
PHYSICAL REVIEW E 90, 062813 (2014)

Local quality functions for graph clustering with non-negative matrix factorization
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Many graph clustering quality functions suffer from a resolution limit, namely the inability to find small
clusters in large graphs. So-called resolution-limit-free quality functions do not have this limit. This property
was previously introduced for hard clustering, that is, graph partitioning. We investigate the resolution-limit-free
property in the context of non-negative matrix factorization (NMF) for hard and soft graph clustering. To use
NMF in the hard clustering setting, a common approach is to assign each node to its highest membership cluster.
We show that in this case symmetric NMF is not resolution-limit free, but that it becomes so when hardness
constraints are used as part of the optimization. The resulting function is strongly linked to the constant Potts
model. In soft clustering, nodes can belong to more than one cluster, with varying degrees of membership. In this
setting resolution-limit free turns out to be too strong a property. Therefore we introduce locality, which roughly
states that changing one part of the graph does not affect the clustering of other parts of the graph. We argue that
this is a desirable property, provide conditions under which NMF quality functions are local, and propose a novel
class of local probabilistic NMF quality functions for soft graph clustering.
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I. INTRODUCTION

Graph clustering, also known as network community
detection, is an important problem with real-life applications in
diverse disciplines such as life and social sciences [1,2]. Graph
clustering is often performed by optimizing a quality function,
which is a function that assigns a score to a clustering. During
the past few decades, many such functions (and algorithms to
optimize them) have been proposed. However, relatively little
effort has been devoted to the theoretical foundation of graph
clustering quality functions, e.g., Ref. [3]. In this paper we try
to provide a contribution in this direction by studying desirable
locality properties of quality functions for hard and soft graph
clustering.

We focus on the resolution-limit-free property, a property
of hard graph clustering, recently introduced by Traag,
Van Dooren, and Nesterov [4]. Resolution-limit freeness is
essentially a locality property. Informally this property states
that a subset of an optimal clustering in the original graph
should also be an optimal clustering in the induced subgraph
containing only the nodes in the subset of clusters. As the
name suggests, resolution-limit-free quality functions do not
suffer from the so-called resolution limit, that is, the inability
to find small clusters in large graphs. In the seminal work by
Fortunato and Barthélemy [5], it was shown that modularity
[6], a popular quality function used for network community
detection, has a resolution limit, in the sense that it may not
detect clusters smaller than a scale which depends on the total
size of the network and on the degree of interconnectedness of
the clusters.
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Our goal is to investigate resolution-limit freeness and
other locality properties of non-negative matrix factorization
(NMF) graph clustering quality functions. NMF [7,8] is a
popular machine learning method initially used to learn the
parts of objects, like human faces and text documents. It
finds two non-negative matrices whose product provides a
good approximation to the input matrix. The non-negative
constraints lead to a parts-based representation because they
allow only additive, not subtractive, combinations. Recently,
NMF formulations have been proposed as quality functions for
graph clustering, see, for instance, the surveys Wang et al. [9]
and Li and Ding [10].

We consider symmetric and asymmetric NMF formulations
based on Euclidean loss and a Bayesian NMF quality function
recently proposed by Psorakis et al. [11], which can automat-
ically determine the number of clusters.

The resolution-limit-free property is stated in the setting of
hard clustering, where a clustering is a partition of the nodes. In
contrast, NMF produces a soft clustering. Nodes have varying
degrees of memberships of each clusters, and the clusters can
overlap. To use NMF in the hard clustering setting, a common
approach is to assign each node to its highest membership
cluster.

In Sec. III we show that hard clustering based on NMF in
this way is, in general, not resolution-limit free. For symmetric
NMF we show that resolution-limit freeness can be obtained
by using orthogonality constraints as part of the optimization
and that the resulting function is strongly linked to the constant
Potts model (CPM). CPM was introduced by Traag et al. as
the simplest formulation of a (nontrivial) resolution-limit-free
method. It is a variant of the Potts model by Reichardt and
Bornholdt [12].

We argue in Sec. IV that in the soft clustering setting,
resolution-limit freeness is a too-strong property and propose
an alternative desirable locality property for soft graph clus-
tering. We characterize an interesting class of local quality
functions and show that symmetric and asymmetric NMF
belong to this class. We show that Bayesian NMF is not local in
general and that it suffers from a resolution limit. In Sec. V we
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introduce a novel class of probabilistic NMF quality functions
that are local and hence do not suffer from a resolution limit.

A. Related work

The notion of resolution limit was introduced in Fortunato
and Barthélemy [5]. They found a limitation of modularity,
considered a state-of-the-art method for community detection.
Van Laarhoven and Marchiori [13] showed empirically that
the resolution limit is the most important difference between
quality functions in graph clustering optimized using a fast
local search algorithm, the Louvain method [14]. Traag et al.
[4] introduced the notion of resolution-limit-free objective
functions, which provides the motivation of this study.

Other local properties of quality functions for clustering
have been considered in theoretical studies, but mainly in the
hard setting, for distance-based clustering [15] and for graph
clustering [16]. Locality as defined in Ackerman et al. [15] is
a property of clustering functions, therein defined as functions
mapping a data set and a positive integer k to a partition
of the data into k clusters. This notion of locality was used
together with other properties to characterize linkage-based
clustering. The locality property considered in van Laarhoven
and Marchiori [16] is part of an axiomatic study of quality
functions for hard graph clustering. It states that local changes
to a graph should have only local consequences to a clustering.
It is slightly weaker than the locality property considered in
this study, which corresponds more closely to the property
there called strong locality.

