A measurement of the ratio of the production cross sections for W and Z bosons in association with jets with the ATLAS detector

ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

Received: 27 August 2014 / Accepted: 5 November 2014
© CERN for the benefit of the ATLAS collaboration 2014. This article is published with open access at Springerlink.com

Abstract The ratio of the production cross sections for W and Z bosons in association with jets has been measured in proton–proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is based on the entire 2011 dataset, corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Inclusive and differential cross-section ratios for massive vector bosons decaying to electrons and muons are measured in association with jets with transverse momentum $p_T > 30$ GeV and jet rapidity $|y| < 4.4$. The measurements are compared to next-to-leading-order perturbative QCD calculations and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.

1 Introduction

Precise measurements of the production of vector bosons in association with jets are important tests of quantum chromodynamics (QCD) and provide constraints on background processes to Higgs boson studies and to searches for new physics. The measurement of the ratio of $W +$ jets to $Z +$ jets production cross sections, termed R_{jets}, directly probes the difference between the kinematic distributions of the jet system recoiling against the W or Z bosons.

In comparison to separate $W +$ jets and $Z +$ jets cross section measurements, the R_{jets} measurement is a more precise test of perturbative QCD (pQCD), since some experimental uncertainties and effects from non-perturbative processes, such as hadronization and multi-parton interactions, are greatly reduced in the ratio. This allows precise comparisons with state-of-the-art Monte Carlo simulations and next-to-leading-order (NLO) perturbative QCD calculations to be made.

At low energies, the difference in vector-boson masses translates to a change in momentum transfer between incoming partons and thus different hadronic radiation patterns. In addition, the parton distribution functions of the proton (PDFs) imply different quark–gluon and quark–antiquark contributions to $W +$ jets and $Z +$ jets processes.

At very high energies, the vector-boson mass difference is not large relative to the momentum transfer, so differences between $W +$ jets and $Z +$ jets production are expected to decrease, even though some differences in the parton distribution functions remain. A precise measurement of R_{jets} can therefore be used, in the context of searches for new particles or interactions beyond the Standard Model, to infer the $W +$ jets contribution, given $Z +$ jets production in the same phase space, or vice versa. The R_{jets} measurement may also be sensitive to direct contributions from new particle production, if the new particles decay via W or Z bosons [1]. New physics phenomena are generally expected to appear in various topologies with high-momentum jets or high jet multiplicities, highlighting the importance of studying QCD effects in those regions of phase space.

The ATLAS collaboration performed the first measurement of R_{jets} as a function of the jet transverse momentum in events with exactly one jet in proton–proton collisions at $\sqrt{s} = 7$ TeV, using a data sample corresponding to an integrated luminosity of 33 pb$^{-1}$ [2]. This result demonstrated that the precision obtained in such a measurement is sufficient to be sensitive to the QCD effects mentioned above. The CMS collaboration performed an R_{jets} measurement of the jet multiplicity in vector-boson production with up to four associated jets, based on a similar dataset corresponding to an integrated luminosity of 36 pb$^{-1}$ in pp collisions collected at $\sqrt{s} = 7$ TeV [3]. The results reported in this paper are based on a dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$, collected with the ATLAS detector during the 2011 pp collision run of the LHC at $\sqrt{s} = 7$ TeV. This dataset is over a hundred times larger than the one used in previously published results, allowing improved precision.
Table 1 | Particle-level phase space of the present \(R_{\text{jets}} \) measurement

| \(\text{Lepton} \) \(p_T \) and pseudorapidity \(\eta \) | \(p_T > 25 \text{ GeV}, |\eta| < 2.5 \)
| \(W \) transverse mass and neutrino \(p_T \) | \(m_W > 40 \text{ GeV}, p_T > 25 \text{ GeV} \)
| \(Z \) invariant mass and lepton–lepton angular separation | \(66 < m_\ell\ell < 116 \text{ GeV}, \Delta R_\ell\ell > 0.2 \)
| \(\text{Jet} \) \(p_T \), rapidity and jet–lepton angular separation | \(p_T > 30 \text{ GeV}, |\eta| < 4.4, \Delta R_\ell = 0.5 \)

over a much larger region of phase space as well as the study of previously inaccessible differential distributions.

The \(R_{\text{jets}} \) measurement is done for the electron and muon decay channels of the \(W \) and \(Z \) bosons for jets with transverse momentum \(p_T > 30 \text{ GeV} \) and rapidity \(|\eta| < 4.4 \).\(^2\) The measurements of the electron and muon channels are performed in slightly different phase spaces and combined in a common phase space defined in terms of the \(p_T \) and pseudorapidity \(\eta \) of the leptons, the invariant mass of the \(Z \) boson, the angular separation between the two leptons\(^3\) of the \(Z \) boson decay, and the transverse mass\(^4\) of the \(W \) boson, as presented in Table 1. The \(W \) and \(Z \) selections are based on the \(W + \text{jets} \) and \(Z + \text{jets} \) cross-section measurements detailed in Ref. [4,5], with a minor update in the \(Z \) selection to further reduce the uncertainty on the \(R_{\text{jets}} \) measurement. In the results reported here, \(R_{\text{jets}} \) is measured as a function of the inclusive and exclusive jet multiplicity (\(N_{\text{jets}} \)) up to four jets. An extensive set of differential measurements is also presented, in which \(R_{\text{jets}} \) is measured as a function of the transverse momentum and the rapidity of the leading jet, which is the one with largest transverse momentum, in events with at least one jet. The ratio \(R_{\text{jets}} \) is also presented as a function of the transverse momentum and rapidity of the second and third leading jets in events with at least two or three jets respectively. A set of differential measurements as a function of dijet observables in events with at least two jets is presented. The measurement of \(R_{\text{jets}} \) as a function of the summed scalar \(p_T \) of the jets (\(S_T \)) for different jet multiplicities is also reported. The results are compared to several Monte Carlo generators and with next-to-leading-order pQCD predictions corrected for non-perturbative effects.

The paper is organized as follows. The experimental setup is described in Sect. 2. Section 3 provides details on the simulations used in the measurement, and Sect. 4 discusses the event selection. The estimation of background contributions is described in Sect. 5, and the procedure used to correct the measurements for detector effects is described in Sect. 6. The treatment of the systematic uncertainties is described in Sect. 7. Section 8 discusses the combination of the electron and muon results. Section 9 provides details on the NLO pQCD predictions. Finally, Sect. 10 discusses the results, and Sect. 11 presents the conclusions.

