Observation and studies of double J/ψ production at the Tevatron

(The D0 Collaboration*)

1 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3 Universidade Federal do ABC, Santo André, Brazil
4 University of Science and Technology of China, Hefei, People’s Republic of China
5 Universidad de los Andes, Bogotá, Colombia
6 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
7 Czech Technical University in Prague, Prague, Czech Republic
8 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
9 Universidad San Francisco de Quito, Quito, Ecuador
10 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
11 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
12 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
13 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
14 LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
15 CEA, Irfu, SPP, Saclay, France
16 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
17 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
18 III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
19 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
21 Institut für Physik, Universität Mainz, Mainz, Germany
22 Ludwig-Maximilians-Universität München, München, Germany
23 Panjab University, Chandigarh, India
24 Delhi University, Delhi, India
25 Tata Institute of Fundamental Research, Mumbai, India
26 University College Dublin, Dublin, Ireland
27 Korea Detector Laboratory, Korea University, Seoul, Korea
28 CINVESTAV, Mexico City, Mexico
29 Nikhef, Science Park, Amsterdam, the Netherlands
30 Radboud University Nijmegen, Nijmegen, the Netherlands
31 Joint Institute for Nuclear Research, Dubna, Russia
32 Institute for Theoretical and Experimental Physics, Moscow, Russia
33 Moscow State University, Moscow, Russia
34 Institute for High Energy Physics, Protvino, Russia
35 Petersburg Nuclear Physics Institute, St. Petersburg, Russia
36 Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
37 Uppsala University, Uppsala, Sweden
38 Taras Shevchenko National University of Kyiv, Kiev, Ukraine
39 Lancaster University, Lancaster LA1 4YB, United Kingdom
40 Imperial College London, London SW7 2AZ, United Kingdom
41 The University of Manchester, Manchester M13 9PL, United Kingdom
42 University of Arizona, Tucson, Arizona 85721, USA
43 University of California Riverside, Riverside, California 92521, USA
44 Florida State University, Tallahassee, Florida 32306, USA
45 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
46 University of Illinois at Chicago, Chicago, Illinois 60607, USA
47 Northern Illinois University, DeKalb, Illinois 60115, USA
48 Northwestern University, Evanston, Illinois 60208, USA
49 Indiana University, Bloomington, Indiana 47405, USA
50 Purdue University Calumet, Hammond, Indiana 46323, USA
51 University of Notre Dame, Notre Dame, Indiana 46556, USA
52 Iowa State University, Ames, Iowa 50011, USA
53 University of Kansas, Lawrence, Kansas 66045, USA
54 Louisiana Tech University, Ruston, Louisiana 71272, USA
55 Northeastern University, Boston, Massachusetts 02115, USA
56 University of Michigan, Ann Arbor, Michigan 48109, USA
57 Michigan State University, East Lansing, Michigan 48824, USA
58 University of Mississippi, University, Mississippi 38677, USA
59 University of Nebraska, Lincoln, Nebraska 68588, USA
60 Rutgers University, Piscataway, New Jersey 08855, USA
Heavy quarkonium is a well established probe of both quantum chromodynamics (QCD) and possible new bound states of hadronic matter, e.g., tetraquarks \[1, 2\]. Production of multiple quarkonium states provides insight into the parton structure of the nucleon and parton-to-hadron fragmentation effects. In \(p\bar{p} \) collisions, there are three main production mechanisms for \(J/\psi \) mesons: prompt production (i.e., directly at the interaction point) of \(J/\psi \), and prompt production of heavier charmonium states, such as the \(3P_1 \) state \(\chi_{c1} \) and the \(3P_2 \) state \(\chi_{c2} \) that decay to \(J/\psi + \gamma \), or decay to \(J/\psi + X \) of directly produced \(\psi(2S) \), and non-prompt B hadron decays. The first observation of \(J/\psi \) meson pair production was made in 1982 by the NA3 Collaboration [3, 4]. The LHCb Collaboration has measured the double production cross section for this measurement [8, 18]. The measurement of the SP production cross section provides unique information to constrain parametrizations of the gluon parton distribution function (PDF) at low parton momentum fraction and energy scale, where the gluon PDF has large uncertainty [17]. The production of \(J/\psi \) mesons may proceed via two modes, color singlet and color octet [18, 20]. Predictions carried out using non-relativistic QCD (NRQCD) show that the color singlet process in SP scattering contributes \(\approx 90\% \) for the region of transverse momenta, \(p_T^{J/\psi} \geq 4 \text{ GeV/c} \), relevant for this measurement [\(18, 20 \)].