B. Definitions and notation

A (weighted) graph is a pair (V,A) of a finite set V of
nodes and a function A : V × V → R�0 of edge weights. For
compactness we view A as an adjacency matrix and write
aij = A(i,j ). Edges with larger weights represent stronger
connections, so aij = 0 means that there is no edge between
nodes i and j . A graph G′ = (V ′,A′) is a subgraph of
G = (V,A) if V ′ ⊆ V and a′

ij = aij for all i,j ∈ V ′.
Different clustering methods use different notions of a

“cluster” and of a “clustering.” For instance, in symmetric
NMF a clustering is a matrix of membership coefficients; while
in nonsymmetric NMF there are two such matrices. Some
methods also have additional parameters for each cluster. In
this paper we allow different types of “cluster” for different
methods, but we use a common definition of “clustering.”

Formally, each of these types of clusters can be specified
by an injective function C from sets of nodes to sets of things
which we call clusters. For a set of nodes s, for every cluster
c ∈ C(s) we call s the support of c, written as supp(c) = s. The
set of all clusters with support on a subset of V is C∗(V ) =⋃

s⊆V C(s). In this paper we consider four types of clusters,
which will be introduced in the next section.

A clustering of V is a multiset of clusters with support on
a subset of V . Note that we use multisets instead of sets to
allow a clustering to contain two identical copies of the same
cluster. For brevity, we also say that C is a clustering of a
graph G if C is a clustering of the nodes of G. If, in a slight
abuse of notation, we define the support of a clustering as the
union of the support of all clusters in that clustering, then the

clusterings of V are those multisets of clusters for which the
support is a subset of V .

Note that this general definition implies that for certain
clusterings the clusters can overlap, and some nodes can be in
no cluster at all. We believe that this is a reasonable definition,
because if we allow nodes to be in more than one cluster, there
is little reason to not also allow them to be in less than one
cluster.

Additionally, if C and D are clusterings of G, then their
multiset sum C � D is also a clustering of G [17], as is any
subclustering (submultiset) of C. And if G is a subgraph of
G′, then C and D are also clusterings of G′. The symmetric
difference of two clusterings is denoted C�D and is defined
as the symmetric difference of multisets, that is, C�D =
(C\D) ∪ (D\C).

Graph clustering can be cast as an optimization problem.
The objective that is being optimized is the clustering quality
function, which is a function from graphs G and clusterings of
G to real numbers. In this paper we take the convention that
the quality is maximized.

Given a clustering quality function q, and a clustering C

of some graph G. We say that C is q optimal if q(G,C) �
q(G,C ′) for all clusterings C ′ of G.

II. NON-NEGATIVE MATRIX FACTORIZATION

At its core, non-negative matrix factorization decomposes
a matrix A as a product A ≈ WHT , where all entries in W

and H are non-negative. For graph clustering the matrix A

is the adjacency matrix of a graph. For undirected graphs the
adjacency matrix is symmetric, in which case it makes sense
to decompose it as A ≈ HHT . Note that such a symmetric
factorization has to be enforced explicitly, since the optimal
nonsymmetric factorization of a symmetric matrix does not
necessarily have W = H [18].

The columns of W and H can be interpreted as clusters. To
fit with the definitions of the previous paragraph we need to
take a slightly different view. In the case of symmetric NMF, a
cluster with support s is a function that assigns a positive real
number to each node in s, so CSymNMF(s) = Rs

>0. Equivalently,
for a fixed set of nodes, we can represent a cluster as a vector
of non-negative numbers with an entry for each node in V ,
such that the entries for the nodes not in s are zero, that is,
C∗

SymNMF(V ) ≈ RV
�0. For a cluster c we denote this vector as

hc, and a multiset of such vectors can be seen as a matrix H .
The support of c then coincides with the standard notion of
support of the vector hc, that is, the set s of nodes for which the
entry is nonzero. This representation of clusters in terms of a
non-negative vector hc is more standard and more convenient
than the one in terms of a function from s to positive real
numbers, and we use it in the rest of the paper.

For nonsymmetric NMF, a cluster is a tuple c = (wc,hc) of
two such vectors. That is, C∗

AsymNMF(V ) = RV
�0 × RV

�0, with
supp((wc,hc)) = supp(wc) ∪ supp(hc). For Bayesian NMF
[11] each cluster also contains a βc parameter, that is,
C∗

BayNMF(V ) = RV
�0 × RV

�0 × R>0.
A common notion to all NMF methods is that they predict

a value for each edge. For symmetric NMF with per cluster
membership vector hc this prediction can be written as
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âij = ∑
c∈C hcihcj . For asymmetric NMF with cluster mem-

berships wc and hc we can write âij = ∑
c∈C wcihcj .

The optimization problem then tries to ensure that âij ≈
aij . Different methods can have different interpretations of
the “≈” symbol, and they impose different regularizations
and possibly additional constraints. Perhaps the simplest NMF
quality function for undirected graphs uses Euclidean distance
and no additional regularization,

qSymNMF(G,C) = −1

2

∑
i,j∈V

(aij − âij )2.

III. RESOLUTION-LIMIT-FREE FUNCTIONS
FOR HARD CLUSTERING

Before we investigate the resolution limits of NMF, we
will first look at traditional “hard” clustering, where each node
belongs to exactly one cluster. In this setting a cluster is simply
a subset of the nodes, and its support is the cluster itself,
that is, Chard(s) = s. There is the additional nonoverlapping or
orthogonality constraint on clusters: In a valid hard clustering
C of V , each node i ∈ V is in exactly one cluster ci ∈ C. For
symmetric NMF we may formulate these constraints as∑

i∈V

hcihdi = 0 for all c,d ∈ C,c �= d, and

∑
c∈C

hci = 1 for all i ∈ V.