2 The ATLAS detector

The ATLAS detector [6] is a multi-purpose detector with a symmetric cylindrical geometry and nearly \(4\pi \) coverage in solid angle. The collision point is surrounded by inner tracking devices followed by a superconducting solenoid providing a 2 T magnetic field, a calorimeter system, and a muon spectrometer. The inner tracker provides precision tracking of charged particles for pseudorapidities \(|\eta| < 2.5 \). It consists of silicon pixel and microstrip detectors and a straw-tube transition radiation tracker. The calorimeter system has liquid argon (LAr) or scintillator tiles as active media. In the pseudorapidity region \(|\eta| < 3.2 \), high-granularity LAr electromagnetic (EM) sampling calorimeters are used. An iron/scintillator tile calorimeter provides hadronic coverage for \(|\eta| < 1.7 \). The endcap and forward regions, spanning \(1.5 < |\eta| < 4.9 \), are instrumented with LAr calorimeters for both the EM and hadronic measurements. The muon spectrometer consists of three large superconducting toroids, each comprising eight coils, and a system of trigger chambers and precision tracking chambers that provide triggering and tracking capabilities in the ranges \(|\eta| < 2.4 \) and \(|\eta| < 2.7 \) respectively.

The ATLAS trigger system uses three consecutive levels. The Level-1 triggers are hardware-based and use coarse detector information to identify regions of interest, whereas the Level-2 triggers are based on fast online data reconstruction algorithms. Finally, the Event Filter triggers use offline data reconstruction algorithms.

3 Monte Carlo simulation

Simulated event samples were used to correct the measured distributions for detector effects and acceptance, to determine some background contributions and to correct theory calculations for non-perturbative effects. Signal samples...
of $W(\to \ell\nu) + \text{jets}$ and $Z(\to \ell\ell) + \text{jets}$ (where $\ell = e, \mu$) events were generated with ALPGEN v2.13 [7], with up to five additional partons in the final state. It was interfaced to HERWIG v6.520 [8] for parton showering and fragmentation, with JIMMY v4.31 [9] for contributions from multi-parton interactions and with PHOTOS [10] to calculate final-state QED radiation. The CTEQ6L1 [11] PDFs were used with the AUET2-CTEQ6L1 tune [12], a set of specific non-perturbative event generation parameter values. Similar samples were produced with ALPGEN v2.14 interfaced to PYTHIA v6.425 [13] using the PERUGIA2011C [14] tune and PHOTOS. They were used to estimate the uncertainties on non-perturbative corrections for parton-level NLO pQCD predictions. An additional set of signal samples was generated with SHERPA v1.4.1 [15,16] and CT10 PDFs [17]. Top quark pair production ($t\bar{t}$) was simulated with ALPGEN v2.13 [7], with up to five additional partons in the final state. It was interfaced to PYTHIA v6.425, following the distribution of the average pp interactions in the selected data. The samples were then passed through the simulation of the ATLAS detector based on GEANT4 [21,22] and through the related trigger simulation.

All samples were normalized to the inclusive cross section calculated at the highest pQCD order available. The $W/Z + \text{jets}$ signal samples were normalized to the next-to-next-to-leading-order (NNLO) pQCD inclusive Drell–Yan predictions calculated with the FEWZ [23] program and the MSTW2008 NNLO PDFs [24]. The $t\bar{t}$ samples were normalized to the cross section calculated at NNLO+NNLL in Refs. [25–30], and the diboson samples were normalized to cross sections calculated at NLO using MCFM [31] with the MSTW2008 PDF set.

The simulated events were reconstructed and analysed with the same analysis chain as the data. Scale factors were applied to the simulated samples to correct the lepton trigger, reconstruction, and identification efficiencies to match those measured in data.

4 Event selection

The data samples considered in this paper correspond to a total integrated luminosity of 4.6 fb$^{-1}$, with an uncertainty of 1.8 % [32]. Table 2 summarizes the kinematic requirements for leptons, W bosons, Z bosons, and jets. The selection criteria for W boson candidates were defined using the largest possible coverage of the ATLAS detector for electrons, muons and jets. The selection criteria for Z boson candidates were modified with respect to those in Ref. [5], to be as similar as possible to the W boson selection in order to maximize the cancellation of uncertainties in the R_{jets} measurement: trig-

| Table 2: Kinematic event selection criteria for $W(\to \ell\nu) + \text{jets}$ and $Z(\to \ell\ell) + \text{jets}$ event samples |
|---------------------------------|-----------------|-----------------|
| **Lepton p_T** | $p_T > 25 \text{ GeV}$ | $p_T > 25 \text{ GeV}$ |
| **Lepton pseudorapidity** | $|\eta| < 2.47$ (excluding $1.37 < |\eta| < 1.52$) | $|\eta| < 2.4$ |
| **Missing transverse momentum** | $E_T^{\text{miss}} > 25 \text{ GeV}$ | $E_T^{\text{miss}} > 25 \text{ GeV}$ |
| **Transverse mass** | $m_T > 40 \text{ GeV}$ | $m_T > 40 \text{ GeV}$ |
| **$Z \to \ell\nu$ event selection** | Exactly one selected lepton | $Z \to \ell\ell$ event selection |
| **Charge** | Opposite sign | Opposite sign |
| **Invariant mass** | $66 < m_{\ell\ell} < 116 \text{ GeV}$ | $66 < m_{\ell\ell} < 116 \text{ GeV}$ |
| **Separation** | $\Delta R_{\ell\ell} > 0.2$ | $\Delta R_{\ell\ell} > 0.2$ |
| **Jet selection** | | |
| **Transverse momentum** | $p_T > 30 \text{ GeV}$ | $p_T > 30 \text{ GeV}$ |
| **Jet rapidity** | $|y| < 4.4$ | $|y| < 4.4$ |
| **Jet–lepton angular separation** | $\Delta R_{ij} > 0.5$ | $\Delta R_{ij} > 0.5$ |
gers requiring at least one lepton were employed, the minimum lepton transverse momentum was raised from 20 GeV to 25 GeV, tighter criteria were used to identify electrons and slightly looser requirements were placed on the second leading lepton with respect to the leading one.

The data were collected using single-electron or single-muon triggers, employing the same requirements for the W and Z data selections. Electron-channel events were selected using a trigger that required the presence of at least one electron candidate, formed by an energy cluster consistent with an electromagnetic shower in the calorimeter and associated to an inner detector track. Electron candidates were required to have a reconstructed transverse energy above 20 GeV or 22 GeV, depending on the trigger configuration of the different data periods. Muon-channel events were recorded using a trigger that required the presence of at least one muon candidate with transverse momentum above 18 GeV. Lepton trigger thresholds were low enough to ensure that leptons with $p_T > 25$ GeV lie on the trigger efficiency plateau.

Events were required to have a primary vertex, defined as the vertex in the event with the highest summed p_T^2 of all associated tracks, among vertices with at least three tracks.

Electrons were reconstructed by matching clusters of energy found in the electromagnetic calorimeter to tracks reconstructed in the inner detector. Candidate electrons had to satisfy the “tight” quality requirements defined in Ref. [33], which include requirements on the calorimeter shower shape, track quality, and association of the track with the energy cluster found in the calorimeter. Electron candidates had to have $p_T > 25$ GeV and $|\eta| < 2.47$, where the transition region between barrel and endcap electromagnetic calorimeter sections at $1.37 < |\eta| < 1.52$ was excluded.

