PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/132844

Please be advised that this information was generated on 2018-12-22 and may be subject to change.

L∞-ALGEBRAS OF LOCAL OBSERVABLES FROM HIGHER PREQUANTUM BUNDLES

DOMENICO FIORENZA, CHRISTOPHER L. ROGERS, AND URS SCHREIBER

Abstract. To any manifold equipped with a higher degree closed form, one can associate an L_∞-algebra of local observables that generalizes the Poisson algebra of a symplectic manifold. Here, by means of an explicit homotopy equivalence, we interpret this L_∞-algebra in terms of infinitesimal autoequivalences of higher prequantum bundles. By truncating the connection data on the prequantum bundle, we produce analogues of the (higher) Lie algebras of sections of the Atiyah Lie algebroid and of the Courant Lie 2-algebroid. We also exhibit the L_∞-cocycle that realizes the L_∞-algebra of local observables as a Kirillov-Kostant-Souriau-type L_∞-extension of the Hamiltonian vector fields. When restricted along a Lie algebra action, this yields Heisenberg-like L_∞-algebras such as the string Lie 2-algebra of a semisimple Lie algebra.

Contents

1. Introduction 1
2. Higher prequantum geometry over smooth manifolds 5
3. The L_∞-algebra of local observables and its KKS L_∞-cocycle 7
4. The dg-Lie algebra of infinitesimal quantomorphisms 14
5. Inclusion into Atiyah and Courant L_∞-algebras 14
Appendix A. An explicit weak equivalence between $L_\infty(X,\omega)$ and dgLie Qu (X,\bar{A}) 20
Appendix B. A recognition principle for homotopy fibers of L_∞-morphisms 26
References 28

1. Introduction

Geometric objects, such as manifolds, orbifolds, or stacks, equipped with a closed differential form play important roles in many areas of current mathematical interest. The archetypical examples are closed 2-forms in (pre-)symplectic geometry. Higher degree closed forms play crucial roles, for example, in covariant quantum field theory, in Hitchin’s generalized complex/Riemannian geometry, and in differential cohomology. It is becoming clear that it is advantageous to consider these forms, in one way or another, as higher degree generalizations of symplectic structures.

In all of these applications, there is a particular focus on integral closed forms. This is because such forms correspond to the curvatures of higher geometric structures known as $U(1)$-n-bundles with connection (or $U(1)$-$(n-1)$-bundle gerbes with connection). Here we refer to these as higher prequantum bundles, in analogy with the role that $U(1)$-principal connections play in the geometric prequantization of symplectic manifolds [21, 38]. (A modern review can be found in [8].) In the companion article [12] we present general aspects of such higher geometric prequantum structures; here we work out details of the general theory specialized to the higher differential geometry over smooth manifolds. In particular, we use homotopy Lie theory to...
study the infinitesimal autoequivalences of higher prequantum bundles covering infinitesimal diffeomorphisms of the base manifold, i.e., the infinitesimal quantomorphisms.

It is well known that every pre-symplectic manifold induces a Lie algebra of Hamiltonian functions whose bracket is the Poisson bracket given by the closed 2-form. When the manifold is equipped with a prequantum bundle, this Lie algebra is isomorphic to the Lie algebra of infinitesimal autoequivalences of that structure, i.e., those vector fields on the bundle whose flow preserves the underlying bundle and its connection under pullback. These are also called prequantum operators. More generally, manifolds equipped with higher degree forms also have Hamiltonian vector fields, which form a Lie algebra just as in symplectic geometry. The differential form induces a bilinear skew-symmetric bracket not on functions, but on higher degree differential forms. However, this bracket fails to satisfy the Jacobi identity. The observation made in [32] was that, for the case of non-degenerate forms, this failure is controlled by coherent homotopy. Hence, instead of being a problem, the lack of a genuine Lie bracket indicates the presence of a natural, but higher (homotopy-theoretic) structure. More precisely, the higher Poisson bracket gives rise to a strong-homotopy Lie algebra or L_{∞}-algebra. The construction in [32] extends immediately to the case of degenerate forms, and we call the resulting algebra the ‘L_{∞}-algebra of local observables’. In this paper, we illuminate its conceptual role further.

