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Abstract

Chronic low-grade inflammation in adipose tissue often accompanies obesity, leading to insulin resistance and increasing
the risk for metabolic diseases. MAP3K8 (TPL2/COT) is an important signal transductor and activator of pro-inflammatory
pathways that has been linked to obesity-induced adipose tissue inflammation. We used human adipose tissue biopsies to
study the relationship of MAP3K8 expression with markers of obesity and expression of pro-inflammatory cytokines (IL-1b,
IL-6 and IL-8). Moreover, we evaluated obesity-induced adipose tissue inflammation and insulin resistance in mice lacking
MAP3K8 and WT mice on a high-fat diet (HFD) for 16 weeks. Individuals with a BMI .30 displayed a higher mRNA
expression of MAP3K8 in adipose tissue compared to individuals with a normal BMI. Additionally, high mRNA expression
levels of IL-1b, IL-6 and IL-8, but not TNF -a, in human adipose tissue were associated with higher expression of MAP3K8.
Moreover, high plasma SAA and CRP did not associate with increased MAP3K8 expression in adipose tissue. Similarly, no
association was found for MAP3K8 expression with plasma insulin or glucose levels. Mice lacking MAP3K8 had similar
bodyweight gain as WT mice, yet displayed lower mRNA expression levels of IL-1b, IL-6 and CXCL1 in adipose tissue in
response to the HFD as compared to WT animals. However, MAP3K8 deficient mice were not protected against HFD-
induced adipose tissue macrophage infiltration or the development of insulin resistance. Together, the data in both human
and mouse show that MAP3K8 is involved in local adipose tissue inflammation, specifically for IL-1b and its responsive
cytokines IL-6 and IL-8, but does not seem to have systemic effects on insulin resistance.
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Introduction

Obesity is characterized by chronic low-grade inflammation

arising from the adipose tissue [1]. This inflammatory trait mainly

results from resident or infiltrating immune cells into the adipose

tissue and is associated with insulin resistance and metabolic

diseases such as type 2 diabetes mellitus [2]. In response to pro-

inflammatory stimuli, immune receptors activate signalling path-

ways, such as protein kinase like IkB kinase (IKK) and extra-

cellular signal-regulated kinase (ERK). Stimulation of these

pathways leads to activation of NF-kB and JNK transcription

factors, resulting in transcription of pro-inflammatory genes

including TNF-a, IL-6, IL-1b, and CCL2 [3]. These pathways

have been recognized to play a pivotal role in instigating a local

inflammatory reaction in the adipose tissue of obese patients,

secondarily affecting the insulin signalling pathway [4–6].

Serine threonine mitogen activated protein kinase kinase kinase

8 (MAP3K8), in mice also called tumor progression locus 2 (TPL2)

and in humans called Cancer Osaka Thyroid (COT), activates

ERK-1/2 [7,8]. In quiescent state, MAP3K8 forms a complex

with A20-binding inhibitor of NF-kB (ABIN-2) and p105 NF-kB,
precursor of the NF-kB transcription factor. It can be activated by

pro-inflammatory stimuli, such as TNF-a, IL-1b and LPS.

MAP3K8 knockout mice that are exposed to LPS/D-galactos-

amine-induced pathology are protected against endotoxin shock,
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showing that MAP3K8 is an essential protein in directing

inflammatory responses [9]. The role of MAP3K8 in regulating

the inflammatory trait of obesity is not fully clear. The function of

MAP3K8 in obesity-induced inflammation has been studied

previously.

One study reported that MAP3K8 is upregulated in adipose

tissue in response to IL-1ß and TNF-a and mediates lipolysis

induced by these cytokines [10]. Another study reported that

MAP3K8 regulates obesity-associated inflammation and insulin

resistance. MAP3K8 deficient mice showed a reduction of high fat

diet (HFD)-induced adipose tissue inflammation and a reduced

expression of inflammatory markers, as well as improved insulin

sensitivity [11]. These results were not confirmed in a study that

found contradictory results after conducting a similar high fat diet

intervention study. The authors showed that MAP3K8 deficient

mice were not protected against the detrimental effects of diet-

induced obesity [12]. No differences in mRNA levels of several

markers of adipose tissue inflammation or whole body glucose or

insulin tolerance were observed in mice. Moreover, MAP3K8 was

not up-regulated in adipose tissue due to HFD-feeding.

