, has the potential to treat, prevent, and block the transmission of malaria.
prevent infection, treat acute disease and reduce transmission of the parasite.

MATERIALS AND METHODS

Maintenance of P. falciparum cultures. P. falciparum parasites were cultured in O+ red blood cells in RPMI 1640 media (without phenol red) containing 1-glutamine and supplemented with 50 µg of gentamicin/ml, 14 mg of hypoxanthine/liter, 38.4 mM HEPES, 0.2% sodium bicarbonate, 0.2% glucose (pH 7.2), 5% human serum, and 0.25% Albumax II. Cultures were maintained at 5% hematocrit at a parasitemia of 1 to 10%, with daily media changes (15). Fresh blood was drawn at least every 2 weeks, and cultures were maintained under 96% nitrogen, 3% carbon dioxide, and 1% oxygen at 37°C.

Antimalarial proliferation inhibition assay (384-well plate format). A 20-µl portion of screening medium (culturing medium without human serum but supplemented with 0.5% Albumax II) was dispensed via a MicroFlo (BioTek) liquid dispenser into 384-well, black, clear-bottom assay plates (McClear GNF custom plates; Griener Bio-One). Then, 50-nl MicroFlo (BioTek) liquid dispenser into 384-well, black, clear-bottom plate portion of screening medium (culturing medium without human and 1% oxygen at 37°C.

Transmission blocking assays. The SMFA was used to test the potential effects of compounds or drugs on parasite sporogony in the mosquito as previously described (22, 23). Briefly, 14-day-old cultures of strain NF54 showing 0.3 to 0.5% mature gametocytes were first checked for their quality and potential to form oocysts in a preliminary test feed to anopheline mosquitoes. When ookinetes were seen 22 h after the feeding, parasite culture material was used to test the potential effects of compounds on sporogony. First, 300 µl of culture material was added to 180 µl of washed packed cells and then centrifuged for 20 s. Next, after removal of the supernatant, 150 µl of human control serum with or without test compound was added to the pellet. Each suspension was immediately injected into an individual membrane-covered minifeeder and 20–3 to 5-day-old *Anopheles stephensi* mosquitoes were allowed to feed for 10 to 15 min. Six days after feeding, 20 mosquitoes per feeder were dissected. Absolute numbers of oocysts were counted by light microscopy after staining the mosquito stomach with 2% mercurichrome. Oocyst numbers were calculated as the arithmetic mean of the number of oocysts of 20 dissected mosquitoes and represent the transmission-reducing activity of the compounds tested. The *in vivo* assessment of transmission blocking activity was performed with rodent parasites as follows. This study was conducted in accordance with U.S. animal welfare regulations under a protocol approved by the University of California at San Diego Institutional Animal Care and Use Committee. Mice were infected with 5 × 10⁵ *P. berghei* ANKA 676m1cl1 parasites on day 0 via an intraperitoneal injection. The mice were then dosed with 100 mg of KAF156/kg (formulated in 0.5% [wt/vol] methylcellulose [Sigma-Aldrich, catalog no. M0262] and 0.5% [vol/vol] Tween 80) or vehicle control orally on day 5 when the parasitemia reached 5 to 6%. Feeds were completed 24 h later on day 6. Oocysts were counted by light microscopy after the mosquito stomachs were stained with 2% mercurichrome.

P. yoelii liver-stage antimalarial assay. This assay has previously been described (13). In brief, *P. yoelii* (17XNL) sporozoites were obtained after salivary gland dissection of infected *A. stephensi* mosquitoes supplied by the New York University Insectary. Dissected salivary glands were homogenized in a glass tissue grinder, filtered twice through nylon cell strainers (40-µm pore size; BD Falcon), and counted using a hemocytometer. Then, 7.5 × 10⁴ HepG2-A16-CD8¹ GFP cells in 50 µl of medium (1.5 × 10⁵ cells/ml) were seeded in 384-well plates (Aurora 384 IQ-EB black/clear plates) 20 to 26 h prior to the actual infection. Two hours prior to infection, 50 nl of compound in DMSO (0.1% final DMSO concentration per well) was transferred with a PinTool (GNF Systems) into the assay plates (10 µM final concentration). Atovaquone, an exo-erythrocytic schizonticidal approved drug (10µM) and 0.1% DMSO were used as positive and negative controls, respectively. The HepG2-A16-CD8¹ GFP cells were then infected with 8 × 10⁴ sporozoites per well, and the plates were spun down at 650 g after infection and 1 h of incubation at 37°C, the cultures were washed, new media and compound were added, and the cultures were further incubated with 5-fold-increased concentrations of penicillin-streptomycin for 48 h at 37°C. Infected cells were quantified by immunofluorescence. About 8,000 sporozoites were used to infect one well, and the infected HepG2-A16-CD8¹ GFP cells were exposed for 48 h to compounds at a 10 µM concentration dissolved in DMSO. About half
of the total area of a well was imaged, which on average covered about 50 infected cells.