Summary of results. We identify the higher Kirillov-Kostant-Souriau L_{∞}-algebra cocycle that classifies the L_{∞}-algebra of local observables as an extension of the Hamiltonian vector fields (theorem 3.3.1) and show how this result immediately gives a construction of ‘higher Heisenberg L_{∞}-algebras’ (section 3.4). As an example, we obtain a direct derivation (example 3.4.4) of the string L_{∞}-algebra as the Heisenberg Lie 2-algebra of a compact simple Lie group G [4].

We briefly recall the construction of the higher prequantum automorphism group of a higher prequantum bundle, which is described with more detail in [12]. We construct a dg Lie algebra (def. 4.2.1) that can be thought of as modeling the “infinitesimal elements” of this higher automorphism group in terms of the Čech-Deligne cocycle for the prequantum bundle. (Similar dg Lie models for the “infinitesimal symmetries” of a $U(1)$-bundle gerbe were constructed by Collier [11].)

We prove explicitly that our dg Lie algebra of infinitesimal quantomorphisms is equivalent, as an L_{∞}-algebra, to the L_{∞}-algebra of local observables of the corresponding pre-n-plectic form (theorem 4.2.2).

Finally, we show that this construction induces an inclusion of the L_{∞}-algebra of local observables into higher Courant and higher Atiyah Lie algebras (section 5).

Remark 1.0.1. All of the constructions and results that we discuss here apply to the general context of pre-n-plectic manifolds, i.e., manifolds equipped with a closed $(n+1)$-form. Non-degeneracy conditions on the differential form do not play a role. Nevertheless, our formalism allows us to restrict to the case of non-degenerate forms, and it may be interesting to do so in specific applications. This is analogous to the well-known fact that non-degeneracy is not needed to prequantize a symplectic manifold. Indeed, one can proceed even further in this case; the full geometric quantization of pre-symplectic manifolds is a well-defined and interesting endeavour in its own right (e.g. [4]).

Motivation and perspective. The L_{∞}-algebras of local observables as considered here appear naturally in traditional field theory in the guise of higher order local Noether currents. For instance, it is shown in [3] how the energy-momentum tensor for the bosonic string arises in the Lie 2-algebra associated to a multiphase space for a 1+1 dimensional field theory. Generally, the classical Hamilton-de Donder-Weyl field equations in multisymplectic field theory characterize the higher dimensional infinitesimal flows in the L_{∞}-algebra of local observables (Maurer-Cartan elements in the tensor product with a Grassmann algebra); this is discussed in section 1.2.11.3 of [38].
In a broader perspective, these L_∞-algebras naturally arise in the context of higher geometric prequantization and in particular in the geometric quantization of loop groups by the orbit method, see, e.g., \cite[p. 249]{8} and the discussion in \cite[Sec. 2.6.1]{12}. This was a motivation behind the refinement of multisymplectic geometry to homotopy theory developed in \cite{32}, leading to a higher Bohr-Sommerfeld-like geometric quantization procedure for manifolds equipped with closed integral 3-forms \cite[Chap. 7]{31}. These integral 2-plectic structures also naturally appear as the geometric quantization of Poisson manifolds via their associated symplectic groupoids (whose multiplicative symplectic form is secretly a 2-plectic simplicial form), see \cite{5}.

In terms of quantum field theory, higher geometric prequantization concerns the pre-quantum incarnation of local quantum field theory, in the way envisioned by Freed \cite{15}, Baez-Dolan \cite{2}, and more recently formalized by Lurie \cite{24}. While Lurie’s theorem gives a full characterization of the process of quantization that would “read in” higher geometric prequantum data and produce a local QFT in this sense. The results of the present article, when placed within the larger context of higher pre-quantum geometry, as discussed more fully in \cite{12}, are meant to provide some answers to this open question. Indeed, based on these developments, further progress in this direction has been made recently in \cite{27}. A survey is given in section 6 of \cite{36}.