Considering these contradictory data in the literature, we aimed

to illuminate the role of MAP3K8 using a complementary

approach combining murine studies with assessment of the role

of MAP3K8 in human adipose tissue. We found that human

MAP3K8 expression in adipose tissue is indeed associated with

obesity. However, using mice lacking MAP3K8, our data show a

redundant role for MAP3K8 in obesity-associated metabolic

dysfunction. Local adipose tissue inflammation was only mildly

influenced. Moreover, human adipose tissue biopsies show that

MAP3K8 expression in adipose tissue associates with mRNA

levels of IL-1b, IL-6 and IL-8, but not with systemic metabolic

parameters. Together these data suggest that MAP3K8 partially

affects pro-inflammatory gene expression in adipose tissue, yet

does not play an important role in the development of insulin

resistance during obesity.

Material and Methods

Human subjects
Subcutaneous adipose tissues were obtained from 70 healthy

donors subjects with a broad range of BMI. The measurements

were carried out in the first and last quartile. The group was

divided in low BMI and high BMI (BMI ,25, n= 33, BMI .30,

n = 18), low and high plasma insulin levels (concentration ,

5 mU/L, n= 22,.8 mU/L, n= 28); low and high plasma glucose

levels (concentration ,5 mM, n= 30, .5 mM, n= 40); low and

high HOMA-IR levels (,2, n= 40, .2 n=26); adipocyte cell size

(diameter in mM, smallest and largest quartile n = 36). HOMA-IR

was calculated by: (glucose * insulin plasma levels)/22.5. For

association with mRNA levels of IL-1b, IL-6, IL-8 and TNFa to

MAP3K8 lowest and highest quartile were compared (n= 36).

Similarly, highest en lowest quartile of serum amyloid A (SAA) and

C-reactive protein (CRP) levels were associated with MAP3K8

expression (n$30) (SAA: Q1#0.7 mg/L, Q4$1.6 mg/L; CRP.

Q1#0.5 mg/L, Q4$2.0 mg/L). All subjects gave written in-

formed consent. The study was approved by the ethical committee

of the Radboud University Medical Centre, Nijmegen.

Animals
MAP3K8-ko mice [13] and WT mice on a C57Bl/6

background were housed in a pathogen-free environment in the

animal facility from the Radboud University Nijmegen. All animal

procedures were conducted under protocols approved by the

animal experimentation committee of Radboud University

Nijmegen Medical Centre. Bodyweight of the animals was

recorded weekly. After a 2 weeks run-in period on low fat diet,

mice were given low fat diet (LFD) or high fat diet (HFD) feeding

for 16 weeks, containing 10% or 45% of energy derived from

palm oil fat (D125450B or 12451; Research Diets, Inc).

Figure 1. MAP3K8 in humans is associated with higher BMI and cytokine expression. MAP3K8 mRNA expression in human subcutaneous
adipose tissue, associated with (a) BMI, (b) plasma insulin values, (c) plasma glucose levels, (d) HOMA-IR, (e) adipocyte sell size cell size and (f) crown-
like structures. *p,0.05. n = 51, 50, 71, 70 respectively. HOMA-IR = Homeostatic Model Assessment for insulin resistance.
doi:10.1371/journal.pone.0089615.g001
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Oral glucose and insulin tolerance tests
Oral glucose tolerance (OGTT) and insulin tolerance tests (ITT)

were performed. Prior to the OGTT, animals were fasted

overnight (9 hours) and 2 g/kg glucose (D-glucose, Gibco,

Invitrogen) was orally administered. Prior to the ITT, mice were

fasted 6 hours and insulin (0,75 U/kg) was injected intraperitone-

ally. Blood glucose levels were determined with an Accu-chek

glucosemeter (Roche Diagnostics, Almere, The Netherlands) at

indicated time points after glucose administration.