In this Letter, we present first observation of double \(J/\psi \) production at the Tevatron and measurements of the single and double \(J/\psi \) production cross sections. For the first time, the latter is split into measurements of the SP and DP production cross sections. This allows us to extract the effective cross section \(\sigma_{\text{eff}} \), a parameter related to an initial state parton spatial density distribu-
tion within a nucleon (see, e.g., [2]):

\[\sigma_{\text{eff}} = \frac{1}{2} \frac{\sigma(J/\psi)^2}{\sigma_{\text{DP}}(J/\psi J/\psi)}. \]

The factor of 1/2 corresponds to the two indistinguishable processes of single \(J/\psi \) production [21, 22].

The measurements are based on the data sample collected by the D0 experiment at the Tevatron in proton-antiproton (\(pp \)) collisions at the center-of-mass energy \(\sqrt{s} = 1.96 \) GeV, and corresponds to an integrated luminosity of \(8.1 \pm 0.5 \) fb\(^{-1} \) [23].

All cross section measurements are performed for prompt \(J/\psi \) mesons with \(p_{T}^{J/\psi} > 4 \) GeV/c and \(|\eta^{J/\psi}| < 2 \), where \(\eta^{J/\psi} \) is the \(J/\psi \) pseudorapidity [24]. The \(J/\psi \) mesons are fully reconstructed via their decay \(J/\psi \rightarrow \mu^+\mu^- \). The muons are required to have transverse momenta \(p_{T}^\mu > 2 \) GeV/c if their absolute pseudorapidities are \(|\eta^\mu| < 1.35 \) or total momenta \(|p^\mu| > 4 \) GeV/c if \(1.35 < |\eta^\mu| < 2 \). The cross sections measured with these kinematic requirements are referred below as fiducial cross sections.

The D0 detector is a general purpose detector described in detail elsewhere [25]. The sub-detectors used in this analysis to select events at the trigger level and to reconstruct muons are the muon and the central tracking systems. The central tracking system, used to reconstruct charged particle tracks, consists of the silicon microstrip tracker (SMT) [26] and a central fiber tracker (CFT) detector both placed inside a 1.9 T solenoidal magnet. The solenoidal magnet is located inside the central calorimeter, which is surrounded by the muon detector [27]. The muon detector consists of three layers of drift tubes and three layers of plastic scintillators, one inside 1.9 T toroidal magnets and two outside. The luminosity of colliding beams is measured using plastic scintillator arrays installed in front of the two end calorimeter cryostats [24].

Muons are identified as having either hits in all three layers of the muon detector or just in one layer in front of the toroids [28]. They are also required to be matched to a track reconstructed by the central tracking system as having at least one hit in the SMT and at least two hits in the CFT detectors. The muon candidates must satisfy timing requirements to suppress cosmic rays. Their distance of closest approach to the beam line has to be less than 0.5 cm and their matching tracks have to pass within 2 cm along the beam (\(z \)) axis of the event interaction vertex. The \(p\bar{p} \) interaction vertex should be within 60 cm of the center of the detector along beam axis. Events that have two such muons with opposite electric charge that satisfy an invariant mass requirement of \(2.85 < M_{\mu\mu} < 3.35 \) GeV are identified as single \(J/\psi \) candidates. Events having two such pairs of muons are identified as DJ candidates. Background events are mainly due to random combinations of muons from \(\pi^\pm, K^\pm \) decays, continuous non-resonant \(\mu^+\mu^- \) production in Drell-Yan events (both called “accidental background”), and B hadron decays into a \(J/\psi + X \). In the case of the DJ production, the background may also be caused by associated production of \(J/\psi \) meson and a muon pair not produced by a \(J/\psi \) decay (“J2\mu” events).