It should be remarked that in the present article we are solely interested in the L_∞-algebra structure on local observables and we are not investigating the existence of compatible associative and commutative algebra structures (up to homotopy) making the higher local observables a Poisson-L_∞-algebra. This issue will hopefully be investigated elsewhere. It is also worth mentioning that, in parallel to the L_∞-algebras for n-plectic geometry as considered here, there are various other attempts to formulate generalizations of the algebraic structures found in symplectic geometry to multisymplectic geometry \cite{14, 20, 30}. These differing proposals are not manifestly equivalent, and it would be interesting to understand the relations between these various proposals at a deeper level.

Acknowledgements. We thank the referee, Johannes Huebschmann, and Jim Stasheff for valuable comments and suggestions on a first version of this article, Yael Frégier and Marco Zambon for sharing a preliminary draft \cite{16} of their work (joint with C.L.R.) that inspired some of the ideas developed here, and Ruggero Bandiera, Christian Blohmann, and Marco Manetti for the invaluably inspiring conversations they had with D.F. on the homotopy fibers of L_∞-morphisms and on higher symplectic geometry.

C.L.R. acknowledges support from the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) through the Institutional Strategy of the University of Göttingen. U.S. was supported by the Dutch Research Organization (NWO project 613.000.802).

Notation and conventions.

1.0.1. Notation for Cartan calculus. The Schouten bracket of two decomposable multivector fields $u_1 \wedge \cdots \wedge u_m, v_1 \wedge \cdots \wedge v_n \in \bigwedge^* \mathfrak{x}(X)$ is

$$[u_1 \wedge \cdots \wedge u_m, v_1 \wedge \cdots \wedge v_n] = \sum_{i=1}^{m} \sum_{j=1}^{n} (-1)^{i+j} [u_i, v_j] \wedge u_1 \wedge \cdots \wedge \hat{u}_i \wedge \cdots \wedge u_m \wedge v_1 \wedge \cdots \wedge \hat{v}_j \wedge \cdots \wedge v_n,$$

where $[u_i, v_j]$ is the usual Lie bracket of vector fields.

Given a form $\alpha \in \bigwedge^* \Omega^*(X)$, the interior product of a decomposable multivector field $v_1 \wedge \cdots \wedge v_n$ with α is defined as $\iota_{v_1} \cdots \iota_{v_n} \alpha = \iota_{v_1} \cdots \iota_{v_n} \alpha$, where $\iota_v \alpha$ is the usual interior product of vector fields and differential forms. The interior product of an arbitrary multivector field is obtained by extending the above formula by $C^\infty(X; \mathbb{R})$-linearity. The Lie derivative \mathcal{L}_v of a
differential form along a multivector field $v \in \bigwedge^\bullet \mathfrak{X}(X)$ is defined via the graded commutator of d and $\iota(v) : \mathcal{L}_v \alpha = d v \wedge \alpha - (-1)^{|v|} \iota(v) d \alpha$, where $\iota(v)$ is considered as a degree $-|v|$ operator.

The last identity we will need involving multivector fields is for the graded commutator of the Lie derivative and the interior product. Given $u, v \in \bigwedge^\bullet \mathfrak{X}(X)$, we have the Cartan identity

\begin{equation}
\iota_{[u,v]} \alpha = (-1)^{|[u]-1||v|} \mathcal{L}_u v \wedge \alpha - \iota_v \mathcal{L}_u \alpha.
\end{equation}