In vivo mouse causal prophylaxis efficacy assay. These experiments were conducted at the USAMC-AFRIMS facility (accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International) in Bangkok, Thailand. In brief, five mice (five per experimental group) received test compound on day 0, 2 h before parasite inoculation. Control animals received the same amount of vehicle without drug. Atovaquone, an approved prophylactic antimalarial drug, was used as a positive control. We have previously established that atovaquone, when administered as a single oral dose of 2.5 mg/kg, is fully protective in this model (unpublished data). On day 0, all ICR (outbred stock) mice were infected by a standard 0.1-ml dose of 10^5 Plasmodium berghei sporozoites by intravenous inoculation. Blood smear samples were obtained on days 4, 5, 6, 7, 10, 15, 21, and 31 postinoculation. Mice were observed twice daily for clinical signs and mortality. On day 7 and afterward, animals with parasitemia exceeding 5% were euthanized. In a dose-ranging study, KAF156 was dosed orally in a suspension formulation of 0.5%, (wt/vol) methylcellulose, and 1% (wt/vol) Sololut HS15 at 1, 5, 10, or 15 mg/kg. The prophylactic activity was monitored through blood smear analysis and is expressed in terms of mouse survival over 30 days.

In vivo mouse therapeutic efficacy assay. All in vivo efficacy studies were approved by the veterinary authorities of the Canton Basel-Stadt. The in vivo antimalarial activity was usually assessed for groups of five female NMRI mice (20 to 22 g) intravenously infected on day 0 with 2 × 10^7 erythrocytes parasitized with P. berghei green fluorescent protein (GFP)-expressing parasites (PbGFPCON, kindly donated by A. P. Waters and C. J. Janse, Glasgow and Leiden Universities) (24, 25) (for reference compounds, see Table 1 and also Table S2 in the supplemental material) or the P. berghei ANKA reference strain (for all other studies). From historical data, untreated control mice died typically between days 6 and 7 postinfection, but in these studies all animals showing unabated parasitemia or malaria symptoms were humanely euthanized on day 4 with CO2. Experimental compounds were formulated in 7% (vol/vol) Tween 80–3% (vol/vol) ethanol, 10% ethanol (vol/vol), 30% (wt/vol) PEG400, 60% (wt/vol) Vit E TPGS (Eastman), or 5% (wt/vol) Sololut HS15 (BASF) as indicated. Compounds were administered orally in a volume of 10 ml/kg as a single dose (24 h postinfection), as three consecutive daily doses (24, 48, and 72 h postinfection), or as four consecutive doses (6, 24, 48, and 72 h postinfection). With the single-dose regimen we determined the parasitemia at 72 h postinfection, and for the triple- and quadruple-dose regimens we determined the parasitemia at 96 h postinfection using standard flow cytometry techniques or standard microscopy (25). The activity was calculated as the difference between the mean percent parasitemia for the control and treated groups expressed as a percentage of the control group. The survival time in days was also recorded up to 30 days after infection. A compound was considered curative if the animal survived to day 30 after infection with no detectable parasites.

In vitro resistance selection. A clonal population of P. falciparum strain Dd2 was used to initiate three independent parasite cultures under the initial selection pressure of 1.8 nM KAF156 (flask/strain 1, 2, and 3). Parasitemia was monitored daily, and the compound concentration was increased 2-fold when parasitemia reached ≥3%. After 1 month of selection, each culture was split into two cultures (culture 1, 1A and 1B; culture 2, 2A and 2B; and culture 3, 3A and 3B) in an attempt to accelerate resistance development in each pair by increasing the concentration ≥2-fold ("B" strains) generating ultimately six resistant strains after 4 months of continuous culture in increasing concentrations of KAF156. For each of the six resistant strains, the single-nucleotide polymorphisms (SNPs) were detected by either whole genome sequencing (illumina technology) or capillary sequencing (see below).

The susceptibility of each resistant strain to KAF156, GNF707, and GNF452 (the GNF707 and GNF452 chemical structures and synthesis are described elsewhere [13]) was determined, and the fold shift in efficacy (i.e., the phenotypic susceptibility shift) was calculated.

RESULTS
KAF156 potently inhibits blood stages of Plasmodium species. It was previously shown that KAF156 (Fig. 1) has low nanomolar potency in inhibiting the growth of laboratory-adapted P. falciparum strains cultured in human erythrocytes (6 to 17 nM IC50) using a 72-h SYBR green proliferation assay (14). This activity range is maintained over a broad panel of strains resistant to one or more current antimalarial drugs (see Table S1 in the supplemental material).