To properly normalize the cross section measurements and to reduce the backgrounds, we require events to pass at least one of the low-\(p_{T} \) di-muon triggers. The single \(J/\psi \) trigger efficiency is estimated using events which pass zero-bias triggers (which only require a beam crossing) or minimum bias triggers (which only require hits in the luminosity detectors), and that also pass the di-muon trigger. The efficiency of the kinematic selections of the muons and \(J/\psi \) mesons is found to be \(0.124 \pm 0.024 \) (stat) \(\pm 0.012 \) (syst). The systematic uncertainty is due to variations in the parameterizations of the functional forms used to fit the signal and background events to data.

To measure the trigger efficiency for double \(J/\psi \) selection, we use DP and SP events generated in Monte Carlo (MC). The double \(J/\psi \) DP events are generated with the PYTHIA [23] MC event generator, while the double \(J/\psi \) SP events are generated with HERWIG++. Events passed through a GEANT based [31] simulation of the D0 detector and overlaid with data zero-bias events are then processed with the same reconstruction code as data. Using the di-muon trigger efficiency parametrized as a 2D function of the \(p_{T} \) of each of the muons, we calculate for every possible pairing of muons in DP and SP MC events, and obtain efficiencies of \(\varepsilon_{\text{DP}} = 0.48 \pm 0.07 \) and \(\varepsilon_{\text{SP}} = 0.51 \pm 0.07 \), where the uncertainty is propagated from the uncertainty on the di-muon trigger efficiency described above.

The number of single \(J/\psi \) events after selections is about \(7.4 \times 10^6 \). The background from \(\pi^\pm, K^\pm \) decays and DY events, in our single \(J/\psi \) selection is estimated as a function of \(p_{T}^{J/\psi} \) and \(\eta^{J/\psi} \). In each \((p_{T}^{J/\psi}, \eta^{J/\psi}) \) bin, we perform a simultaneous fit of signal using a double Gaussian function and background with a linear mass dependence in a window of \(2.3 < M_{\mu\mu} < 4.2 \) GeV. We then calculate the background in the selection mass window of \(2.85 < M_{\mu\mu} < 3.35 \) GeV. Averaging the contributions over all \((p_{T}^{J/\psi}, \eta^{J/\psi}) \) bins, we estimate the background fraction to be \(0.126 \pm 0.013 \). The uncertainty is derived from variation of the fit parameters in the signal and background models.
The systematic uncertainty is due to differences in the kinematic distributions between the simulated and data J/ψ events, muon identification efficiency mismodeling, and differences between the color singlet and color octet models. The $\cos \theta^*$ distribution, where θ^* is the polar angle of the decay muon in the Collins-Soper frame, is sensitive to the J/ψ polarization. Small data-to-MC reweighting factors based on the observed $\cos \theta^*$ are used to re-calculate the acceptance, and lead to $< 1\%$ difference with the default acceptance value.

Due to the long lifetimes of B hadrons, their decay vertex into the $J/\psi + X$ final state is usually several hundred microns away from the $p\bar{p}$ interaction vertex, while prompt J/ψ production occurs directly at the interaction point. To distinguish prompt from non-prompt J/ψ mesons, we examine the decay length from the primary $p\bar{p}$ interaction vertex to the J/ψ production vertex, defined as $c\tau = L_{xy}m_{p_{DG}}/p_{T}^{J/\psi}$, where L_{xy} is the decay length of the J/ψ meson calculated as the distance between the intersection of the muon tracks and the hard scattering vertex in the plane transverse to the beam, and $m_{p_{DG}}$ is the world average J/ψ mass.

To estimate the fraction of prompt J/ψ mesons in the data sample, we perform a maximum likelihood fit of the $c\tau$ distributions using templates for the prompt J/ψ signal events, taken from the single J/ψ MC sample, and for non-prompt J/ψ events, taken from the $b\bar{b}$ MC sample. The latter are generated with PYTHIA. The prompt J/ψ fraction obtained from the fit is 0.814±0.009. The fit result is shown in Fig. 1. The overall χ^2/ndf for the data/MC agreement for this fit varies, depending on the chosen SP and DP models, within 0.50−0.85 with corresponding p-values of 0.51−0.77. We verify that the $p_T^{J/\psi}$ spectra of the prompt signal (non-prompt background) events in data are well described by MC in the signal (background) dominated regions by applying the selection $c\tau < 0.02$ (> 0.03) cm.