Histochemistry
For detection of macrophages/monocytes, an F4/80+ antibody

(product code: MCA497G, AbD Serotec, Düsseldorf, Germany)

was used for mice samples, a CD68-monoclonal antibody (Clone

EBM11, Dako, Denmark) was used for human samples. Visual-

ization of the complex was done using 3,39-diaminobenzidene for

5 min. Negative controls were used by omitting the primary

antibody. Morphometry of individual fat cells was assessed using

digital image analysis. Microscopic images were digitized in 24-bit

RGB (specimen pixel size 1.2861.28 mm2). Recognition of fat cells

was initially performed by applying a region-growing algorithm on

manually indicated seed points, and minimum Feret diameter was

calculated.

qPCR
Total RNA was isolated from adipose tissue using TRIzol

(Invitrogen, Carlsbad, CA), according to manufacturer’s instruc-

tions. RNA was reverse-transcribed (iScript cDNA Synthesis Kit,

Bio-Rad Laboratories). RT-PCR was performed using specific

primers (see Table S1), power SYBR green master mix (Applied

Biosystems, Foster City, CA) using the Step-one Real-Time PCR

system (Applied Biosystems, Foster City, CA). For mice samples,

we used both 36B4 and GAPDH as housekeeping genes. For

human samples we used B2M as a housekeeping gene.

Western blot analysis
Lysis buffer (50 mM Tris (pH 7.4), 150 mMNaCl,

2 mMEDTA, 1% Nonidet P-40, 50 mMNaF, and 0.25% sodium

deoxycholate) with phosstop phosphatase-inhibitor cocktail tablet

(Roche) and complete, EDTA-free protease-inhibitor cocktail

tablet (Roche) was used to prepare adipose tissue lysates. The

homogenized lysate was then centrifuged at 4uC for 10 min at

Figure 2. MAP3K8 in humans is associated with IL-1b, IL-6 and IL-8 cytokine expression. Biopsies from subcutaneous adipose tissue were
obtained from healthy subjects with varying levels of obesity. Association of MAP3K8 mRNA expression in human subcutaneous adipose tissue with
mRNA expression of (a) IL-1ß, (b) IL-6, (c) IL-8, (d) TNF-a, (e) serum amyloid A levels (SAA: Q1#0.7 mg/L, Q4$1.6 mg/L), (f) C-reactive protein (CRP:
Q1#0.5 mg/L, Q4$2.0 mg/L). *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0089615.g002
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18.000 rcf. Subsequently, the supernatant was used for Western

Blot. Equal amounts of protein as determined by a BCA protein

assay (Thermo FisherScientific, Rockford, IL) were loaded, and

separated using a polyacrylamide SDS page gel. After SDS-PAGE,

proteins were transferred to a nitrocellulose membrane using

Trans-Blot Turbo Transfer System (Biorad) following manufac-

turer’s instructions. The membrane was blocked for 1 h at room

temperature with 5% (wt/vol) milk powder in Tris-buffered saline

(TBS)/Tween 20. Subsequently, the membrane was incubated

overnight at 4uC with a phospho-p65 (Cell Signaling, 93H1) or

pan-p65 antibody (Cell Signaling, D14E12), phospho-ERK

(Promega, V8031) or pan-ERK antibody (Promega, V1141) and

a tubulin antibody (Santa Cruz Biotechnology, 2–28–33) in 5%

(wt/vol) milk powder/TBS/0.1% Tween 20. Hereafter, the blots

were incubated with horseradish peroxidase-conjugated secondary

antibodies (dilution of 1:5000) in 5% (wt/vol) milk powder in

TBS/0.1% Tween-20 for 1 h at room temperature and subse-

quently developed with Clarity reagent (Biorad) according to the

manufacturer’s instructions. Bands were visualized using a

ChemiDoc System (Biorad) and quantified using Image lab

software (Biorad).