We extended these studies to clinical isolates of P. vivax and P. falciparum collected from malaria patients on the Thai-Myanmar border and Papua Indonesia, where multidrug resistance has been reported in both P. falciparum and P. vivax (27–30). An ex vivo schizont maturation assay (16) was used to measure activity on asexual development. Across the two Thai and Indonesian sites the overall median IC50 values were 12.6 nM (range, 3.5 to 27.1 nM) against P. falciparum and 5.5 nM (range, 1.4 to 65.8 nM) against P. vivax (Fig. 2). At both sites, drug susceptibility to
KAF156 is at least as effective as some of the current antimalarial drugs for the treatment of an acute blood-stage malaria infection.

Generation and characterization of KAF156 drug-resistant mutants in vitro. The development of drug resistance has historically rapidly limited the efficacy and therefore the use of many approved antimalarial drugs. To assess the potential for developing resistance to imidazolopiperazines and using the stepwise drug resistance selection method previously reported (13), we selected *P. falciparum* clones for resistance to KAF156 and some related compounds (Table 2). Consistent with our previous findings, targeted sequencing analysis of these clones showed that all resistant lines had acquired SNPs in a single gene we named pfcarl (PlasmoDB ID PFC0970w), encoding an uncharacterized protein conserved across *Plasmodium* species with seven predicted transmembrane regions (13). Unlike the earlier derivatives GNF707 and GNF452, KAF156 generally displayed potent activity against almost all of the drug resistant clones (Table 2). The only exception was the clone bearing the pfcarl S1076I mutation, to which KAF156 proved considerably less potent.

Notably, whereas standard drugs remain potently active (see Table S3 in the supplemental material), earlier imidazolopiperazine analogs were found generally to be inactive against the KAF156-resistant strains. In one of these KAF156-resistant clones, we identified two novel SNPs (see Fig. S1 in the supplemental material), namely, S1076R and P822T, that in combination shifted the potency of KAF156 to an IC₅₀ of 73 nM (~40-fold higher than against the sensitive parental line). However, of all the SNPs identified, substitution of the serine at position 1076 with an isoleucine appears to be the most detrimental mutation, yielding a drug sensitivity shift to KAF156 of ~700-fold.

In order to estimate the frequency of drug resistance mutations in *P. falciparum*, we used the method of minimal inoculum for resistance that is an indirect measurement of the probability of a resistant genotype to occur (31). We selected for spontaneous mutants emerging from cultures of both Dd2 and FCR3 strains by exposing a range of starting inocula (1 to 10⁹ parasites) to constant drug pressure at ~3IC₅₀ for 60 days. Under these conditions, we observed drug-resistant parasites emerging only from Dd2 cultures containing more than 10⁹ parasites (see Table S4 in the supplemental material). Again, targeted sequencing analysis revealed that all KAF156-resistant clones with a significant shift in potency carried nonsynonymous SNPs in the pfcarl gene (11139R or Q821H). Collectively, our data suggest that *in vitro* selection of resistant mutations to KAF156 arise in the pfcarl gene with a frequency of ~1 per 10³ parasites with the Dd2 *P. falciparum* strain.

KAF156 has potent activity on liver-stage parasites in vivo and has prophylactic activity in vivo. We have previously shown that imidazolopiperazines inhibit the growth of the exo-erythrocytic forms in an *in vitro* assay using CD81-expressing HepG2 hepatoma cells infected with rodent *P. yoelii* liver-stage parasites (13). Similarly, KAF156 displayed potent activity in this assay with an IC₅₀ of 2 nM against intrahepatic schizonts.

In the causal prophylactic rodent malaria model, mice are intravenously infected with *P. berghei* sporozoites that target the liver. After an incubation period of 48 h, the *P. berghei* liver schizonts will release merozoites that initiate blood-stage infection and cause symptoms of disease within 5 or 6 days. In this model, a single oral dose of 10 mg of KAF156/kg administered 2 h before infection was fully protective (Fig. 3) (14).
KAF156 inhibits gametocytogenesis and blocks transmission to the Anopheles mosquito. The completion of the sexual phase of the Plasmodium life cycle in infected red blood cells yields fully mature stage V female and male gametocytes that are transmitted to the Anopheles mosquito. We evaluated the activity of KAF156 against gamocyte formation and their transmission to the mosquito vector. Early-stage gametocytes treated with KAF156 on days 8 to 12 after the induction of gametocytogenesis showed a significant dose-dependent reduction in the total number of stage V gametocytes (Fig. 4A). These data suggest that the compound is a potent inhibitor of gamocyte maturation in vitro at concentrations as low as 50 nM. Consistent with this observation, when fed to mosquitoes through a standard membrane-feeding assay (SMFA) (23), all three cultures treated with 5 nM KAF156 yielded zero oocysts (Fig. 4B). Taken together, the data suggest that KAF156 has a profound effect on the final and critical steps of gamocyte maturation exflagellation. This range of activity against Plasmodium sexual stages is at least comparable to, if not superior to, what has been reported before with approved antimalarial drugs (32,33).