Muons were reconstructed from track segments in the muon spectrometer that were matched with tracks in the inner detector [34], and were required to have $p_T > 25$ GeV and $|\eta| < 2.4$. To suppress particles from hadron decays, the leading muon had to be consistent with originating from the primary vertex by requiring $|d_0/\sigma(d_0)| < 3.0$, where d_0 is the transverse impact parameter of the muon and $\sigma(d_0)$ is its uncertainty.

In order to suppress background from multi-jet events where a jet is misidentified as a lepton, the leading lepton was required to be isolated. An additional p_T- and η-dependent requirement on a combination of calorimeter and track isolation variables was applied to the leading electron, in order to yield a constant efficiency across different momentum ranges and detector regions, as detailed in Ref. [35]. The track-based isolation uses a cone size of $\Delta R = 0.4$ and the calorimeter-based isolation uses a cone size of $\Delta R = 0.2$. The actual isolation requirements range between 2.5 GeV and 4.5 GeV for the calorimeter-based isolation and between 2.0 GeV and 3.0 GeV for the track-based isolation. For muon candidates, the scalar sum of the transverse momenta of tracks within a cone of size $\Delta R = 0.2$ around the leading muon had to be less than 10% of its transverse momentum.

Reconstructed W candidates were required to have exactly one selected lepton. The missing transverse momentum in the event had to have a magnitude E_T^{miss} greater than 25 GeV, and the transverse mass m_T had to be greater than 40 GeV. The magnitude and azimuthal direction of the missing transverse momentum are measured from the vector sum of the transverse momenta of calibrated physics objects and additional soft calorimeter deposits [36]. Reconstructed Z candidates were required to have exactly two selected leptons of the same flavour with opposite charge. Their invariant mass $m_{\ell\ell}$ had to be in the range $66 \leq m_{\ell\ell} \leq 116$ GeV and the leptons had to be separated by $\Delta R_{\ell\ell} > 0.2$.

Jets were reconstructed using the anti-k_t algorithm [37] with a distance parameter $R = 0.4$ on topological clusters of energy in the calorimeters [38]. Jets were required to have a transverse momentum above 30 GeV and a rapidity of $|y| < 4.4$. Jets within $\Delta R = 0.5$ of a selected lepton were removed. The energy and the direction of reconstructed jets were corrected to account for the point of origin, assumed to be the primary vertex, and for the bias introduced by the presence of additional pp interactions in the same bunch crossing (“pile-up”). The jet energy was then calibrated to account for the different response of the calorimeters to electrons and hadrons and for energy losses in un-instrumented regions by applying correction factors derived from simulations. A final calibration, derived from in-situ techniques using Z+jet balance, γ+jet balance and multi-jet balance, was applied to the data to reduce residual differences between data and simulations [39].

In order to reject jets from pile-up, a jet selection was applied based on the ratio of the summed scalar p_T of tracks originating from the primary vertex and associated with the jet to the summed p_T of all tracks associated with the jet. Jets were selected if this ratio was above 0.75. This criterion was applied to jets within $|\eta| < 2.4$, so that they are inside the inner tracker acceptance. Comparison between data and simulation for various data periods confirmed that the residual impact of pile-up on the distribution of the jet observables in this analysis is well modelled by the simulation.

The numbers of W + jets and Z + jets candidate events in the electron and muon channels for each jet multiplicity are shown in Tables 3 and 4, together with the corresponding numbers of predicted events. The expected fraction of predicted events from signal and each background source, determined as described in the next section, is also shown.

5 Background estimation

Background processes to W and Z boson production associated with jets can be classified into three categories. The
Table 3

The contribution of signal and background from various sources, expressed as a fraction of the total number of expected events for the \(W(\rightarrow e\nu) + \text{jets} \) and \(Z(\rightarrow ee) + \text{jets} \) selection as a function of jet multiplicity \(N_{\text{jets}} \) together with the total numbers of expected and observed events.

<table>
<thead>
<tr>
<th>(N_{\text{jets}})</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction [%]</td>
<td>(W(\rightarrow e\nu) + \text{jets})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W \rightarrow e\nu)</td>
<td>94</td>
<td>78</td>
<td>73</td>
<td>58</td>
<td>37</td>
</tr>
<tr>
<td>(Z \rightarrow ee)</td>
<td>0.30</td>
<td>7.5</td>
<td>6.6</td>
<td>6.8</td>
<td>5.4</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>< 0.1</td>
<td>0.30</td>
<td>3.4</td>
<td>18</td>
<td>46</td>
</tr>
<tr>
<td>Multi-jet</td>
<td>4</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>6.9</td>
</tr>
<tr>
<td>Electroweak (without (Z \rightarrow ee))</td>
<td>1.9</td>
<td>2.6</td>
<td>3.3</td>
<td>3</td>
<td>1.9</td>
</tr>
<tr>
<td>Single top</td>
<td>< 0.1</td>
<td>0.30</td>
<td>1.7</td>
<td>3.5</td>
<td>3.9</td>
</tr>
<tr>
<td>Total predicted</td>
<td>11 100 000 ± 640 000</td>
<td>1 510 000 ± 99 000</td>
<td>354 000 ± 23 000</td>
<td>89 500 ± 5600</td>
<td>28 200 ± 1400</td>
</tr>
<tr>
<td>Data observed</td>
<td>10 878 398</td>
<td>1 548 000</td>
<td>361 957</td>
<td>91 212</td>
<td>28 076</td>
</tr>
</tbody>
</table>

Fraction [\%]	\(Z(\rightarrow ee) + \text{jets} \)				
\(Z \rightarrow ee \)	100	99	96	93	90
\(W \rightarrow e\nu \)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
\(t\bar{t} \)	< 0.1	0.20	1.9	4.6	7.8
Multi-jet	0.20	0.20	0.40	0.50	0.50
Electroweak (without \(W \rightarrow e\nu \))	0.10	0.50	1.3	1.4	1.2
Single top	< 0.1	0.10	0.10	0.20	0.10
Total predicted	754 000 ± 47 000	96 500 ± 6900	22 100 ± 1700	4700 ± 930	1010 ± 93
Data observed	761 280	99 991	22 471	4729	1050

Table 4

The contribution of signal and background from various sources, expressed as a fraction of the total number of expected events for the \(W(\rightarrow \mu\nu) + \text{jets} \) and \(Z(\rightarrow \mu\mu) + \text{jets} \) selection as a function of jet multiplicity \(N_{\text{jets}} \) together with the total numbers of expected and observed events.