Traag et al. [4] introduced a locality property of clustering
quality functions and called the functions that satisfy this
property resolution-limit free. Their definition is as follows.

Definition 1 (Resolution-limit free). Let C be a q-optimal
clustering of a graph G1. Then the quality function q is called
resolution-limit free if for each subgraph G2 induced by D ⊂
C the partition D is a q-optimal clustering of G2.

Thus in the setting of hard clustering, a quality function is
resolution-limit free if any subset of clusters from an optimal
clustering is also an optimal clustering on the graph that
contains only the nodes and edges in those clusters.

NMF has been extended with a postprocessing step to yield
a hard clustering. This is done by assigning each node to the
cluster with the largest membership coefficient.

We can now ask if NMF with this postprocessing is
resolution-limit free. In Fig. 1 we give a counterexample that

FIG. 1. (Color online) A counterexample that shows that NMF
quality functions are not resolution limit free. When considering
the entire graph, the first (solid blue) clustering is optimal. When
considering only the gray nodes, the second (dashed red) clustering
is optimal. The membership of the middle node is very unclear; it
belongs to two clusters to almost the same degree. When another part
of a cluster changes this can tip the balance one way or the other.

answers this question negatively for the NMF-based methods
of Psorakis et al. [11] and Ding et al. [19].

This counterexample consists of two cliques and one
almost-clique. Additionally, there is a node with unclear mem-
bership. When the entire graph is considered, its membership
of one cluster is slightly higher; when one clique and its
incident edges are removed, its membership of another cluster
is slightly higher. This difference is very small. For example,
with Ding et al.’s method in the optimal clustering of the
large graph, the disputed node belongs to the second and
third clusters with membership coefficients 0.2306 and 0.2311,
respectively; while in the smaller subgraph the membership
coefficients are 0.2284 and 0.2607.

Traag et al. [4] showed that the CPM is the simplest
formulation of any (nontrivial) resolution-limit-free method.
The CPM quality function qcpm(G,C) can be formulated as

qcpm(G,C) =
∑
i,j∈V

(aij − γ )1[ci = cj ],

where 1[ci = cj ] is 1 if nodes i and j belong to the same
cluster and 0 otherwise.

Symmetric NMF and CPM are closely related. This can be
shown with a technique similar to that used by Ding et al. [19]
to link symmetric NMF and spectral clustering.

Theorem 2. Symmetric NMF is an instance of CPM with
γ = 1/2 and orthogonality constraints relaxed.

Proof. Recall that in symmetric NMF, â is defined as âij =∑
c∈C hcihcj . With orthogonality constraints, any two nodes

i and j are either in the same cluster, in which case âij = 1,
or they are in different clusters, in which case âij = 0. So
âij = â2

ij = 1[ci = cj ].
Symmetric NMF is given by the optimization problem

argmax
C

qSymNMF(G,C) = −1

2

∑
i,j∈V

(aij − âij )2.

Expanding the square shows that this is equivalent to

argmax
C

∑
i,j∈V

(
aij âij − 1

2
â2

ij

)
.

With orthogonality constraints this is equivalent to

argmaxC

∑
i,j∈V

(
aij − 1

2

)
1[ci = cj ],

which is the CPM objective with γ = 1/2. �
The CPM is resolution-limit free. Therefore in order to

perform hard clustering using symmetric NMF it is preferable
to act on the quality function, for instance, by enforcing or-
thogonality as done in Refs. [19,20], instead of assigning each
node to the cluster with the highest membership coefficient.

IV. RESOLUTION-LIMIT-FREE FUNCTIONS
FOR SOFT CLUSTERING

We could still try to directly adapt Definition 1 to the
soft clustering setting by defining what a graph induced by
a subclustering is. The obvious idea is to include all nodes in
the support of the subclustering. So for a clustering C of G,
the graph G′ induced by D ⊆ C would contain only the nodes
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FIG. 2. (Color online) Three cliques sharing two nodes each. The
obvious clustering consists of three overlapping clusters, with the
three central nodes in two clusters each. The white nodes are not in
the support of the solid blue clusters.

which are in at least one cluster in D, that is, V ′ = supp(D),
and all edges between these nodes from the original graph.

However, in contrast to the hard clustering case, an optimal
soft clustering might have clusters in C\D that overlap with
clusters in D. This makes the notion of resolution-limit free
too restrictive, since it effectively disallows any interesting
uses of overlapping clusters.

Consider the graph with three overlapping 5-cliques shown
in Fig. 2. In an NMF-style method such as Ref. [19], the
optimal clustering of this graph will have three overlapping
clusters, corresponding to the three cliques. The subgraph
introduced by the support of the solid blue clusters includes just
the dark nodes, but neither cluster covers both nodes incident
to the dashed edge. Therefore, with these two clusters the
prediction â for this edge will be 0. But the optimal clustering
of this subgraph would have a nonzero prediction for this
edge. In other words, the optimal clustering for the induced
subgraph is not the same as the solid blue clustering, and even
the support of the clusters is different. Hence no NMF method
is resolution-limit free in this sense.

An alternative approach is to only consider subclusterings
with disjoint support in the definition of resolution-limit free,
that is, with supp(D) ∩ supp(C\D) = ∅. Unfortunately this
variant has the opposite problem: The condition almost never
holds. So many quality functions would trivially satisfy this
variant of resolution-limit freeness. For example, the optimal
clusterings in NMF methods based on a Poisson likelihood will
always have overlapping clusters covering every edge, so the
disjointness condition only holds when the graph has multiple
connected components.