We also evaluated KAF156 transmission blocking potential. Viable and fully mature stage V gametocytes were incubated for 15 min with various KAF156 concentrations and fed to mosquitoes through an SMFA. In this assay, KAF156 showed a clear dose-dependent effect with >90% reduction of oocyst numbers at a concentration of 500 nM (Fig. 4C). Notably, the compound had no adverse effects on mosquito viability. We then confirmed these observations in vivo in a P. berghei rodent malaria model. Infected mice treated with a single dose oral of KAF156 at 100 mg/kg were found to be not infectious to Anopheles mosquitoes feeding on their blood (see Fig. S2 in the supplemental material). Taken together, our results demonstrate that KAF156 inhibits the maturation of P. falciparum sexual stages and effectively blocks parasite transmission to Anopheles mosquitoes.

DISCUSSION

Cell-based screening is a well-established method for the discovery of new anti-infective drugs and has been historically successful for antimalarial drug discovery (34). Given the large number of novel antimalarial scaffolds recently discovered that targetsexual

![FIG 3 KAF156 is fully protective in a causal prophylactic mouse model of malaria.](http://aac.asm.org/)
KAF156 inhibits malaria parasite at multiple stages

FIG 4 KAF156 inhibits gametocyte development and blocks parasite transmission to mosquitoes. Three (A and B) or two (C) independent experiments were carried out, and the mean values are reported on bar graphs with the standard error of the mean indicated. (A) Cultures of immature stage II gametocytes were treated with various concentrations of KAF156 on days 8 to 12 after the induction of gametocytogenesis. The negative control (KAF156 concentration = 0 nM) cultures were treated with DMSO (vehicle) at a 0.1% final concentration. The total number of mature stage V gametocytes (males and females) per 5,000 erythrocytes was assessed by microscopy on day 13 for each experiment. (B) An SMFA was used to evaluate the transmission potential of parasites cultured on days 8 to 12. (C) Viable and fully mature stage V gametocytes (males and females) were treated with KAF156 on day 15 after induction and fed through SMFA to mosquitoes. For both panels B and C, no toxicity to mosquitoes was observed at any of the compound concentrations, and the number of oocysts in the midgut of an infected mosquito was counted for at least 20 infected mosquitoes for each independent experiment. An asterisk (*) indicates that the mean is significantly different (P < 0.05) from the untreated control in a one-way analysis of variance, followed by a Dunnett's multiple-comparison test.
netics in preclinical species compatible with once-daily dosing and no significant in vitro safety liabilities (14). Recently, the compound went through an extensive Good Laboratory Practices safety and pharmacological preclinical assessment that supported progression to human clinical trials. If KAF156 is shown to be safe and effective, it could be the first new antimalarial drug combining potent prophylactic, therapeutic, and transmission-blocking activities—a significant addition to the armamentarium for the malaria eradication agenda.

ACKNOWLEDGMENTS

We gratefully acknowledge funding and support from the Wellcome Trust (translational research grants WT078285 and WT096157) and the Medicines for Malaria Venture (MMV) to the Genomics Institute of the Novartis Research Foundation, the Swiss Tropical and Public Health Institute, and the Novartis Institute for Tropical Diseases. Funding was also obtained from the Singapore Immunology Network (Sign) and from the Horizontal Programme on Infectious Diseases under the Agency for Science, Technology, and Research (A’STAR), Singapore. Shoklo Malaria Research Unit (SMRU) is supported by The Wellcome Trust of Great Britain, as part of the Oxford Tropical Medicine Research Programme of Wellcome Trust-Mahidol University. The laboratory studies in Papua were funded by MMV and a Wellcome Trust Fellowship awarded to R.N.P. (grant 091625).

We thank Julie Lortharius and Xavier Ding for coordinating the compound testing in the David Fidock and Ric Price laboratories through additional MMV funding.

No funding bodies had any role in study design, data collection, and analysis, the decision to publish, or the preparation of the manuscript. Kelli Kuhen, Kerstin Gagaring, Zhong Chen, Advait Nagle, Whitney Barnes, David Plouffe, John Walker, David Tully, Jennifer Taylor, Richard Glynnne, and Thierry Diagana are current Novartis employees. Arnab Chatterjee, Rachel Borboa, Jennifer Buenviver, Carolyn Franck, Elizabeth Winzeler, and Tao Wu have previously been employed by Novartis. Richard Glynnne, Elizabeth Winzeler, and Thierry Diagana own Novartis shares and stock options.

REFERENCES