1.0.2. Conventions on chain and cochain complexes. We will work mostly with chain complexes and homological degree conventions. The differential of a chain complex (A_\bullet, d) will have degree -1: $\cdots \to A_{n+1} \xrightarrow{d} A_n \xrightarrow{d} A_{n-1} \to \cdots$. The shift functor $A_\bullet \mapsto A[1]_\bullet$ will act by $A[1]_k = A_{k-1}$. In particular, if V is a vector space, seen as a chain complex concentrated in degree zero, $V[n]$ will be the chain complex consisting of V concentrated in degree n. A cochain complex (A^\bullet, d) will have a differential of degree $+1$, $\cdots \to A^{n-1} \xrightarrow{d} A^n \xrightarrow{d} A^{n+1} \to \cdots$, and will be identified with a chain complex (with the same differential) by the rule $A_k = A^{-k}$. In particular chain complexes concentrated in non-negative degree will correspond to cochain complexes concentrated in nonpositive degree, and vice versa. On cochain complexes the shift functor $A^\bullet \mapsto A[1]^\bullet$ will act by $A[1]^k = A^{k+1}$.

1.0.3. Conventions and notation for L_∞-algebras. We will assume the reader is familiar with the homotopy theory of dg-Lie and L_∞-algebras. A comprehensive account can be found in \cite{Fiorenza:2010}. We will follow homological degree conventions, as in \cite{Hirschhorn:2003}, so that the differential of a dg-Lie algebra and of an L_∞-algebra will have degree -1. All examples of L_∞-algebras \mathfrak{g} given here will have their underlying chain complex \mathfrak{g}_\bullet concentrated in non-negative degree. An L_∞-algebra concentrated in degrees 0 through $(n-1)$ will be called a $\textit{Lie } n$-\textit{algebra}.

An L_∞-algebra whose k-ary brackets for $k \geq 2$ are trivial, i.e., a plain chain complex, is called an \textit{abelian} L_∞-algebra. If \mathfrak{h} is an abelian L_∞-algebra with underlying chain complex \mathfrak{h}_\bullet, then we also write $B\mathfrak{h}$ for the abelian L_∞-algebra with underlying chain complex $\mathfrak{h}_\bullet [1]$. In particular, for $n \in \mathbb{N}$ we write $B^n \mathbb{R} = \mathbb{R}[n]$ for the abelian L_∞-algebra whose underlying chain complex is \mathbb{R} concentrated in degree n.

An L_∞-morphism of the form $\mathfrak{g} \to B A$, for A an abelian L_∞-algebra, will be called an L_∞-\textit{algebra cocycle} on the L_∞-algebra \mathfrak{g} with coefficients in A. For \mathfrak{g} a Lie algebra and $A = \mathbb{R}[n]$, these are just the traditional cocycles used in Lie algebra cohomology. See \cite{Stasheff:1997} for a discussion of L_∞-algebra extensions in the broader context of principal ∞-bundles.

The (non-full) inclusion of dg-Lie algebras into L_∞-algebras is a part of an adjunction

\begin{equation}
(\mathcal{R} \dashv i) : L_\infty \text{Alg} \xrightarrow{i} \text{dgLie},
\end{equation}

see for instance \cite[Proposition 11.4.5]{Fresse:2008}. We will call $i \circ \mathcal{R}$ the \textit{rectification functor} for L_∞-algebras, and will often leave the (non-full) embedding i notationally implicit. In particular, for any L_∞-algebra \mathfrak{g} there is a \textit{canonical} L_∞-algebra homomorphism $\mathfrak{g} \xrightarrow{\nu_\mathfrak{g}} \mathcal{R}(\mathfrak{g})$, namely, the unit of the adjunction, such that every L_∞ morphism $\mathcal{f}_\infty : \mathfrak{g} \to A$ to a dg-Lie algebra A uniquely factors as $\mathfrak{g} \xrightarrow{\nu_\mathfrak{g}} \mathcal{R}(\mathfrak{g}) \xrightarrow{\xi_A} \mathcal{R}(A) \xrightarrow{\mathcal{f}_\infty} A$, where $\xi_A : \mathcal{R}(A) \to A$ is the dg-Lie algebra morphism in the factorization of the identity of A as $A \xrightarrow{\nu_A} \mathcal{R}(A) \xrightarrow{\xi_A} A$.