Plasma proteins
Plasma concentrations of insulin (ultra sensitive mouse insulin

ELISA kit, Crystal Chem Inc., IL, USA; detection limit: 5 pg/ml)

were measured by ELISA according to the manufacturer’s

instructions. Mice CXCL-1 concentrations were determined

according to manufacturer’s instructions (Duoset, R&D systems,

MN, USA; detection limit 16 pg/ml). High sensitive C-reactive

protein (hsCRP) was measured by enzyme-immunoassay accord-

ing to the instructions from the manufacturer (Dako, Glastrup,

Denmark; detection limit 3.1 ng/ml). SAA was measured using

the N Latex SAA test (Siemens Healthcare Diagnostic, Germany,

detection limit: 0.02 ng/ml) according to the instructions from the

manufacturer.

Plasma glucose
Glucose (Liquicolor, Human GmbH, Wiesbaden, Germany)

was measured enzymatically following manufacturers’ protocols.

Statistical analysis
Data are shown as means 6 SEM. Differences between groups

were analyzed using Student’s t test, differences among 4 groups

were analyzed with ANOVA followed by post-hoc Bonferroni tests

in Graphpad Prism 5.0. p-values ,0.05 were considered

significant.

Results

BMI, IL-6 and IL-8 expression are associated with higher
MAP3K8 expression in human adipose tissue
First, we determined the association of MAP3K8 (TPL2/COT)

expression in human adipose tissue with measures of obesity

(BMI), adipose tissue inflammation (cytokine expression) and

insulin resistance (plasma insulin). Human subcutaneous tissue

biopsies were acquired from healthy subjects with a wide range in

BMI. As shown in Figure 1a, mRNA expression levels of

MAP3K8 were significantly higher in individuals with a BMI

higher than 30, compared to subjects with a normal BMI (between

20–25 kg/m2). However, no differences in MAP3K8 expression

were observed between persons with low versus high plasma

insulin and glucose levels (Fig. 1b/c). In line with this, no

Figure 3. Obesity and macrophage influx in adipose tissue of HFD-fedWT andMAP3K8-ko animals.MAP3K8-ko and WT mice were fed a
LFD or HFD during 16 weeks. (a) Bodyweight development upon LFD or HFD feeding. (b) Epididymal white adipose tissue (eWAT) weight after
16 weeks of LFD or HFD. (c) Liver weight after 16 weeks of LFD or HFD. (d) Plasma CXCL1 levels after 16 weeks of LFD or HFD (e) Macrophage influx
into the adipose tissue as determined by immunohistochemistry, F4/80 (serotec) staining: 206magnification or 406 as indicated: (f) Number of
crown-like structures per field. (g–i) qPCR analysis for macrophage infiltration markers, (g) CD68, (h) F4/80, (i) MCP-1 in adipose tissue of MAP3K8-ko
and WT animals. * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0089615.g003
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differences were observed for MAP3K8 expression in subjects with

increased insulin resistance, as calculated by the homeostatic

model for insulin resistance (Fig. 1d). Moreover, we did not see an

increased expression of MAP3K8 in subjects with small versus

large adipocyte size (Fig. 1e) or in subjects with crown-like

structures (CLS) formed by infiltrating CD68 positive macrophag-

es in adipose tissue compared to subjects with no CLS (Fig. 1f).

Interestingly, we found that higher mRNA expression of IL-1ß

in human adipose tissue was associated with higher mRNA levels

of MAP3K8, although this difference did not reach statistical

significance, p = 0.063 (Fig. 2a). Moreover, mRNA expression

levels of IL-1ß responsive cytokines, IL-6 and IL-8, were

significantly associated with higher MAP3K8 expression

(Fig. 2b/c). In contrast, TNFa mRNA levels did not associate

with MAP3K8 expression (Fig. 2d). Moreover, systemic inflam-

matory markers were measured in the plasma and related to

MAP3K8 expression in adipose tissue. Higher levels of serum

amyloid A (SAA) were negatively associated with MAP3K8

expression in adipose tissue (Fig. 2e). In contrast, no relation

was measured for MAP3K8 expression and plasma C-reactive

protein (CRP) levels (Fig. 2f).