<table>
<thead>
<tr>
<th>(N_{\text{jets}})</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction [%]</td>
<td>(W(\rightarrow \mu\nu) + \text{jets})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W \rightarrow \mu\nu)</td>
<td>93</td>
<td>82</td>
<td>78</td>
<td>62</td>
<td>40</td>
</tr>
<tr>
<td>(Z \rightarrow \mu\mu)</td>
<td>3.4</td>
<td>3.5</td>
<td>3.5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>< 0.1</td>
<td>0.20</td>
<td>3.1</td>
<td>19</td>
<td>46</td>
</tr>
<tr>
<td>Multi-jet</td>
<td>1.5</td>
<td>11</td>
<td>10</td>
<td>9.5</td>
<td>6.8</td>
</tr>
<tr>
<td>Electroweak (without (Z \rightarrow \mu\mu))</td>
<td>1.9</td>
<td>2.7</td>
<td>3.4</td>
<td>2.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Single top</td>
<td>< 0.1</td>
<td>0.20</td>
<td>1.7</td>
<td>3.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Total predicted</td>
<td>13 300 000 ± 770 000</td>
<td>1 710 000 ± 100 000</td>
<td>384 000 ± 24 000</td>
<td>96 700 ± 6100</td>
<td>30 100 ± 1600</td>
</tr>
<tr>
<td>Data observed</td>
<td>13 414 400</td>
<td>1 758 239</td>
<td>403 146</td>
<td>99 749</td>
<td>30 400</td>
</tr>
</tbody>
</table>

Fraction [\%]	\(Z(\rightarrow \mu\mu) + \text{jets} \)				
\(Z \rightarrow \mu\mu \)	100	99	96	91	84
\(W \rightarrow \mu\nu \)	< 0.1	0.10	0.10	0.20	0.20
\(t\bar{t} \)	< 0.1	0.30	2.2	6.1	13
Multi-jet	0.30	0.50	0.90	1.1	1.7
Electroweak (without \(W \rightarrow \mu\nu \))	0.10	0.50	1.3	1.4	1.1
Single top	< 0.1	< 0.1	0.10	0.20	0.20
Total predicted	1 300 000 ± 79 000	168 000 ± 12 000	37 800 ± 2800	8100 ± 6600	1750 ± 1600
Data observed	1 302 010	171 200	38 618	8397	1864
first category, referred to as electroweak background, consists of diboson production, vector-boson production with subsequent decay to τ-leptons, and “cross-talk” background, in which the signal $W + j$ (Z + j) production appears as background in the Z + j (W + j) sample. These background contributions are relatively small (about 10% in the W + j electron channel, about 6% in the W + j muon channel, and about 1% in Z + j, as shown in Tables 3 and 4) and were thus estimated using simulated event samples.

The second category consists of events where the leptons are produced in decays of top quarks. The $t\bar{t}$ component completely dominates the background contribution to W + j events at high jet multiplicities, amounting to approximately 20% of the sample with W + j \geq 3 jets and increasing to approximately 45% for events with four selected jets. The effect is less dramatic in Z + j events, where the $t\bar{t}$ background contributes about 5% to the sample of events with Z + j \geq 3 jets and about 10% to the sample with four jets. The background contribution from single top-quark production is about 4% of the sample in W + j events for events with three or four jets, and smaller at lower jet multiplicities. This contribution is even smaller in Z + j events. Contributions from $t\bar{t}$ events to W + j candidates with at least three jets, where this background dominates, were estimated with a data-driven method as described below in order to reduce the overall uncertainty. The $t\bar{t}$ contributions to W + j candidates with fewer than three jets and to Z + j events were estimated using simulated event samples, as are the contributions from single top quarks.

The third category of background, referred to as multijet background, comes from events in which hadrons mimic the signature of an isolated lepton. In the electron channel this includes photon conversion processes, typically from the decay of neutral pions, narrow hadronic jets and real electrons from the decay of heavy-flavour hadrons. In the muon channel, the multi-jet background is primarily composed of heavy-flavour hadron decay processes. This background category dominates at low jet multiplicity in W + j events, amounting to 11% of the selected sample in both the electron and muon channels for events with one jet. Data-driven techniques were used to estimate the background contribution to both the W + j and Z + j candidate events, as described below. The methods employed to estimate background contributions with data-driven techniques in this analysis are very similar between candidate events with W bosons and Z bosons and between electron and muon channels.

5.1 $t\bar{t}$ background

The $t\bar{t}$ background is the dominant background contribution to W + j events with at least three jets, since each top quark predominantly decays as $t \rightarrow Wb$. The size of the $t\bar{t}$ contribution was estimated with a maximum-likelihood fit to the data.

The $t\bar{t}$ template in this fit was derived from a top–quark-enhanced data sample by requiring, in addition to the selection criteria given in Table 2, at least one b-tagged jet in the event, as determined by the MV1 b-tagging algorithm of Ref. [40]. The chosen MV1 algorithm working point has a b-tagging efficiency of 70%. This data sample is contaminated with W signal events and electroweak and multi-jet backgrounds, amounting to about 40% in events with three jets and 25% in events with four jets. The contribution from W signal events and electroweak background was estimated using simulation. The multi-jet contribution to the top-enriched sample was estimated using the multi-jet background estimation method as outlined in the last part of this section, but with an additional b-tagging requirement. Potential biases in the $t\bar{t}$ templates extracted from data were investigated using simulated $t\bar{t}$ events. Since b-tagging is only available for jets within $|\eta| < 2.4$ where information from the tracking detectors exists, the b-tagging selection biases some of the kinematic distributions, most notably the jet rapidity distribution. To account for this, ALPGEN $t\bar{t}$ simulations were used to correct for any residual bias in the differential distributions; the maximum correction is 30%.

The number of $t\bar{t}$ events was extracted by fitting a discriminant distribution to the sum of three templates: the top-enriched template after subtracting the contaminations discussed above, the multi-jet template (determined as described above) and the template obtained from simulation of the W + j signal and the other background sources. The chosen discriminant was the transformed aplanarity, given by $\exp(-8A)$, where A is the aplanarity defined as 1.5 times the smallest eigenvalue of the normalized momentum tensor of the leptons and all the jets passing the selection [41]. This discriminant provides the best separation between $t\bar{t}$ and the W + j signal. The fit to the transformed aplanarity distribution was done in the range 0.0–0.85 in each exclusive jet multiplicity of three or more.

Since the top-enriched sample is a sub-sample of the signal sample, statistical correlation between the two samples is expected. Its size was estimated using pseudo-datasets by performing Poisson variations of the signal and top-enriched samples. To account for this correlation, the uncertainty on the fit was increased by 15% for events with three jets and about 30% for events with four jets.

5.2 Multi-jet background

The multi-jet background contribution to the W + j selected events was estimated with a template fit method using a sample enriched in multi-jet events. The templates of the multi-jet background for the fit were extracted from data, by modifying the lepton isolation requirements in both the
The evaluation of the systematic uncertainties for each background source is explained in Sect. 7.
Fig. 1 The ratio of $W + \text{jets}$ and $Z + \text{jets}$ production cross sections, R_{jets}, as a function of exclusive jet multiplicity, N_{jets}, (left) and inclusive jet multiplicity (right). The electron and muon channel measurements are combined as described in the text. Ratios of the BLACKHAT+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bars show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BLACKHAT+SHERPA prediction.

6 Corrections for detector effects

The signal event yields were determined by subtracting the estimated background contributions from the data. After background subtraction, the resulting distributions were corrected for detector effects such that distributions at particle level were obtained. The correction procedure based on simulated samples corrects for jet, W and Z selection efficiency, resolution effects and residual mis-calibrations. While $W + \text{jets}$ and $Z + \text{jets}$ events were separately corrected before forming R_{jets}, the systematic uncertainties were estimated for the ratio itself, as explained in the next section.