There is a wealth of presentations for the homotopy theory of L_∞-algebras, given by a web of model category structures with Quillen equivalences between them \cite{Dwyer:1995}. Here we make use of the model structures due to \cite{Lurie:2009} \cite{Rogers:2012}, from which one can distill the following statement: the category of dg-Lie algebras (over the real numbers) carries a model category structure in which the weak equivalences are the quasi-isomorphisms on the underlying chain complexes, and the fibrations are the degreewise surjections on the underlying chain complexes. Moreover, if we define a morphism $\mathfrak{g} \to \mathfrak{h}$ in $L_\infty \text{Alg}$ to be a weak equivalence iff the underlying morphism of complexes $\mathfrak{g}_\bullet \to \mathfrak{h}_\bullet$ is a quasi-isomorphism, then the adjunction $(\mathcal{R} \dashv i)$ induces an equivalence between
the homotopy theories of dg-Lie algebras and L_∞-algebras. In particular, the components of the
unit $g \xrightarrow{\epsilon} R(g)$ and counit $R(A) \xrightarrow{\xi} A$ of this adjunction are weak equivalences.

1.0.4. Conventions on stacks and higher stacks. While this article focuses on homotopy Lie
theory, we do mention at some points the corresponding constructions in higher smooth stacks,
according to [12]. A detailed overview of this formalism is given in Sec. 3.1 in [13]. Smooth
stacks are taken to be stacks over the category of all smooth manifolds equipped with its standard
Grothendieck topology of good open covers. Equivalently but more conveniently these are stacks
over just the subcategory CartSp of Cartesian spaces $\{\mathbb{R}^n\}_{n \in \mathbb{N}}$ (or equivalently of open n-balls),
regarded as smooth manifolds. A higher smooth stack may always be presented as a Kan-complex
valued functor on CartSpop and the homotopy theory \mathbf{H} of smooth stacks is given by the category
of such functors with stalkwise homotopy equivalences of Kan complexes universally turned into
actual homotopy equivalences: $\mathbf{H} := \text{Lie } \text{Func}(\text{CartSp}^{op}, \text{KanCplx})$. In the applications of the
present article all examples of such objects are either given by sheaves of chain complexes A_\bullet of
abelian groups in non-negative degrees under the Dold-Kan correspondence $DK : \text{Ch}(\mathbb{Z}) \xrightarrow{\simeq}
\text{KanCplx}$, or are the Čech nerve $\check{C}(\mathcal{U})$ of an open cover $\mathcal{U} = \{U_i \to X\}_i$ of a
smooth manifold X. If \mathcal{U} is a good cover and if A_\bullet is CartSp-acyclic (which it is in all
the examples we consider), then the function complex $H(X, A) \simeq \text{Func}(\check{C}(\mathcal{U}), DK(A_\bullet))$ is the
traditional cocycle complex of Čech hypercohomology of X with coefficients in A_\bullet.

2. Higher prequantum geometry over smooth manifolds

We briefly review here the basic notions of higher prequantum geometry over smooth mani-
folds that we will use throughout the article. First in 2.1 we recall the notion of pre-n-plectic
manifolds and their Hamiltonian vector fields and then in 2.2 their pre-quantization by Čech-
Deligne cocycles.

2.1. n-Plectic manifolds and their Hamiltonian vector fields. In [3] the following terminology
has been introduced.

Definition 2.1.1. A pre-n-plectic manifold (X, ω) is a smooth manifold X equipped with a
closed $(n+1)$-form $\omega \in \Omega^{n+1}_c(X)$. If the contraction map $\hat{\omega} : TX \to \Lambda^n T^* X$ is injective, then ω
called non-degenerate or n-plectic and (X, ω) is called an n-plectic manifold.