MAP3K8-ko mice show similar body weight compared to
WT mice
Based on the association of higher MAP3K8 expression with

both BMI and enhanced levels of IL-1ß responsive genes in

human adipose tissue, we set out to determine if MAP3K8 causally

affects obesity and adipose tissue inflammation in vivo. Therefore,

12-week old MAP3K8 deficient or WT mice, were fed a high-fat

diet (HFD, 45% calories by energy content derived from fat) or

low-fat diet (LFD, 10%) for 16 weeks. Although MAP3K8-ko mice

gained bodyweight faster during the initial phase of the diet

intervention, at the end of the study there were no differences in

bodyweight between MAP3K8-ko and WT mice (Figure 3a). At
the end of the intervention period, both genotypes gained

approximately 9–10 grams more bodyweight due to the HFD-

Figure 4. Inflammatory profile of the adipose tissue of HFD-fed WT and MAP3K8-ko animals.MAP3K8-ko and WT mice were fed a LFD or
HFD during 16 weeks. (a–f) qPCR analysis for cytokines (a) TNF-a, (b) IFNc, (c) IL-1b, (d) CXCL-1, (e) IL-6 and (f) IL-1Ra. n = 9 mice per group. Relative
phosphorylation of NFkB p65 (g) and ERK 1/2 (h) in eWAT of MAP3K8-ko and WT animals after HFD-feeding (i). * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0089615.g004
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feeding, compared to the LFD intervention. Moreover, MAP3K8-

ko and WT mice had a similar epididymal white adipose tissue

(eWAT) and liver weight after HFD feeding (Fig. 3b/c).
Interestingly, MAP3K8-ko mice had a significant higher eWAT

weight after LFD.

Different mRNA expression profile of inflammatory in
adipose tissue
Next, we investigated whether MAP3K8-deficiency affected

inflammation in response to HFD feeding. Indeed, in WT mice

systemic CXCL-1 levels were increased after HFD-feeding.

However, this effect was blunted in MAP3K8ko mice (Fig. 3d).
Adipose tissue sections were stained for F4/80 and the amount of

crown-like structures (CLS) in the adipose tissue was counted

(Fig. 3e). HFD feeding significantly increased the amount of CLS

in adipose tissue similarly, in both MAP3K8-ko and WT mice

(Fig. 3f). Interestingly, mRNA expression levels of the macro-

phage markers CD68 and F4/80 were significantly higher in

MAP3K8-ko mice, while expression of MCP-1 was similar

between both genotypes upon HFD feeding (Fig. 3g–i).

In line with an increased expression of macrophage markers,

TNF-a and IFNc mRNA levels tended to be increased in

MAP3K8-ko mice fed a HFD, although this change did not reach

statistical significance for IFNc (Fig. 4a/b). In contrast, HFD-

feeding did not upregulate expression of IL-1b and IL-1 effector

cytokines IL-6 and CXCL-1 in MAP3K8-ko mice (Fig. 4c–e).
Furthermore, mRNA IL-1Ra levels were not changed in

MAP3K8-ko mice as compared to WT animals (Fig. 4f). To

determine whether intracellular downstream targets of inflamma-

tory pathways were affected in MAP3K8-ko versus WT mice,

western blots were performed to measure the presence of

phosphorylated ERK1/2 and NF-kB p65 in adipose tissue of

both genotypes after HFD-feeding. No changes were observed in

relative phosphorylation of both ERK1/2 and NF-kB p65

(Fig. 4g/h) as shown in Figure 4i.