The fiducial cross section of the prompt single J/ψ production is calculated using the number of J/ψ candidates in data, the fraction of prompt events, the dimuon trigger efficiency, the acceptance and selection efficiency, as well as the integrated luminosity. It is found to be

$$\sigma(J/\psi) = 23.9 \pm 4.6\text{(stat)} \pm 3.7\text{(syst)} \text{ nb}. \quad (2)$$

The uncertainties mainly arise from the trigger efficiency and acceptance calculations.

This value is compared to that calculated in the “k_T factorization” approach with the unintegrated gluon density:

$$\sigma_{k_T}(J/\psi) = 23.0 \pm 8.5 \text{ nb}. \quad (3)$$

In this calculation, the J/ψ meson is produced either directly or through the radiative $\chi_{1(2)} \to J/\psi + \gamma$ process. The uncertainty is determined by variations of the gluon PDF and scale variations by a factor of 2 with respect to the default choice $\mu_R = \mu_F = \hat{s}/4$. In total, 242 events remain after DJ selection criteria and 902 events are found in the wider mass window $2.3 < M_{\mu\mu} < 4.2$ GeV. Fig. 2 shows the distribution of the two dimon masses ($M_{\mu\mu}^{(1)}, M_{\mu\mu}^{(2)}$) in these events.
Japan. This cut selects \(N_d = 138 \) events in data.

The signal and accidental background contributions are modelled using the product

\[
F(M_{\mu\mu}^{(1)}, M_{\mu\mu}^{(2)}) = (a_1 G^{(1)} + a_2 M_{\mu\mu}^{(1)} + a_3) \times (a_4 G^{(2)} + a_5 M_{\mu\mu}^{(2)} + a_6),
\]

where \(a_{1(4)} G^{(1(2))} \) is a Gaussian function representing \(J/\psi \) production, \(a_{2(5)} M_{\mu\mu}^{(1(2))} + a_{3(6)} \) is a linear function of the dimuon mass representing the accidental background, and \(a_i \) are coefficients. To estimate the backgrounds in the selected data, we perform a maximum likelihood fit to the data, in the two-dimensional (2D) \((M_{\mu\mu}^{(1)}, M_{\mu\mu}^{(2)})\) plane (see Fig. 2) using the expanded expression in Eq. 4 that contains a product of Gaussian functions for the signal DJ mass peak while the background is represented by a plane (representing the accidental background) and a product of a Gaussian function and a line (for \(J/\psi \) events). We use the fitted parameters to estimate the background in the signal window 2.85 < \(M_{\mu\mu} < 3.35 \) GeV for both \(J/\psi \) meson candidates and compute the fraction of the accidental+\(J/\psi \) background events to be \(f_{\text{acc},J/\psi} = 0.34 \pm 0.05 \). Figure 3 shows a comparison of the summed signal and background contributions to data projected on the axis of one muon pair \(M_{\mu\mu} \) while events along the second pair are integrated over the mass range 2.85 – 3.35 GeV.

To estimate the fraction of the prompt double \(J/\psi \) events, we use a template fit to the 2D \(c\tau \) distribution in DJ data. The \(c\tau \) template for double prompt mesons is obtained from the signal MC sample. The double non-prompt template is created from the \(bb \) MC sample, in which B hadron decays produce two \(J/\psi \) mesons. We also create a prompt+non-prompt template by randomly choosing \(c\tau \) values from the prompt and non-prompt templates. Before fitting, the accidental and \(J/\psi \) background is subtracted from the data according to its fraction \((f_{\text{acc},J/\psi})\) with the uncertainty propagated into an uncertainty on the prompt fraction. The 2D \(c\tau \) template for this background is built using data outside the signal mass window. The prompt fraction of DJ events in our selection is found to be \(f_{\text{prompt}} = 0.592 \pm 0.101 \), while the non-prompt and prompt+non-prompt events contribute \(0.373 \pm 0.073 \) and \(0.035 \pm 0.073 \), respectively. The main source of systematic uncertainty for the prompt fraction is the template fitting, and the uncertainty related with the subtraction of the accidental background from the data.