Clearly we need a compromise.

A. Locality

The resolution-limit-free property looks at the behavior
of a clustering quality function on graphs of different sizes.
Intuitively, a quality function suffers from a resolution limit if
optimal clusterings at a small scale depend on the size of the
entire graph.

As shown in the previous paragraph we cannot just zoom
in to the scale of any subclustering D by discarding the rest
of the graph. But if we let go of only considering the optimal
clustering, it does become possible to zoom in only partially,
leaving the part of the graph covered by clusters that overlap

1
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D C1

D C1

1

3
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8

9

D C2

D C2

FIG. 3. (Color online) An example illustrating locality. Between
the left and right sides, the dashed part of the clustering and the
dashed part of the graph changes. The top and bottom clusterings
differ only on the constant part (red or blue), and these differences
do not overlap with changing clusters (dashed). Therefore if the top
clustering has a higher quality than the bottom clustering on the left
graph, then the same must hold on the right graph. Formally, the dark
gray nodes are in the common subgraph GS , and the light gray nodes
are in supp(C1 ∩ C2). The thick blue clustering is D, the thick red
clustering D′, the solid black clusters are in both C1 and C2, and
the dashed clusters are in only one of C1 and C2. Since the dashed
clusters do not cover the dark gray nodes, the black clusterings agree
on the dark gray subgraph.

clusters in D intact. If D is an optimal clustering of the original
graph, then it should be a “locally optimal” clustering of the
smaller graph in some sense.

We take this to mean that if a clustering D is better than
some other clustering D′ on the original graph, then the same
holds on the smaller graph, as long as D and D′ induce the
same zoomed-in graph.

It then makes sense to not only consider zooming in by
discarding the rest of the graph but also consider arbitrary
changes to the rest of the graph, as well as arbitrary changes
to clusters not overlapping with D or D′.

More precisely, if one subclustering D is better than another
subclustering D′ on a subgraph GS of some graph G1, and one
changes the graph to G2 in such a way that the changes to
the graph and to the clustering are disjoint from this subgraph
GS , then D will stay a better clustering than D′. This idea is
illustrated in Fig. 3.

To formalize this idea we introduce the notion of agreement.
We say that two clusterings C1 of G1 and C2 of G2 agree
on a common subgraph GS = (VS,AS) of G1 and G2 if
supp(C1�C2) ∩ VS = ∅. Note that this subgraph can be the
smallest subgraph containing supp(D) and supp(D′). This
leads to the following definition.

Definition 3 (Locality). A clustering quality function q is
local if for all graphs G1, G2, and common subgraphs GS

of G1 and G2, for all clusterings C1 of G1 and C2 of G2

that agree on GS , and clusterings D,D′ of GS , it is the case
that q(G1,C1 � D) � q(G1,C1 � D′) if and only if q(G2,C2 �
D) � q(G2,C2 � D′).

Locality as defined in Ackerman et al. [15] differs from our
definition because it is a property of clustering functions. The
locality property considered in van Laarhoven and Marchiori
[16] differs from our definition because it also enforces that the
graphs agree “on the neighborhood” of the common subgraph.
Instead, we require agreement between overlapping clusters.
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They also briefly discussed and dismissed a “strong locality”
property, which is closer to our definition.

Even in the case of hard clustering locality and resolution-
limit free are not equivalent. For hard clustering, locality
implies resolution-limit freeness, but the converse is not true.

Theorem 4. If a hard clustering quality function is local,
then it is resolution-limit free.

Proof. Let q be a local hard cluster quality function and C

be a q-optimal clustering of a graph G1 = (V1,A1).
Consider the subgraph G2 induced by D ⊂ C.
Let C1 = C\D and C2 = ∅, and let GS = G2. Because C

is a partition of V1, we have that supp(C1) is disjoint from GS ,
and so C1 and C2 agree on GS .

Then for each clustering D′ of G2 we have q(G1,C1 �
D) � q(G1,C1 � D′) because C1 ∪ D = C is an optimal
clustering of G1. By locality it follows that q(G2,C2 � D) �
q(G2,C2 � D′).

So D is a q-optimal clustering of G2. �
Theorem 5. If a hard clustering quality function is

resolution-limit free, then it is not necessarily local.
Proof. Consider the following quality function:

q(G,C) = max
c∈C

|c| + min
c∈C

|c|.

For each graph G = (V,A), the clustering C = {V } is the
single q-optimal clustering, with quality 2|V |. Since there are
no strict subsets of C the quality function is trivially resolution-
limit free.

Now consider the graphs G1 with nodes {1,2, . . . ,7} and
G2 with nodes {1,2, . . . ,6}, both with no edges. These graphs
have a common subgraph GS with nodes {1,2, . . . ,6}. Take the
clusterings D = {{1,2,3,4},{5},{6}}, D′ = {{1,2,3},{4,5,6}},
C1 = {{7}}, and C2 = {}. Then q(G1,C1 � D) = 5 > 4 =
q(G1,C1 � D′), while q(G2,C2 � D) = 5 < 6 = q(G2,C2 �
D′).

So q is not local.
This counterexample is illustrated in Fig. 4. �

B. Characterizing local quality functions

Many quality functions can be written as a sum with a
term for each edge, characterizing a goodness of fit, a term
for each node, controlling the amount of overlap, and a term
for each cluster, indicating some kind of complexity penalty.
There might also be a constant term not actually depending on
the clustering and so not affecting the optimum. We call such
quality functions additive.