At particle level, the lepton kinematic variables in the MC-generated samples were computed using final-state leptons from the W or Z boson decay. Photons radiated by the boson decay products within a cone of size $\Delta R = 0.1$ around the direction of a final-state lepton were added to the lepton, and the sum is referred to as the “dressed” lepton. Particle-level jets were identified by applying the anti-k_t algorithm with $R = 0.4$ to all final-state particles with a lifetime longer than 28.6 μs.
than 30 ps, whether produced directly in the proton–proton collision or from the decay of particles with shorter lifetimes. Neutrinos, electrons, and muons from decays of the W and Z bosons, as well as collinear photons included in the “lepton dressing procedure” were excluded by the jet reconstruction algorithm. The phase-space requirements match the selection criteria defining the data candidate events, as presented in the text. Ratios of the ALPGEN and SHERPA generators to the data are shown in the lower panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BLACKHAT+SHERPA prediction.

7 Systematic uncertainties

One of the advantages of measuring R_{jets} is that systematic uncertainties that are positively correlated between the numerator and denominator cancel at the level of their correlations (higher correlations result in larger cancellations). The impact on the ratio of a given source of uncertainty was estimated by simultaneously applying the systematic variation due to this source to both the W + jets and Z + jets events and repeating the full measurement chain with the systematic variations applied. This included re-estimating the data-driven background distributions after the variations had been applied.
Since the uncertainties were found to be symmetric within the statistical fluctuations, the resulting systematic uncertainties on the R_{jets} measurements were fully symmetrized by taking the average value of the upwards and downwards variations.

Uncertainty sources affecting the R_{jets} measurements can be assigned to one of the following categories: jet measurements, lepton measurements, missing transverse momentum measurement, unfolding procedure, data-driven background estimates and simulation-based background estimates. These sources of uncertainty feature significant correlations between W + jets and Z + jets processes, which have been fully accounted for as explained above. The systematic uncertainties on the $t\bar{t}$ and multi-jet background estimates were considered to be uncorrelated between the W + jets and Z + jets selections. The uncertainty on the integrated luminosity was propagated through all of the background calculations and treated as correlated between W + jets and Z + jets so that it largely cancels in the ratio. The contributions from each of the sources mentioned above and the total systematic uncertainties were obtained by adding in quadrature the different components, and are summarized in Table 5. The total uncertainty on R_{jets} as a function of the inclusive jet multiplicity ranges from 4% for $N_{\text{jets}} \geq 1$ to 18% for $N_{\text{jets}} \geq 4$ in the electron channel and from 3% for $N_{\text{jets}} \geq 1$ to 13% for $N_{\text{jets}} \geq 4$ in the muon channel.

Jet-related systematic uncertainties are dominated by the uncertainty on the jet energy scale (JES) and resolution (JER). The JES uncertainty was derived via in-situ calibration techniques, such as the transverse momentum balance in Z + jets, multi-jet and γ -jet events, for which a comparison between data and simulation was performed [39]. The JER uncertainty was derived from a comparison of the resolution measured in dijet data events using the bisector method [38], and the same approach was applied to simulated dijet events. The JER and JES uncertainties are highly correlated between W + jets and Z + jets observables and are thus largely suppressed compared to the individual measurements. They are nevertheless the dominant systematic uncertainties in the cases where there are one or two jets in the events. The cancellation is not perfect because any changes in JES and JER are consistently propagated to the E_T^{miss} measurement event-by-event. This causes larger associated migrations for the W selection than for the Z selection. In addition, the level of
Fig. 4 The ratio of W + jets and Z + jets production cross sections, R_{jets}, normalized as described in the text versus the second-leading-jet transverse momentum, p_T^2, for $N_{\text{jets}} \geq 2$ (left) and versus the third-leading-jet p_T for $N_{\text{jets}} \geq 3$ (right). The electron and muon channel measurements are combined as described in the text. Ratios of the BLACKHAT+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical and theoretical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BLACKHAT+SHERPA prediction.

The background in the W + jets sample is larger, resulting in a larger jet uncertainty compared to the Z + jets selection. The sum of JER and JES uncertainties on the R_{jets} measurement ranges from 3 % to 8 % in the electron channel and from 2 % to 5 % in the muon channel as N_{jets} ranges from 1 to 4. The difference between the two channels is due to the fact that the $Z \rightarrow e\mu$ background in the $W \rightarrow e\mu$ sample is much larger than the corresponding $Z \rightarrow e\mu$ background in the $W \rightarrow \mu\nu$ sample, being about 1 % for candidate events with one jet in the electron channel compared to 3 % in the muon channel. The $Z \rightarrow e\mu$ background contaminates the $W \rightarrow e\mu$ sample because one electron can be misidentified as a jet, contributing to the JES and JER uncertainties. This contribution to the uncertainties does not cancel in R_{jets}.

The uncertainty on the electron and muon selections includes uncertainties on the electron energy or muon momentum scale and resolution, as well as uncertainties on the scale factors applied to the simulations in order to match the electron or muon trigger, reconstruction and identification efficiencies to those in data. Any changes in lepton energy scale and resolution were consistently propagated to the E_T^{miss} measurement. The energy- or momentum-scale corrections of the leptons were obtained from comparison of the Z-boson invariant mass distribution between data and simulations. The uncertainties on the scale factors have been derived from a comparison of tag-and-probe results in data and simulations [33, 34]. Each of these sources of uncertainty is relatively small in the R_{jets} measurement (about 1 % for N_{jets} ranging from 1 to 4 in both channels).

The uncertainties in E_T^{miss} due to uncertainties in JES, JER, lepton energy scale and resolution were included in the values quoted above. A residual E_T^{miss} uncertainty accounts for uncertainties on the energy measurement of clusters in the calorimeters that are not associated with electrons or jets. It was determined via in-situ measurements and comparisons between data and simulation [43]. These systematic uncertainties affect only the numerator of the ratio because no E_T^{miss} cut was applied to Z + jets candidate events. The resulting uncertainty on the R_{jets} measurement is about 1 % for N_{jets} ranging from 1 to 4 in both channels.