Figure 5. MAP3K8-ko mice display similar bodyweight and insulin sensitivity compared to WT mice. MAP3K8-ko and WT mice were fed
a LFD or HFD during 16 weeks. (a) Plasma insulin and (b) plasma glucose levels after diet intervention. Insulin (itt) and oral glucose (ogtt) tolerance
tests after 16 weeks of diet intervention. (c) itt after 16 weeks of HFD and (d) area under the curve itt. (e) ogtt after 16 weeks of HFD and (f) area
under the curve of ogtt. n = 9 mice per group. * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0089615.g005

MAP3K8 and Obesity in Humans and Mice
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MAP3K8-ko and WT display similar glucose and insulin
tolerance after HFD
Next, we investigated whether the changes in adipose tissue

inflammation in MAP3K8-ko and WT mice influence systemic

insulin sensitivity. HFD-feeding increased fasting plasma insulin

levels in WT, but not MAP3K8-ko mice (Fig. 5a). In contrast,

basal plasma glucose levels were increased in MAP3K8-ko mice

after HFD compared to WT on the same diet (Fig. 5b). To

investigate whether insulin and glucose homeostasis was different

in MAP3K8-ko and WT mice, we subjected the mice to an oral

glucose tolerance test (ogtt) and insulin tolerance test (itt). As

shown in Figures 5c–fMAP3K8 deficiency did not affect glucose

or insulin tolerance upon LFD or HFD feeding. Notably,

MAP3K8-ko mice fed a HFD even displayed a worsening if

insulin tolerance as determined by the area under the curve

(AUC), although this finding is partially explained by the elevated

basal plasma glucose level.

Discussion

Inflammation plays a pivotal role in the development of insulin

resistance associated with obesity. MAP3K8 (TPL2/COT) has

been suggested to be an interesting therapeutic target in order to

reduce inflammation, as it regulates activation of NF-kB and JNK

transcription factors. Indeed, we observed that the mRNA

expression of pro-inflammatory cytokines IL-1ß, IL-6 and IL-8

are associated with expression of MAP3K8 mRNA in human

adipose tissue. However, our results do not reveal any association

of MAP3K8 expression with markers of insulin sensitivity in

human subjects and do not support a crucial role for MAP3K8 as

an important regulator in the development of insulin resistance

during obesity in mice. The results of this study show that human

MAP3K8 adipose tissue expression is positively associated with

BMI and expression of several pro-inflammatory cytokines in

adipose tissue, but not with systemic inflammatory- or metabolic

parameters such as plasma SAA, CRP, insulin or glucose levels.

Similarly, although absence of MAP3K8 in mice induced mild

changes in inflammation in adipose tissue, there were no

differences in systemic insulin resistance even after 16 weeks of a

HFD intervention. Therefore, these findings suggest that other

inflammatory pathways or kinases may play a more dominant role

in the development of obesity induced inflammation and insulin

resistance. Hence, MAP3K8 may restrict its role to mediating local

cytokine secretion as a downstream kinase of pivotal inflammatory

receptors, but without affecting systemic metabolic parameters.

Although MAP3K8 has been reported to be an important

regulator of inflammatory pathways in other diseases [14], the

effect of MAP3K8 on obesity-induced chronic low-grade inflam-

mation has been a point of debate. Three prior studies have

provided contradictory evidence for the role of MAP3K8 in

obesity-induced inflammation and metabolic dysfunction [10–12].

We found that MAP3K8 is upregulated in human adipose tissue in

obese individuals. Moreover, we demonstrate an association

between higher MAP3K8 mRNA expression and both IL-1ß

and the IL-1ß -responsive cytokines IL-6 and IL-8 in the adipose

tissue. MAP3K8 expression levels are not associated with a general

enhancement in the inflammatory status of the adipose tissue as

mRNA levels of the pro-inflammatory cytokine TNF-a are not

changed between the low and high MAP3K8 expressing groups.

Although TNF-a is known to be dependent on MAP3K8 in

macrophages [9,15], TNF-a can also be produced independently

of MAP3K8 [15,16]. Moreover, systemic inflammatory markers

SAA and CRP were not positively associated with increased

MAP3K8 adipose tissue levels, suggestive of a redundant role of

MAP3K8 in obesity-induced low-grade systemic inflammation.