1 2 3 4 5 6 7

q(G1, C1 D) = 5

q(G1, C1 D ) = 4

q(G2, C2 D) = 5

q(G2, C2 D ) = 6

FIG. 4. The counterexample from the proof of Theorem 5.

Definition 6. A qualify function is additive if it can be
written as

q(G,C) = qgraph(G) +
∑
c∈C

qclus(c)

+
∑
i∈V

qnode({c ∈ C | i ∈ supp(c)})

+
∑
i∈V

∑
j∈V

qedge(aij ,{c ∈ C | i,j ∈ supp(c)})

for some functions qgraph, qclus, qnode, qedge.
Note that qnode can depend on all clusters that contain node

i, and qedge can depend on all clusters that contain the edge ij .
Theorem 7. If a quality function is additive, then it is local.
Proof. Let q be an additive quality function. Let G1 G2 and

GS = (V,A) be graphs such that GS is a subgraph of both G1

and G2.
Let C1 be a clustering of G1, C2 a clustering of G2 and,

D,D′ clusterings of GS

such that C1 and C2 agree on GS .
Let E = C1 ∩ C2. Then for every node i ∈ supp(C1\C2),

we have i /∈ V , which implies that i /∈ supp(D) and i /∈
supp(D′). So {c ∈ C1 � D | i ∈ supp(c)} = {c ∈ C1 � D′ |
i ∈ supp(c)} = {c ∈ C1 | i ∈ supp(c)}.

Conversely, for every node i /∈ supp(C1\C2), we have {c ∈
C1 � D | i ∈ supp(c)} = {c ∈ E � D | i ∈ supp(c)}.

Therefore,

q(G1,C1 � D) − q(G1,C1 � D′)

=
∑
c∈D

qclus(c) −
∑
c∈D′

qclus(c)

+
∑
i∈V

qnode({c ∈ E � D | i ∈ supp(c)})

−
∑
i∈V

qnode({c ∈ E � D′ | i ∈ supp(c)})

+
∑
i,j∈V

qedge(aij ,{c ∈ E � D | i,j ∈ supp(c)})

−
∑
i,j∈V

qedge(aij ,{c ∈ E � D′ | i,j ∈ supp(c)}),

and similarly for G2 and C2 in place of the G1 and C1.
Which implies that q(G1,C1 � D) − q(G1,C1 � D′) =

q(G2,C2 � D) − q(G2,C2 � D′).
And so q(G1,C1 � D) � q(G1,C1 � D′) if and only if

q(G2,C2 � D) � q(G2,C2 � D′).
In other words, q is local. �
The converse of Theorem 7 does not hold; not all local

quality functions are additive. For example, any monotonic
function of a local quality function is also local.

Another example are quality functions that use higher-order
interactions, that is, it includes terms not only for nodes and
edges but also for triangles and larger structures. For instance,
the clique percolation method [21] finds clusters which are
cliques. That method is local, but it is not additive. We
could imagine including higher-order terms in the definition
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of additivity,

q(G,C) = · · · +
∑

i,j,k∈V

qtriangle

× (aij ,aik,ajk,{c ∈ C | i,j,k ∈ supp(c)}),
and so on. But for most purposes the edge term is sufficient;
and the local quality functions that we consider in this paper
are all additive in the sense of Definition 6.

Additivity provides additional insight into how quality
functions behave: the quality is composed of the goodness-
of-fit of a the clustering to nodes and edges (and perhaps
larger structures), together with a cost term for each cluster.
By Theorem 7, it also gives us a convenient way to prove
that a certain quality function is local, while locality can more
convenient if we want to reason about the behavior of a quality
function.

For symmetric NMF, âij can be written as a sum over
clusters that contain nodes i and j ,

âij =
∑

c∈C s.t. i,j∈supp(c)

hcihcj .

As a consequence, NMF quality functions without regulariza-
tion, such as qSymNMF, are additive. Therefore these quality
functions are local.

Many regularization terms can also be encoded in an addi-
tive quality function. For example the L2 term

∑
c∈C

∑
i∈V h2

ci

is a sum over clusters and independent of the graph, and so it
fits in qclus.

C. Fixed number of clusters

The question of automatically finding the right number of
clusters is still not fully solved. Therefore in most NMF-based
clustering methods the number of clusters k is specified by the
user.

For most quality functions, if they are optimized directly
without taking this restriction into account, then the number
of clusters will tend to infinity. So we somehow need to fix the
number of clusters.

The most direct way to incorporate this restriction of a fixed
number of clusters is by adding it as a constraint to the quality
function. That is, use q(G,C,k) = q(G,C) + 1[|C| = k]∞.
Strictly speaking this is not a function to the real numbers. But
we never need the fact that q is such a function, all we need
is that the quality of different clusterings can be compared.
Unfortunately, encoding a fixed k restriction in the quality
function violates locality.

Take two clusterings C and D of a graph G, with a different
number of clusters. Let C ′, D′ and G′ be copies of C, D, and
G on a disjoint set of nodes, and let k be |C| + |D|. Then
the quality q(G ∪ G′,D � C ′,k) is finite, while q(G ∪ G′,D �
D′,k) is infinite. On the other hand, q(G ∪ G′,C � C ′,k) is
infinite, while q(G ∪ G′,C � D′,k) is finite. This contradicts
locality.

Instead, we need to consider the restriction on the number
of clusters as separate from the quality function. In that case
the definition of locality can be used unchanged.

Equivalently, if we call a clustering consisting of k clusters
a k-clustering, then we can extend the definitions of locality

to take the restricted number of clusters into account. This
approach is also used by Ackerman and Ben-David [15].