The uncertainty on the unfolding has a component of statistical origin that comes from the limited number of events...
The ratio of $W+$ jets and $Z+$ jets production cross sections, R_{jets}, normalized as described in the text versus the scalar sum p_T of jets, S_T, for $N_{\text{jets}} = 2$ (left) and ≥ 2 (right). The electron and muon channel measurements are combined as described in the text. Ratios of the BLACKHAT+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BLACKHAT+SHERPA prediction.

in eachbin of the Monte Carlo inputs. This component was estimated from the root mean square of R_{jets} measurements obtained in a large set of pseudo-data generated independently from the $W+$ jets and $Z+$ jets Monte Carlo samples used to unfold the data. The Monte Carlo modelling uncertainty in the unfolding procedure was estimated using an alternative set of ALPGEN samples for which the nominal $W+$ jets and $Z+$ jets production was modelled by different theoretical parameter values. The MLM matching procedure [44], employed to remove the double counting of partons produced by the matrix element calculation and partons produced in the parton shower, uses a matching cone of size $R = 0.4$ for matrix element partons of $p_T > 20$ GeV. To determine how the choice of this cone size and the matching p_T scale impact the unfolded results, samples with variations of these parameters were used in the unfolding procedure. In addition, to account for the impact of changing the amount of radiation emitted from hard partons, ALPGEN Monte Carlo samples were generated with the renormalisation and factorisation scales set to half or twice their nominal value of $\sqrt{m_V^2 + p_T^2}$, where V is the W or Z boson depending on the sample. The systematic uncertainty is the sum in quadrature of the differences with respect to the R_{jets} measurement obtained from the nominal samples. The overall uncertainty on the unfolding procedure ranges between 0.6% and 1.4% for N_{jets} ranging from 1 to 4.

For backgrounds estimated using simulation, the uncertainty on the cross-section calculation was taken into account. The combined impact of these uncertainties on the R_{jets} measurement is typically less than 1% for the different jet multiplicities.

For $t\bar{t}$ predictions taken from the ALPGEN sample, the uncertainty on the cross-section calculation is considered, as well as a shape uncertainty by comparing to the POWHEG-BOX $t\bar{t}$ sample. The largest contribution to the total uncertainty from the data-driven $t\bar{t}$ estimate is from the statistical uncertainty on the fit. The systematic uncertainty on the data-driven $t\bar{t}$ estimate also covers uncertainties on the contamination of the background template by signal events, on the choice of fit range and other small uncertainties. The latter include the uncertainties on the b-tagging efficiencies and uncertainties on the bias in the $t\bar{t}$ distributions when applying the b-tagging. The uncertainty on the contribution from $W+$ heavy-flavour events to the $t\bar{t}$ template, modelled
In the evaluation of the multi-jet background systematic uncertainties, various sources were taken into account. For the \(W + \text{jets} \) selection, the uncertainty on the shape of the template distributions of the multi-jet background was studied by varying the lepton isolation requirement and identification definition. The nominal template fit range for \(E_T^{\text{miss}} \) was also varied, within 10 GeV up and down from the nominal limits. The distributions of the signal template were alternatively modelled by SHERPA instead of ALPGEN and the difference was taken as an uncertainty. The statistical uncertainty on the template normalisation factor from the fit was also included. Finally, to evaluate the uncertainty on the estimate of the multi-jet background to the \(W + \text{jets} \) events, the fit ranges and the modelling of the signal and of the electroweak contamination were varied in the same way as for the \(W + \text{jets} \) events. The combined impact of these uncertainties on the \(R_{\text{jets}} \) measurement varies between 2 \% and 6 \% in the electron channel and between 1 \% and 3 \% in the muon channel for \(N_{\text{jets}} \) ranging from 1 to 4.

8 Combination of electron and muon channels

In order to increase the precision of the \(W + \text{jets} \) to \(Z + \text{jets} \) differential cross-section ratio measurements the results obtained for each observable in the electron and the muon channel were combined as described in the text.
channels were statistically combined, accounting for correlations between the sources of systematic uncertainties affecting each channel. Since the electron and muon measurements were performed in different fiducial regions, bin-by-bin correction factors, estimated using ALPGEN Monte Carlo samples, were applied to each measured distribution to extrapolate the measurements to the common phase space defined in Table 1. The corrections to the R_{jets} measurement are of the order of 6% in the electron channel and 1% in the muon channel. The uncertainties on the acceptance corrections are below 0.5%, as determined by using SHERPA instead of ALPGEN. By comparing distributions computed at LO and NLO, it was checked with MCFM that NLO effects on the extrapolation to the common phase space are negligible. Before the combination was performed, the individual results of the two channels were compared to each other after extrapolation; the results are compatible within their respective uncertainties.

The method of combination used is an averaging procedure described in Refs. [45,46]. The distributions for each observable were combined separately by minimising a χ^2 function which takes into account the results in the extrapolated electron and muon channels and all systematic uncertainties on both channels. The uncertainties on the modelling in the unfolding procedure, the integrated luminosity, the background contributions estimated from simulations except for $Z + \text{jets}$ and $W + \text{jets}$ backgrounds and systematic uncertainties on the data-driven $t \bar{t}$ estimation were treated as correlated among bins and between channels. The lepton systematic uncertainties were assumed to be correlated between bins of a given distribution, but uncorrelated between the two lepton channel measurements. The statistical uncertainties of the data, the statistical uncertainty of the unfolding procedure, and the statistical uncertainty of the $t \bar{t}$ fit were treated as uncorrelated among bins and channels. The systematic uncertainties on multi-jet backgrounds, which contain correlated and uncorrelated components, are also treated as uncorrelated among bins and channels. This choice has little impact on the final combined results and was chosen as it is slightly more conservative in terms of the total uncertainty of the combined results. Finally, the uncertainties from the jet energy scale, the jet energy resolution, the $E_{\text{T}}^{\text{miss}}$ calculation and the $Z + \text{jets}$ and $W + \text{jets}$ background contributions were treated as fully correlated between all bins and do not enter

Fig. 7 The ratio of $W + \text{jets}$ and $Z + \text{jets}$ production cross sections, R_{jets}, normalized as described in the text versus the dijet angular separation, $\Delta R_{1,2}$ (left) and the distance in ϕ, $\Delta \phi_{1,2}$, (right) for $N_{\text{jets}} \geq 2$. The electron and muon channel measurements are combined as described in the text. Ratios of the BLACKHAT+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BLACKHAT+SHERPA prediction.
The ratio of $W +$ jets and $Z +$ jets production cross sections, R_{jets}, normalized as described in the text versus the dijet invariant mass, m_{12}, for $N_{\text{jets}} \geq 2$. The electron and muon channel measurements are combined as described in the text. Ratios of the BLACKHAT+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BLACKHAT+SHERPA prediction.

9 Theoretical predictions

The measured distributions of all the observables considered in the analysis are compared at particle level to various pQCD predictions in the phase space defined in Table 1.

Next-to-leading-order pQCD predictions were calculated with BLACKHAT+SHERPA [47–49] at parton level for various parton multiplicities, from zero to four. In this calculation BLACKHAT is used for the computation of the virtual one-loop matrix elements, while SHERPA is used for the real emission part and the phase-space integration. The fixed-order calculation is performed at parton level only, without radiation and hadronization effects. Renormalisation and factorisation scales were evaluated at $H_T/2$, where H_T is defined as the scalar sum of the transverse momenta of all stable particles in each event. The PDF set used was CT10 [17]. Partons were clustered into jets using the anti-k_T algorithm with $R = 0.4$.

The effect of uncertainties on the prediction has been computed for R_{jets}, accounting for correlation between the individual $W +$ jets and $Z +$ jets processes. The uncertainties on the theoretical predictions are significantly reduced in this procedure, with the statistical uncertainty on the samples often dominating.