We measure the acceptances, reconstruction, and selection efficiencies separately for double \(J/\psi \) events on SP and DP samples using a mixture of 90\% color singlet and 10\% color octet samples, as predicted by NRQCD for our kinematic selection criteria. The code for the predictions is implemented in the MC model DJpsiFDC. We use PYTHIA for showering and fragmentation of the \(gg \to J/\psi,J/\psi \) final state. Products of the acceptances and the selection efficiencies are found to be \((A_{e_s})^{\text{SP}} = 0.109 \pm 0.002(\text{stat}) \pm 0.005(\text{syst}) \) for the SP and \((A_{e_s})^{\text{DP}} = 0.099 \pm 0.006(\text{stat}) \pm 0.005(\text{syst}) \) for the DP events, where the systematic uncertainties arise from uncertainties in the modeling of the \(J/\psi \) kinematics, muon identification efficiencies and the possible non-zero \(J/\psi \) polarization effects.

In this analysis, we measure the DJ production cross section for the DP and SP scatterings separately. To discriminate between the two mechanisms, we exploit the distribution of the pseudorapidity difference between the two \(J/\psi \) candidates, \(|\Delta\eta(J/\psi,J/\psi)| \) which is stable against radiation and intrinsic parton \(p_T \) effects. For the two \(J/\psi \) mesons produced from two almost uncorrelated parton scatterings with smaller (on average) parton momentum fractions than in the SP scattering, the \(|\Delta\eta(J/\psi,J/\psi)| \) distribution is expected to be broader. We use the DP and SP templates produced by MC to obtain the DP and SP fractions from a maximum likelihood fit to the \(|\Delta\eta(J/\psi,J/\psi)| \) distribution in DJ data. Contributions from the accidental background, non-prompt and prompt+non-prompt double \(J/\psi \) events are subtracted from data. The fitting result is shown in Fig. 4. In the region \(|\Delta\eta(J/\psi,J/\psi)| \gtrsim 2 \), the data are dominated by DP events, as predicted in Ref. 6. A possible contribution from pseudo-diffractive gluon-gluon scattering should give a negligible contribution. To estimate the systematic uncertainties of the DP and SP fractions, we vary the subtraction of accidental, non-prompt and prompt+non-prompt backgrounds within their uncertainties. To conservatively estimate systematic uncertainty related to the prompt+non-prompt...
background, it is assumed to be either 100% SP- or DP-like. We also create a data-like DP template combining two J/ψ meson candidates from two events randomly selected from the single J/ψ data sample, emulating two independent scatterings each with a single J/ψ final state. This template is corrected for the accidental and non-prompt backgrounds in data. We extract the DP and SP fractions from the fit to the DJ data sample. We find the fractions to be $f_{\text{DP}} = 0.42 \pm 0.12$ and $f_{\text{SP}} = 0.58 \pm 0.12$. These results are averaged over those obtained with the two SP (HERWIG++ and DJpsiFDC) and two DP (PYTHIA and data-like) models. The main sources of the uncertainties on DP (SP) fractions are the background subtraction, 18.4% (13.4%), the model dependence, 19.3% (14%), and the template fit, 7.1% (6.3%). The uncertainty due to the model dependence is estimated by varying the DP and SP models, and mainly caused by the difference between the two DP models. Variation of the gluon PDF results in a small and mainly caused by the difference between the two DP models. Variation of the gluon PDF results in a small and mainly caused by the difference between the two DP models. Variation of the gluon PDF results in a small and mainly caused by the difference between the two DP models. Variation of the gluon PDF results in a small and mainly caused by the difference between the two DP models.

The prediction for the SP cross section made in the “k_T factorization” approach according to Eq. (1) and using the fixed effective cross section $\sigma_{\text{eff}} = 15$ mb, is

$$\sigma_{\text{DP}}(J/\psi/J/\psi) = 17.6 \pm 13.0 \text{ fb}. \quad (12)$$

Additional contributions to the prompt DJ production may be caused by decays $\psi(2S) \rightarrow J/\psi + X$, which are not taken into account in Eqs. (6) – (12). These contributions may increase the predicted DJ SP and DP cross sections by approximately 40%.