If we call a function q(G,C,k) for graphs G, clusterings
C and number of clusters k a fixed-size quality function, then
this leads to the following fixed-size variant of locality.

Definition 8 (Fixed size locality). A fixed-size quality
function q is fixed-size local if for all graphs G1, G2 and a
common subgraph GS , for all k1-clusterings C1 of G1 and
k2 clusterings C2 of G2 that agree on GS , and m-clustering
D of GS and m′-clusterings D′ of GS , it is the case that
q(G1,C1 � D,k1 + m) � q(G1,C1 � D′,k1 + m′) if and only
if q(G2,C2 � D,k2 + m) � q(G2,C2 � D′,k2 + m′).

Every local quality function that does not depend on k

is fixed-size local when combined with a constraint that the
number of clusters must be k. And so NMF with a fixed number
of clusters is fixed-size local.

D. Varying number of clusters

Psorakis et al. [11] formulated a Bayesian formulation of
NMF for overlapping community detection that uses automatic
relevance determination (ARD) [22] to determine the number
of clusters. Their quality functions can be written as

qBayNMF(G,C)

= −
∑
i∈V

∑
j∈V

(
aij log

aij

âij

+ âij

)

− 1

2

∑
c∈C

(∑
i∈V

βcw
2
ci +

∑
i∈V

βch
2
ci − 2|V | log βc

)

−
∑
c∈C

(βcb − (a − 1) log βc) − κ,

where each cluster is a triple c = (wc,hc,βc) of two vectors and
a scalar and κ is a constant. ARD works by fixing the number of
clusters to some upper bound. In the optimal clustering many
of these clusters c will be empty, that is, have supp(c) = ∅.

This quality function is not additive, for two reasons. First,
there is the term 2|V | log βc for each cluster, which stems
from the half-normal priors on W and H . This term depends
on the number of nodes. Second, the κ term actually depends
on the number of clusters and the number of nodes, since it
contains the normalizing constants for the hyperprior on β, as
well as constant factors for the half-normal priors. For a fixed
graph and fixed number of clusters the κ term can be ignored,
however.

As a result, Psorakis et al.’s method is also not local, as the
following counterexample shows:

Theorem 9. qBayNMF is not local.
Proof. Consider a graph G1, consisting of a ring of n = 10

cliques, where each clique has m = 5 nodes, and two edges
connecting it to the adjacent cliques.

We follow Psorakis et al., and use hyperparameters a = 5
and b = 2. This choice is not essential, similar counterexam-
ples exist for other hyperparameter values. As might be hoped,
the qBayNMF-optimal clustering C1 of this graph then puts each
clique in a separate cluster, with a small membership for the
directly connected nodes in adjacent cliques.
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This clustering is certainly better than the clustering C2

with 5 clusters each consisting of two cliques, and 5 empty
clusters.

However, on a larger graph with two disjoint copies of G1,
the clustering with two copies of C2 is better than the clustering
with two copies of C1.

But by locality we would have qBayNMF(G1 ∪
G′

1,C1 � C ′
1) � qBayNMF(G1 ∪ G′

1,C2 � C ′
1) as well as

qBayNMF(G1 ∪ G′
1,C2 � C ′

1) � qBayNMF(G1 ∪ G′
1,C2 � C ′

2),
where the primed variables indicate copies with disjoint
nodes. So qBayNMF is not local. �

In the above counterexample things do not change if one
uses a ring of 20 cliques instead of two disjoint rings of 10
cliques. This is closer to the original characterization of the
resolution limit by Fortunato and Barthélemy [5]. In a ring
of 20 cliques, the solution with 10 clusters is better than the
solution with 20 clusters. But it is harder to show that this
violates locality.

V. NMF AS A PROBABILISTIC MODEL

NMF can be seen as a maximum likelihood fit of a
generative probabilistic model. The quality function that is
optimized is then the log likelihood of the model conditioned
on the observed graph,

q(C,G) = log P (C|G).

One assumes that there is some underlying hidden cluster
structure, and the edges in the graph depend on this structure.
The clustering structure in turn depends on the nodes under
consideration. So, by Bayes rule, we may decompose P (C|G)
as

P (C|V,A) = P (A|C,V )P (C|V )P (V )/P (V,A).

The terms P (V ) and P (V,A) are constant given the graph, so
the quality function becomes

q(C,G) = log P (A|C,V ) + log P (C|V ) + κ,

where κ = log P (V ) − log P (V,A) is a constant. The first
term is the likelihood of the edges given the clustering, and
the second factor is the prior probability of a clustering for a
certain set of nodes.

To make the above general formulation into an NMF
model, one assumes that the edge weights are distributed
independently, depending on the product of the member-
ship matrices. Then a prior is imposed on the membership
coefficients. Usually a conjugate prior is used, which for
Gaussian likelihood has a half-normal distribution, and for
Poisson likelihood has a gamma distribution. So the simplest
symmetric Gaussian NMF method would be

aij ∼ N (âij ,1)

âij =
∑

c

hcihcj

hci ∼ HN (0,σ ).

Which leads to the quality function

q(C,G) = −1

2

∑
i,j∈V

(aij − âij )2 − 1

2σ 2

∑
c∈C

∑
i∈V

h2
ci

+ |V |2 log
√

2π + |C||V | log
√

πσ 2/2.

This is a regularized variant of symmetric NMF discussed
previously.

Such a model implicitly assumes a fixed number of clusters;
and the corresponding quality function will not be local if
the number of clusters is not fixed. Intuitively, this happens
because the model has to “pay” the normalizing constant of
the prior distribution for each hci , the number of which is
proportional to the number of clusters.