Example 2.1.2. For $n = 1$ an n-plectic manifold is equivalently an ordinary symplectic
manifold. A compact connected simple Lie group equipped with its canonical left invariant differential
3-form $\omega := \langle -, [-, -] \rangle$ is a 2-plectic manifold.

Definition 2.1.3. Let (X, ω) be a pre-n-plectic manifold. If a vector field v and an $(n-1)$-form
H are related by $\iota_v \omega + dH = 0$ then we say that v is a Hamiltonian field for H and that H
is a Hamiltonian form for v. We denote by $\text{Ham}^{n-1}(X) \subseteq \mathfrak{X}(X) \oplus \Omega^{n-1}(X)$ the subspace
of pairs (v, H) such that $\iota_v \omega + dH = 0$. We call this the space of Hamiltonian pairs. The image
$\mathcal{X}_{\text{Ham}}(X) \subseteq \mathfrak{X}(X)$ of the projection $\text{Ham}^{n-1}(X) \to \mathfrak{X}(X)$ is called the space of Hamiltonian
vector fields of (X, ω).

Remark 2.1.4. Given a pre-n-plectic manifold (X, ω) We have a short exact sequence of vector
spaces $0 \to \Omega^{n-1}_c(X) \to \text{Ham}^{n-1}(X) \to \mathcal{X}_{\text{Ham}}(X) \to 0$, i.e., closed $(n-1)$-forms are Hamiltonian,
with zero Hamiltonian vector field. It is immediate from the definition that Hamiltonian vector
fields preserve the pre-n-plectic form ω, i.e., $\mathcal{L}_v \omega = 0$. Indeed, since ω is closed, we have
$\mathcal{L}_v \omega = d\iota_v \omega = -d^2 H_v = 0$. Therefore the integration of a Hamiltonian vector field gives a
diffeomorphism of X preserving the pre-n-plectic form: a Hamiltonian n-plectomorphism.

Lemma 2.1.5. The subspace $\mathcal{X}_{\text{Ham}}(X)$ is a Lie subalgebra of $\mathfrak{X}(X)$.
Proof. Let v_1 and v_2 be Hamiltonian vector fields, and let H_1, H_2 be their respective Hamiltonian forms. By $L_{v_i} \omega = 0$ and by the Cartan formulas, we get $\iota_{[v_1,v_2]} \omega = [L_{v_1}, L_{v_2}] \omega = -dL_{v_1} H_2 = du_{v_1} v_2 \omega$, i.e., the vector field $[v_1,v_2]$ is Hamiltonian, with Hamiltonian $v_1 \wedge v_2 \omega$. \hfill \Box

Remark 2.1.6. Hamiltonian vector fields on a pre-n-plectic manifold (X, ω) are by definition those vector fields v such that $\iota_v \omega$ is exact. One may relax this condition and consider symplectic vector fields instead, i.e., those vector fields v such that $L_v \omega = 0$, or, equivalently, such that $\iota_v \omega$ is closed. Then the arguments in Remark 2.1.4 and in Lemma 2.1.5 show that symplectic vector fields form a Lie subalgebra $\mathfrak{x}_{\text{sympl}}(X)$ of $\mathfrak{x}(X)$ and that $\mathfrak{x}_{\text{Ham}}(X) \subseteq \mathfrak{x}_{\text{sympl}}(X)$ is a Lie ideal.

2.2. Prequantization of (pre-)n-plectic manifolds. The traditional notion of prequantization of a presymplectic manifold (X, ω) is equivalently a lift of the presymplectic form, regarded as a de Rham 2-cocycle, to a degree 2 cocycle in ordinary differential cohomology (see, for instance [3], Section 2.2). Equivalently, this is a lift of ω to a connection ∇ on a $U(1)$-principal bundle on X with curvature $F_\nabla = \omega$. Accordingly, the prequantization of a pre-n-plectic manifold is naturally defined to be a lift of ω regarded as a degree $(n + 1)$ cocycle in de Rham cohomology to a cocycle of degree $(n + 1)$ in ordinary differential cohomology.