Uncertainties on the renormalisation and the factorisation scales were evaluated by varying these scales independently to half and twice their nominal value. The PDF uncertainties were computed from the CT10 eigenvectors, derived with the Hessian method at 68 % confidence level [17]. The changes in R_{jets} due to these PDF variations were combined and used as the uncertainty. In addition, the nominal value of the strong coupling constant, $\alpha_s = 0.118$, was varied by ± 0.0012, and the impact of this variation was taken into account in the PDF uncertainty. All the uncertainty components mentioned above were then added in quadrature. The total systematic uncertainty on the prediction ranges from 0.3 % to 1.8 % for inclusive jet multiplicities ranging from one to four, and from 2 % to 6 % for leading-jet p_T ranging from 30 GeV to 700 GeV.

In order to compare the BLACKHAT+SHERPA parton-level predictions with the measurements at particle level, a set of non-perturbative corrections was applied to the predictions. Corrections for the underlying event (UE) were calculated using samples generated with ALPGEN+HERWIG+JIMMY. The ratio of samples where the UE has been switched on and off was evaluated in each bin of each distribution. Corrections for the hadronization of partons to jets were computed using similar samples by forming the ratio of distributions obtained using jets clustered from hadrons versus jets clustered from partons. In R_{jets}, the hadronization and UE corrections have opposite signs and are quite small (typically 2 % to 3 % for the exclusive jet multiplicity), so the overall correction factor is close to unity. Additional ALPGEN+PYTHIA samples were used to estimate the uncertainties due to these non-perturbative corrections, which are typically well below 1 %.

Finally, corrections for QED final-state radiation were calculated as the ratio of R_{jets} derived from “dressed” leptons to R_{jets} defined before any final-state photon radiation, using ALPGEN samples interfaced to PHOTOS. These corrections range between 1 % and 2 % for both the electron and the muon channel. Systematic uncertainties were derived by comparing with corrections obtained using SHERPA, which calculates final-state QED radiation using the YFS method [50].
The theoretical predictions described in Sect. 9 are compared in Sect. 6. Individual ratios of the BLACKHAT+SHERPA, ALPGEN, and SHERPA predictions to unfolded data make it possible to disentangle the important features of each theoretical prediction. The R_{jets} results highlight the ability of these Monte Carlo programs to model the differences between $Z +$ jets and $W +$ jets processes.

10 Results and discussion

The theoretical predictions described in Sect. 9 are compared to the experimental data unfolded to particle level, as defined in Sect. 6. Individual ratios of the BLACKHAT+SHERPA, ALPGEN, and SHERPA predictions to unfolded data make it possible to disentangle the important features of each theoretical prediction. The R_{jets} results highlight the ability of these Monte Carlo programs to model the differences between $Z +$ jets and $W +$ jets processes.

Figure 1 shows R_{jets} as a function of exclusive and inclusive jet multiplicity. The values are detailed in Tables 6 and 7, respectively. The theoretical predictions describe the data fairly well, given the experimental uncertainties, with few exceptions. At high jet multiplicities, where the effects of hard QCD radiation are tested, the SHERPA prediction is about 1.5 standard deviations (1.5σ) of the experimental error greater than the measurement. BLACKHAT+SHERPA is able to describe R_{jets} measured as a function of exclusive jet multiplicity, within the theoretical uncertainties, although it is about 1 standard deviation greater than the measurement at high inclusive jet multiplicities; this is expected since it does not include all contributions for events with at least four jets.

In the following figures, R_{jets} is normalized to the ratio of the W and Z cross sections in the corresponding jet multiplicity bin presented in Fig. 1, so that the shapes of the distributions can be compared. Figure 2 shows the R_{jets} ratio versus the leading-jet p_T for $N_{\text{jets}} = 1$ and $N_{\text{jets}} \geq 1$. At low transverse momentum ($p_T < 200$ GeV), the R_{jets} distribution

5 Tabulated values of the results are also available in the Durham HepData Project: http://hepdata.cedar.ac.uk.
Fig. 10 The ratio of $W + \text{jets}$ and $Z + \text{jets}$ production cross sections, R_{jets}, normalized as described in the text versus the third-leading-jet rapidity, y_j, for $N_{\text{jets}} \geq 3$. The electron and muon channel measurements are combined as described in the text. Ratios of the BLACKHAT+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BLACKHAT+SHERPA prediction.

falls as the leading-jet p_T increases, indicating that the shapes in $W + \text{jets}$ and $Z + \text{jets}$ events are different. This is due to the W and Z boson mass difference, which affects the scale of the parton radiation, and the different vector-boson polarizations, which affect the kinematics of their decay products. In the small region very close to the minimum value of the jet p_T considered in the analysis, where radiative parton shower effects play a major role, all of the predicted shapes exhibit trends different from those in the data, but the ALPGEN predictions still show the best agreement.

Figure 3 shows R_{jets} versus the leading-jet p_T for $N_{\text{jets}} \geq 2$ and $N_{\text{jets}} \geq 3$. The R_{jets} distribution falls less steeply the more jets are in the event. This is due to the smaller average vector-boson p_T, which reduces the effects arising from differences in boson masses and polarizations. At the lowest p_T values considered the comparison with the data shows a tendency for different behaviour of the theoretical predictions, especially in events with at least three jets. The effect, which is most pronounced for BLACKHAT+SHERPA, is expected in case of lack of resummation of soft and collinear parton emissions, as in this calculation.

Figure 4 shows R_{jets} versus the second- and third-leading-jet p_T for $N_{\text{jets}} \geq 2$ and $N_{\text{jets}} \geq 3$ respectively. The various predictions agree with the data distributions, given the uncertainties, except for small deviations in the second-leading-jet p_T for $N_{\text{jets}} \geq 2$.

The next kinematic observable studied is S_T, the scalar sum of all jet transverse momenta in the event. This observable is often used in searches for new high-mass particles. Figure 5 shows R_{jets} versus S_T for $N_{\text{jets}} = 2$ and $N_{\text{jets}} \geq 3$, while Fig. 6 shows R_{jets} versus S_T for $N_{\text{jets}} = 3$ and $N_{\text{jets}} \geq 3$. At the lowest values of S_T the predicted distributions are different from the measured distributions, particularly for SHERPA, but in the higher-S_T region the theoretical predictions describe the data well. The central value of the fixed-order BLACKHAT+SHERPA calculation does not reproduce the S_T distributions for $W + \text{jets}$ and $Z + \text{jets}$ separately as well as the inclusive calculation, corroborating the previous observations in Refs. [4, 5]. The tensions are due to the missing higher-order contributions which cancel almost completely in R_{jets}.

Figure 7 shows the separation $\Delta R_{1,2}$ and the azimuthal angular distance $\Delta \phi_{1,2}$ between the two leading jets, and Fig. 8 shows their invariant mass m_{12} for $N_{\text{jets}} \geq 2$. At the lowest $\Delta R_{1,2}$ and m_{12} values, the predicted shapes differ from the measured ones. This is interpreted as a weak sensitivity to non-perturbative effects enhancing the difference in soft QCD radiation between W and Z events, but not cancelling completely in R_{jets}.