The method of Psorakis et al. also stems from a probabilistic
model. They use a Poisson likelihood and a half-normal
prior. Note that these are not conjugate. For finding the
maximum likelihood solution conjugacy is not important.
Using a conjugate prior becomes important only when doing
variational Bayesian inference or Gibbs sampling [23].

To determine the number of clusters, Psorakis et al. put a
gamma hyperprior on the inverse variance β. This allows a
sharply peaked distribution on wc and hc when the support of
a cluster is empty. The model is

aij ∼ Poisson(âij )

âij =
∑

c

hciwcj

hci ∼ HN (0,1/
√

βc)

wci ∼ HN (0,1/
√

βc)

βc ∼ Gamma(a,b).

As shown in Sec. IV D, the corresponding quality function
is not local. The problems stem from the priors on W , H , and
β, which depend on the number of nodes and clusters. We will
next try to find a different prior that is local.

A. A local prior

To get a local quality function from a probabilistic model,
that does not assume a fixed number of clusters, we clearly
need a different prior. The approach we take will be to construct
an additive quality function, which is local by Theorem 7.

First assume as above that the likelihoods of the edges are
independent and depending on the product of membership
degrees, that is, P (A|C,V ) = ∏

ij P (aij |âij ). This fits nicely
into the fourth term, qedge, of an additive quality function.

Without loss of generality we can split the prior into two
parts. First, the support of each cluster is determined, and based
on this support the membership coefficients are chosen. If we
define S = {supp(c)|c ∈ C}, then this means that

P (C|V ) = P (C|V,S)P (S|V ).

Just like C, S should be seen as a multiset, since multiple
clusters can have the same support. A reasonable choice for
the first term P (C|V,S) is to assume that the clusters are
independent, and that the membership coefficients inside each
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cluster are also independent, so

C = {Cs | s ∈ S}

P (Cs |V,s) =
∏
c∈C

⎛
⎝∏

i∈s

P (hci)
∏

i∈V \s
δ(hci,0)

⎞
⎠ ,

where δ is the Kronecker delta, which forces hci to be zero for
nodes not in s. The logarithm of P (C|V,S) is a sum of terms
that depend only on a single cluster, so it can be encoded in
the qclus term of an additive quality function.

Now consider P (S|V ). If we know nothing about the nodes,
then the two simplest aspects of S we can look at are (1) how
many clusters cover each node and (2) how many nodes are
in each cluster. The only local choice for (1) is to take the
number of clusters that cover node i, ni = #{s ∈ S | i ∈ s},
be independent and identically distributed according to some
f (ni). While for (2), the probability of a cluster s ∈ S must
be independent of the other clusters. And since we have no
information about the nodes, the only property of s we can use
is its size. This suggests a prior of the form

P (S|V ) = 1

Z

∏
i∈V

f (ni)
∏
s∈S

g(|s|),

where ni = |{s ∈ S | i ∈ s}| is the number of clusters covering
node i. The term f (ni) is local to each node and can be
encoded in qnode. The term g(|s|) is local to each cluster and
can therefore be encoded in qclus. The normalizing constant Z

depends only on V , and so it can be encoded in qgraph.
If we take f (ni) = 1[ni = 1] and g(|s|) = (|s| − 1)!, then

the prior on S is exactly a Chinese restaurant process [24]. If we
relax f , then we get a generalization where nodes can belong
to multiple clusters. Another choice is f (ni) = 1[ni = 1] and
g(|s|) = 1. Then the prior on S is the flat prior over partitions,
which is commonly used for hard clustering.

Yet another choice is to put a Poisson prior on either the
number of clusters per node or the number of nodes per cluster.
That is, take f (ni) = λni /(ni!)e−λ for some constant λ or do
the same for g. This parameter allows the user to tune the
number or size of clusters that are expected a priori.

To summarize, we obtain a local quality function of the
form

q(G,C) =
∑
i∈V

log f (|{c ∈ C | i ∈ supp(c)}|)

+
∑
c∈C

log g(|supp(c)|) +
∑
c∈C

∑
i∈supp(c)

log P (hci)

+
∑
i,j∈V

log P (aij | âij ) + κ,

which has four independent parts: a score for a node being
in a certain number of clusters, a score for the size of each
cluster, a prior for each nonzero membership coefficient, and
the likelihood of an edge aij given the âij .

The discrete nature of this quality function makes it harder
to optimize. It is not clear if the multiplicative gradient
algorithm that is commonly employed for NMF [25] can
be adapted to deal with a prior on the support of clusters.
On the other hand, it might become possible to use discrete

D1

D2

C

FIG. 5. (Color online) Two possible clusterings in a subgraph of
a ring of cliques. In the first clustering (D1, blue), the two cliques are
in separate clusters, and there is a third cluster for the edge between
them. In the second clustering (D2, red) two cliques are put into a
single cluster. A third possibility is to include the middle edge in a
cluster together with one of the two cliques. A clustering of this entire
subgraph will also include two clusters covering the connecting edges
(C, dotted).

optimization methods, such as the successful Louvain method
used for modularity maximization.

B. Analysis of the quality functions on two types of graphs

We will now investigate the local quality function proposed
in the previous section.

First consider the original resolution limit model [5], which
consists of a ring of cliques. Two possible clusterings of a part
of such a ring are illustrated in Fig. 5.

If a quality function is local, then we know that if D1 � C is
a better clustering than D2 � C in this subgraph, then D1 will
also be better than D2 as part of a larger graph. In other words,
if the cliques are clustered correctly in a small ring, then this
is true regardless of the number of cliques in the ring (unless
a clustering with very large clusters is suddenly better).