We also compare our $\sigma_{\text{SP}}(J/\psi/J/\psi)$ result to the SP prediction obtained with NRQCD at the leading order approximation in the strong coupling using renormalization and factorization scales of $\mu_R = \mu_F = (m_T J/\psi)^2 + m_{\psi}^2)^{1/2}$ and $m_{\psi} = 1.5 \text{ GeV}$

$$\sigma_{\text{NRQCD}}(J/\psi/J/\psi) = 51.9 \text{ fb}, \quad (10)$$

and NRQCD NLO predictions

$$\sigma_{\text{NRQCD}}^\text{NLO}(J/\psi/J/\psi) = 90^{+180}_{-50} \text{ fb}, \quad (11)$$

where the uncertainty is due to the μ_R and μ_F scale variations by a factor two as well as by the c-quark mass uncertainty $m_c = 1.5 \pm 0.1 \text{ GeV}$. The measured SP cross section is in agreement with the current predictions from NRQCD and “k_T factorization”.

The DP production cross section predicted by the “k_T factorization” approach according to Eq. (11) and using the fixed effective cross section $\sigma_{\text{eff}} = 15$ mb, is

$$\sigma_{\text{DP}}(J/\psi/J/\psi) = 17.6 \pm 13.0 \text{ fb}. \quad (12)$$
Using the measured cross sections of prompt single J/ψ and DP production, we calculate the effective cross section, σ_{eff} (see Eq. 1). The main sources of systematic uncertainty in the σ_{eff} measurement are trigger efficiency and the fraction of DP events. By substituting the measured single J/ψ and double J/ψ DP cross sections (Eqs. 2 and 3) into Eq. 1 we obtain

$$\sigma_{\text{eff}} = 4.8 \pm 0.5 (\text{stat}) \pm 2.5 (\text{syst}) \text{ mb.}$$

(13)

In conclusion, we have observed double J/ψ production at the Tevatron and measured its cross section. We show that this production is caused by single and double parton scatterings. The measured SP cross section may indicate a need for a higher gluon PDF at small parton momenta and small energy scale, and higher order corrections to the theoretical predictions. The measured σ_{eff} agrees with the result reported by the AFS Collaboration (≈ 5 mb [39]), and is in agreement with the σ_{eff} obtained by CDF [12] in the 4-jet final state (12.1$^{+10.7}_{−5.4}$ mb). However, it is lower than the result obtained by CDF [13] (14.5$^{+1.7}_{−2.2}$ (stat) +$^{1.7}_{−0.7}$ (syst)) and the D0 [14] result (12.7$^{+0.2}_{−0.6}$ (stat) $±1.3$ (syst)) in $\gamma + 3$-jet events, and by ATLAS [12] (15$^{+3}$ (stat)$^{−3}_{−5}$ (syst)) and by CMS [12] (20.7$^{+0.8}_{−0.9}$ (stat) $±6.0$ (syst)) in the W+2-jet final state. We note that initial state in the DP double J/ψ production is very similar to 4-jet production at low p_T which is dominated by gluons, while $\gamma(W)$+jets events are produced in quark interactions, $q\bar{q}, gq$, and qq'. The measured σ_{eff} may indicate a smaller average distance between gluons than between quarks or between a quark and a gluon, in the transverse space. This result is in a qualitative agreement with the pion cloud model predicting a smaller nucleon’s average gluonic transverse size than that for singlet quarks [40].

We are grateful to the authors of the theoretical calculations, S.P. Baranov, N.P. Zotov, A.M. Snigirev, C.-F. Qiao, J.-P. Lansberg, H.-S. Shao, and M. Strikman for providing predictions and for many useful discussions.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMWF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

[24] Pseudorapidity is defined as $\eta = -\ln[\tan(\theta/2)]$, where θ is the polar angle with respect to the positive z axis along the proton beam direction, while the azimuthal angle ϕ is defined with respect to the z axis pointing away from the center of the Tevatron ring. The y axis points upwards.
[38] Private communication, S. Baranov, J.-P. Lansberg, H.-S. Shao.
[39] In Ref. [11] the AFS collaboration does not report an uncertainty on σ_{eff} but it is expected to be at least 30% given the uncertainty quoted on the measured DP fraction.