Definition 2.2.1. For X a smooth manifold and $U = \{U_i \to X\}$ an open cover, we write $(\text{Tot}(U, \Omega), d_{\text{Tot}})$ for the corresponding Čech-de Rham total complex, i.e., the cochain complex with underlying graded vector space $\text{Tot}^n(U, \Omega) = \bigoplus_{i+j=n} C^i(U, \Omega^j)$ and whose differential is given on elements $\theta = \sum_{i=0}^{n} \theta^i$ with $\theta^i \in C^i(U, \Omega^{n-i})$ by $d_{\text{Tot}} \theta^i = d \theta^i + (-1)^i d \theta^{i-1}$.

Definition 2.2.2. The cochain complex of sheaves

\[
C^\infty(\dashv; U(1)) \xrightarrow{\text{dlog}} \Omega^1(\dashv) \xrightarrow{d} \Omega^2(\dashv) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n(\dashv) \xrightarrow{d} \Omega^{n+1}(\dashv) \to \cdots
\]

with $C^\infty(\dashv; U(1))$ in degree zero, will be called the Deligne complex and will be denoted by the symbol $\underline{U}(1)_{\text{Del}}$. Its truncation

\[
C^\infty(\dashv; U(1)) \xrightarrow{\text{dlog}} \Omega^1(\dashv) \xrightarrow{d} \Omega^2(\dashv) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n(\dashv) \to 0 \to 0 \to \cdots
\]

will be denoted by $\underline{U}(1)_{\text{Del}}^n$.

It follows from the above definition that a degree n Čech-Deligne cocycle in $\underline{U}(1)_{\text{Del}}^n$ is $\tilde{A} = \sum_{i=0}^{n} A^i$, with $A^i \in C^i(U(1), \Omega^{n-i})$ and $A^0 \in C^{n}(U, \underline{U}(1))$, satisfying

\[
\begin{align*}
\delta A^n &= (-1)^i dA^{n-i-1}, & i = 0, \ldots, n-2 \\
\delta A^1 &= (-1)^n d\text{dlog} A^0, & \delta A^0 = 1
\end{align*}
\]

Definition 2.2.3. The n-stack of principal $U(1)$-n-bundles (or $(n-1)$-bundle gerbes) with connection is the n-stack presented via applying the Dold-Kan construction to the presheaf $\underline{U}(1)_{\text{Del}}^n[n]$, regarded as a presheaf of chain complexes concentrated in non-negative degree. It will be denoted by the symbol $\mathbb{B}^n U(1)_{\text{conn}}$.

The commutative diagram

\[
\begin{array}{cccccccc}
C^\infty(\dashv; U(1)) & \xrightarrow{\text{dlog}} & \Omega^1(\dashv) & \xrightarrow{d} & \Omega^2(\dashv) & \xrightarrow{d} & \cdots & \Omega^{n-1}(\dashv) & \xrightarrow{d} & \Omega^n(\dashv) \\
0 & \downarrow & 0 & \downarrow & 0 & \downarrow & \cdots & 0 & \downarrow & \Omega^{n+1}(\dashv)_{\text{cl}}
\end{array}
\]

presents the morphism of stacks $F : \mathbb{B}^n U(1)_{\text{conn}} \to \Omega^{n+1}(\dashv)_{\text{cl}}$ that maps a principal $U(1)$-n-bundle with connection to its curvature $(n+1)$-form.
Definition 2.2.4. Let \((X, \omega)\) be a pre-\(n\)-plectic manifold. A prequantization of \((X, \omega)\) is a lift
\[
B^n U(1)_{\text{conn}} \xrightarrow{F} \Omega^{n+1}(-)_{\text{cl}}.
\]
We call the triple \((X, \omega, \nabla)\) a prequantized pre-\(n\)-plectic manifold.