We have performed experiments with the prior from the
previous section to see what the optimal clustering will be in
practice. We use a Poisson likelihood, a half normal prior on the
supported membership coefficients (with precision β = 1), a
Poisson prior on the number of clusters-per-node (with λ = 1),
and a flat prior on the number of nodes per cluster. To find
the optimal clustering we use a general purpose optimization
method, combined with a search over the possible supports of
the clusters.

Figure 6 shows that, as expected, the optimal solution is
always to have one cluster per clique when using the local
quality function. For comparison we also looked at the simpler
nonlocal NMF method without a prior on the support. In that
case the optimal solution depends strongly on the prior on
membership coefficients β. If β is small, then there is a penalty
for every zero in the membership matrix and hence a penalty on
the number of clusters that increases with the number of nodes.
If β is large enough, then the probability density p(0) > 1,
and this penalty becomes a “bonus.” In that case adding even
an empty cluster would improve the quality, and the optimal
clustering has an infinite number of clusters.
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FIG. 6. (Color online) Optimal cluster size (average number of
cliques per cluster) in a ring of n 5-cliques, when varying the number
n of cliques.

The method of Psorakis et al. has the same resolution
limit problem but to an even larger extent. To automatically
determine the number of clusters, this method keeps the actual
number of clusters fixed to a large upper bound, for which the
authors take the number of nodes. This means that there are
very many clusters which will be empty in the optimal solution.
For these empty clusters, the parameter βc becomes very large.
And as said in the previous paragraph, this results in a bonus
for empty clusters. Hence the method will tend to maximize
the number of empty clusters, which results in a few large
clusters actually containing the nodes. For this experiment
we used the prior βc ∼ Gamma(5,2), as is also done in the
code provided by Psorakis et al. Note that the jaggedness in
the plot is due to the fact a ring of n cliques cannot always be
divided evenly into m clusters of equal size. Between 24 and
50 cliques, the optimal number of clusters is always 8 or 9.

Figure 7 shows the influence of the parameter λ of the
Poisson prior that we put on the number of clusters per node.
When λ becomes smaller, it becomes a priori more likely for a
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FIG. 7. (Color online) Optimal cluster size (average number of
cliques per cluster) in a ring of 5-cliques, when varying the λ

parameter of the Poisson prior on the number of clusters per node.
The number of cliques in the ring does not matter because of locality.
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FIG. 8. (Color online) Varying the number of within and between
module edges. The modules each have 10 nodes. A Poisson prior on
the number of clusters per node (λ = 1) was used. We consider two
possible clusterings: (a) A solution with three clusters, two clusters
for the two modules and one cluster for the between module edges.
And (b) the solution with a single cluster containing all nodes. The
color in the plot indicates which clustering has a higher quality. In
the dark region, the clustering (a) with three clusters is better. In the
light region, the solution (b) with a single cluster is better. Results
are the average over 10 random graphs with the given number of
edges.

node to be in only a single cluster or, in fact, to be in no cluster
at all. It actually requires a quite strong prior to get two cliques
to merge into one cluster, when using 5-cliques, we need λ to
be smaller than approximately 10−5.

A ring of cliques is not a realistic model of real-world
graphs, since on most graphs the clustering is not as clear-cut
as it is there. The clustering problem can be made harder by
removing edges inside the cliques, which are then no longer
cliques, and better called modules, or by adding more edges
between the modules.

We consider such a generalization, where there are two
modules connected by zero or more edges. We then generated
random modules and random between module edges. The two
modules are either clustered together in one big cluster or
separated. In Fig. 8 we show simulation results of such a
more realistic situation. As we can see, as the number of
between module edges increases, or the number of within
module edges decreases, it becomes more likely to combine
the two modules into one cluster. At the threshold between
the two situations, the number of between module edges is
roughly equal to the number of within module edges. This
matches the notion of a strong community, which is defined by
Radicchi et al. [26] as a set of nodes having more edges inside
the cluster than edges leaving the cluster. A theoretical justi-
fication of these empirical results is beyond the scope of this
work.

VI. CONCLUSION

To our knowledge, this work is the first to investigate
resolution-limit free and local NMF quality functions for graph
clustering. We gave a characterization of a class of good
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(i.e., local) additive quality functions for graph clustering that
provides a modular interpretation of NMF for graph clustering.
The definitions of locality and of additive quality functions
are general and can also be applied to other soft clustering
methods. We proposed the class of local probabilistic NMF
quality functions. The design and assessment of efficient
algorithms for optimizing these quality functions remains to
be investigated.

Results of this paper provide novel insights on NMF for
hard clustering, on the resolution limit of Bayesian NMF for

soft clustering, and on the beneficial role of a local prior in
probabilistic formulations of NMF.

ACKNOWLEDGMENTS

We thank the anonymous reviewer for their comments.
This work has been partially funded by the Netherlands
Organization for Scientific Research (NWO) within the NWO
Projects No. 612.066.927 and No. 612.001.352.

[1] S. E. Schaeffer, Comput. Sci. Rev. 1, 27 (2007).
[2] S. Fortunato, Phys. Rep. 486, 75 (2010).
[3] M. Ackerman and S. Ben-David, in NIPS, edited by D. Koller,

D. Schuurmans, Y. Bengio, and L. Bottou (Curran Associates,
Inc., Red Hook, NY, 2008), pp. 121–128.

[4] V. A. Traag, P. Van Dooren, and Y. E. Nesterov, Phys. Rev. E
84, 016114 (2011).
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