PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/136000

Please be advised that this information was generated on 2020-06-22 and may be subject to change.
PD39 - Application of population pharmacokinetic modeling and simulation in the design of the optimal dose regime of rupatadine in children 2-5 year old children

Marta Valle1*, Javier Estevez1, Lisa Charlotte Martial1, Eva Santamaria2, Iñaki Izquierdo2

From 3rd Pediatric Allergy and Asthma Meeting (PAAM) Athens, Greece. 17-19 October 2013

Background
Rupatadine is a second generation antihistamine H1 and antagonist of PAF for the treatment of allergic rhinitis and urticaria for which a new pediatric oral solution is now available for children between 6-11 y/o.

Objectives
1) To optimize the dose regime in children between 2 to 5 y/o old to reach similar plasma concentrations to children of 6-11 y/o with allergic rhinitis.
2) To build a new population pharmacokinetic (popPK) model in children including all ages (2-11 y/o) to evaluate if the proposed regimen, as a function of weight, is adequate to reach rupatadine exposure similar to adults and ≥12 y/o.

Methods
A popPK model was developed, using data from 6-11 y/o study (STD I) including 11 patients with full PK profile in allergic rhinitis. A second study (STD2) including 2-5 y/o was optimal designed based on the parameters estimated from STD I, assuming: inclusion of < 40 children, < 5 samples per child in the shortest time window. A final popPK model was built for children 2-11 years. Influence of different covariates on model parameters was also evaluated. PopPK modeling and simulation was performed in NONMEM and optimal design in WIN-POP software.

Results
The dose administered in STD II was 2.5 mg/kg (weight 10-25 kg) or 5 mg/kg (weight > 25 kg) and 3 samples per child were needed in a 2h time window. A two-compartmental model with first-order absorption and elimination where clearance depends on weight fitted the data for 2-11 y/o children. Mean (SD) estimates of parameters obtained by noncompartmental analysis of the steady-state simulated plasma concentrations for both subsets of children were similar: Cmax, 2.54(1.26) vs 1.96(0.52) ng/mL; AUC, 10.74(3.09) vs 10.38(4.31) ng/mL/h; t1/2, 12.28(3.09) vs 15.94(4.09), for children 6-11 y/o and children 2-5 y/o, respectively.

Conclusion
A popPK model for rupatadine was used in the design of a new clinical study. Rupatadine clearance in children 2-11 years increases with age. The used range of doses in children provides similar exposure to rupatadine to that associated with efficacy and safety in adults and adolescents ≥12 y/o.

Authors' details
1Sant Pau, Barcelona, Spain. 2Uriach, Barcelona, Spain.

Published: 28 February 2014

http://www.ctajournal.com/content/4/S1/P39

© 2014 Valle et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.