Figure 9 shows the leading-jet rapidity for $N_{\text{jets}} \geq 1$, and the second-leading-jet rapidity for $N_{\text{jets}} \geq 2$, while Fig. 10 shows the third-leading-jet rapidity for $N_{\text{jets}} \geq 3$. The different trends between predictions at high leading-jet rapidity can be due to the effects of the parton shower and, in some cases, different PDF sets. These effects, which do not cancel completely in R_{jets}, are moderated by the presence of extra jets.

11 Conclusions

Measurements of the ratio of $W + \text{jets}$ to $Z + \text{jets}$ production cross sections have been performed by the ATLAS experiment using a data sample of proton–proton collisions corresponding to an integrated luminosity of 4.6 fb$^{-1}$ collected at a centre-of-mass energy of $\sqrt{s} = 7$ TeV at the LHC. The data were unfolded to particle level and compared to predictions from Monte Carlo simulations. By being sensitive to differences between $W + \text{jets}$ and $Z + \text{jets}$ events, and through large cancellations of experimental systematic uncertainties and non-perturbative QCD effects, the R_{jets} measurements provide information complementary to individual $W + \text{jets}$
and Z + jets measurements. This R_{jets} measurement significantly improves on previous results by probing kinematic distributions for the first time in events with jet multiplicity up to four jets. It also allows a detailed comparison with state-of-the-art NLO pQCD Monte Carlo calculations, which agree well with the observed data except in a few specific regions. In particular, the BLACKHAT+SHERPA predictions for R_{jets} at high jet multiplicity and large leading-jet momenta are validated with this large dataset and are consistent with the results from tuned event generators. This new measurement highlights the success of recent theoretical advances and the opportunity for further tuning to improve the description of the production of vector bosons in association with jets.

Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DSRSC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINEVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; BRF and RCN, Norway; MNISW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Walther-Mecklenburg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Funded by SCOAP3 / License Version CC BY 4.0.

References

13 (a) Institute of Physics, University of Belgrade, Belgrade, Serbia; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
19 (a) Department of Physics, Bogazici University, Istanbul, Turkey; (b) Department of Physics, Dogus University, Istanbul, Turkey; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna, Bologna, Italy; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, USA
23 Department of Physics, Brandeis University, Waltham, MA, USA
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d) Instituto de Física, Universidade de Sao Paulo, São Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (b) Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (c) University Politehnica Bucharest, Bucharest, Romania; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, UK
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (c) Department of Physics, Nanjing University, Nanjing, Jiangsu, China; (d) School of Physics, Shandong University, Jinan, Shandong, China; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, NY, USA
36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, USA
41 Physics Department, University of Texas at Dallas, Richardson, TX, USA
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, USA
46 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova, Genoa, Italy; (b) Dipartimento di Fisica, Università di Genova, Genoa, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, USA
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington, IN, USA
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City, IA, USA
63 Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Department of Physics, Kyushu University, Fukuoka, Japan
70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, UK
72 (a) INFN Sezione di di Lecce, Lecce, Italy; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
74 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, UK
76 Department of Physics, Royal Holloway University of London, Surrey, UK
77 Department of Physics and Astronomy, University College London, London, UK
78 Louisiana Tech University, Ruston, LA, USA
79 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
80 Fysiska institutionen, Lunds universitet, Lund, Sweden
81 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
82 Institut für Physik, Universität Mainz, Mainz, Germany
83 School of Physics and Astronomy, University of Manchester, Manchester, UK
84 CPPM,Aix-Marseille Université and CNRS/IN2P3, Marseille, France
85 Department of Physics, University of Massachusetts, Amherst, MA, USA
86 Department of Physics, McGill University, Montreal, QC, Canada
87 School of Physics, University of Melbourne, Parkville, VIC, Australia
88 Department of Physics, The University of Michigan, Ann Arbor, MI, USA
89 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
90 (a) INFN Sezione di Milano, Milan, Italy; (b) Dipartimento di Fisica, Università di Milano, Milan, Italy
91 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
93 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
94 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
95 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
96 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
97 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
98 D. V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
99 Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany
100 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany
101 Nagasaki Institute of Applied Science, Nagasaki, Japan
102 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
103 (a) INFN Sezione di Napoli, Naples, Italy; (b) Dipartimento di Fisica, Università di Napoli, Naples, Italy
104 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
105 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
106 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
107 Department of Physics, Northern Illinois University, DeKalb, IL, USA
108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
109 Department of Physics, New York University, New York, NY, USA
110 Ohio State University, Columbus, OH, USA
111 Faculty of Science, Okayama University, Okayama, Japan
112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
113 Department of Physics, Oklahoma State University, Stillwater, OK, USA
114 Palacký University, RCPTM, Olomouc, Czech Republic
115 Center for High Energy Physics, University of Oregon, Eugene, OR, USA
116 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, UK
120 (a) INFN Sezione di Pavia, Pavia, Italy; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
121 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
122 Petersburg Nuclear Physics Institute, Gatchina, Russia
123 (a) INFN Sezione di Pisa, Pisa, Italy; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
124 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
125 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; (b) Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c) Instituto de Física, University of Coimbra, Coimbra, Portugal; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e) Departamento de Física, Universidade do Minho, Braga, Portugal; (f) Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
126 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
128 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
129 State Research Center Institute for High Energy Physics, Protvino, Russia
130 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
131 Physics Department, University of Regina, Regina, SK, Canada
132 Ritsumeikan University, Kusatsu, Shiga, Japan
133 (a) INFN Sezione di Roma, Rome, Italy; (b) Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
134 (a) INFN Sezione di Roma Tor Vergata, Rome, Italy; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
135 (a) INFN Sezione di Roma Tre, Rome, Italy; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda, Morocco; (e) Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco
137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
139 Department of Physics, University of Washington, Seattle, WA, USA
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
144 SLAC National Accelerator Laboratory, Stanford, CA, USA
145 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town, South Africa; (b) Department of Physics, University of Johannesburg, Johannesburg, South Africa; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 (a) Department of Physics, Stockholm University, Stockholm, Sweden; (b) The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA
150 Department of Physics and Astronomy, University of Sussex, Brighton, UK
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
157 Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
159 Department of Physics, University of Toronto, Toronto, ON, Canada
160 (a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
162 Department of Physics and Astronomy, Tufts University, Medford, MA, USA
163 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
164 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
165 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b) ICTP, Trieste, Italy; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana, IL, USA
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
169 Department of Physics, University of British Columbia, Vancouver, BC, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
171 Department of Physics, University of Warwick, Coventry, UK
172 Waseda University, Tokyo, Japan
173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
174 Department of Physics, University of Wisconsin, Madison, WI, USA
175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
177 Department of Physics, Yale University, New Haven, CT, USA
178 Yerevan Physics Institute, Yerevan, Armenia
179 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, UK
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
d Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
e Also at TRIUMF, Vancouver, BC, Canada
f Also at Department of Physics, California State University, Fresno, CA, USA