Furthermore, we show that MAP3K8-ko and WT mice do not

differ in weight after 16 weeks of high fat diet feeding, and that

liver weight is similar as well, which is in accordance with earlier

studies ([11] [12]). In the present study, the MAP3K8-ko mice did

not show ameliorated inflammation in the adipose tissue in

response to HFD, which is similar to findings of Lancaster et al. but

opposed to the study of Perfield et al. In fact, expression levels of

several macrophage markers (F480, CD68) were higher in adipose

tissue of MAP3K8-ko mice compared to WT mice, suggesting

increased macrophage infiltration. Interestingly, we observed that

expression levels of IL-1ß and IL-1ß effector cytokines (CXCL1

and IL-6) were downregulated, leading to a reduction in

circulating plasma CXCL1 levels. Since these cytokines are

known to be activated via NFkB and ERK signaling, the

reduction in cytokine expression could be secondary to a reduced

activation of NFkB or ERK that are downstream molecules of

MAP3K8 [14,16,17]. However, no difference in activation of

NFkB or ERK 1/2 was found, suggesting that these downstream

mediators of MAP3K8 were not differently regulated after HFD in

both genotypes, hence other molecules downstream of MAP3K8

may be of more importance. The enhanced expression of

macrophage markers in absence of MAP3K8 may be a

compensatory mechanism for the inhibited cytokine expression

by adipose tissue macrophages. Moreover, the increase of TNF-a
and IFN-c expression in adipose tissue in the MAP3K8-ko mice,

might explain that no differences are seen on systemic metabolic

parameters via compensatory mechanisms, as indicated by

unchanged insulin or glucose tolerance in the MAP3K8-ko mice.

Together, these results show that absence of MAP3K8 may affect

certain inflammatory pathways and macrophage infiltration, but

does not affect the presence of crown-like structures or systemic

insulin sensitivity. Interestingly, our current results show that

insulin levels in the MAP3K8-ko mice are lower, probably

explaining a higher fasting glucose level, as was reported before.

It may be worthwhile in the future to investigate the effect of

MAP3K8 on insulin secretion of the pancreas. Hence, in line with

the lower expression levels of IL-1ß that is known to affect beta-cell

function [18] the absence of MAP3K8 may affect insulin

production.

Parts of our results differ from earlier findings, which may be

explained by different experimental or housing conditions. Gut

microbiota is suggested to contribute to adipose tissue inflamma-

tion and metabolic disease [19]. Therefore, differences in

microbiota composition may exist between facilities and could

contribute to opposing. In addition, some studies used different

types of high fat diets. Another possible explanation is that in the

study of Perfield et al., mice were given a high fat diet from

6 weeks of age, while in this study and the study of Lancaster, the

mice were several weeks older at the start of the diet intervention.

Importantly, in our study, data from mice experiments were in

agreement with data derived from human adipose tissue biopsies,

confirming a positive association of MAP3K8 expression with local

cytokine expression, but not with systemic metabolic parameters.

In summary, these data show that MAP3K8 has a limited role

in obesity-induced inflammation and support earlier results by

Lancaster et al. [12], who did not see protection against obesity-

induced metabolic disease in knock-out mice. Altogether, the

findings argue against MAP3K8 to be a central kinase in

regulating pro-inflammatory signals leading to insulin resistance.

For the first time, we show an association between adipose tissue

expression of MAP3K8 and IL-1ß, IL-6 and IL-8 in humans. In

line with this, our data reveal that MAP3K8 deficiency in HFD-
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fed mice reduces adipose tissue expression of IL-1ß, IL-6 and IL-8.

Therefore, we propose that MAP3K8 may affect production of

specific cytokines in adipose tissue inflammation during develop-

ment of obesity, but that these changes do not translate to

profound systemic effects. Although we cannot rule out an effect

on insulin sensitivity upon specific inhibition of the MAP3K8

signalling pathway during obesity, future studies should rather

illuminate the role of other inflammatory pathways and kinases in

adipose tissue affecting systemic metabolic health.

Supporting Information

Table S1 List of primers used for RT-PCR. Primer

sequence for all human and mouse genes are listed in this table.

(PDF)
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