Local data for a prequantization \((X, \omega, \nabla)\) are conveniently expressed in terms of the Čech-Deligne total complex. Namely, let \(\mathcal{U}\) be a good cover of \(X\); then a pre-\(n\)-plectic structure on \(X\) is the datum of a closed element \(\omega\) in \(C^0(\mathcal{U}, \underline{U}(1)_{\text{Del}})^{\leq n+1}\). Moreover, if \((X, \omega)\) admits a prequantization, then the datum of a prequantization is an element \(A\) in \(\text{Tot}^n(\mathcal{U}, \underline{U}(1)_{\text{Del}})\) such that \(d_{\text{Tot}} A = \omega\).

Remark 2.2.5. It is a well know fact that \((X, \omega)\) admits a prequantization if and only if it is an integral pre-symplectic manifold, i.e., if and only if the closed form \(\omega\) represents an integral class in de Rham cohomology; see, e.g., [8]. Indeed, since the shifted Deligne complex \(\underline{U}(1)_{\text{Del}}\) consists of locally constant \((n+1)\)-valued functions placed in degree \(-n\), we see that a pre-\(n\)-plectic structure \(\omega\) is prequantizable if and only if \(\omega\) defines the trivial class in the degree \(n+1\) Čech cohomology of \(X\) with coefficients in the discrete abelian group \(U(1)\). By the short exact sequence of groups \(0 \to \mathbb{Z} \to \mathbb{R} \to U(1) \to 1\) and by the Čech-de Rham isomorphism \(H^n_{\text{dR}}(X, \mathbb{R}) \cong \check{H}^n(X, \mathbb{R})\), this is equivalent to requiring that the de Rham class of \(\omega\) is an integral class.

3. The \(L_\infty\)-algebra of local observables and its KKS \(L_\infty\)-cocycle

To any pre-\(n\)-plectic manifold \((X, \omega)\) one can associate an \(L_\infty\)-algebra \(L_\infty(X, \omega)\), as defined in [10,32], which we may think of as the higher local observables on \((X, \omega)\). This is an \(L_\infty\)-extension of the Lie algebra of Hamiltonian vector fields on \((X, \omega)\) by the \((n-1)\)-shifted truncated de Rham complex of \(X\). We briefly recall this construction in 3.1 below.

For \((V, \omega)\) an ordinary symplectic vector space, we may regard it as a symplectic manifold that is canonically equipped with a \(V\)-action by Hamiltonian vector fields, with \(V\) regarded as the abelian Lie algebra of constant (left invariant) vector fields on itself. The evaluation map at zero \(\iota_{-\lambda, \omega}|_0 : V \times V \to \mathbb{R}\) of the symplectic form is then a Lie algebra 2-cocycle on \(V\) and hence defines an extension of Lie algebras. This is famous as the Heisenberg Lie algebra extension and \(\iota_{-\lambda, \omega}|_0\) is the Kirillov-Kostant-Souriau cocycle that classifies it (see example 3.2 below). More generally, for any symplectic manifold, the KKS 2-cocycle classifies the underlying Lie algebra of the Poisson algebra as a central extension of the Hamiltonian vector fields [21,38]. For symplectic vector spaces, the restriction of the KKS 2-cocycle to the constant Hamiltonian vector fields is precisely the above cocycle. We describe in 3.2 below a further generalization of this to a class of \(L_\infty\)-algebra \((n+1)\)-cocycles on Hamiltonian vector fields over pre-\(n\)-plectic manifolds. We call these the higher Kirillov-Kostant-Souriau \(L_\infty\)-cocycles. In 3.3 we prove that the \(L_\infty\)-algebra extension that is classified by the KKS \((n+1)\)-cocycle is indeed again the Poisson-bracket \(L_\infty\)-algebra of local observables.

3.1. The \(L_\infty\)-algebra of local observables. We recall the construction of the \(L_\infty\)-algebra of local observables associated to a pre-\(n\)-plectic manifold. It is best seen in the light of the following immediate consequence of Cartan’s “magic formula” \(\mathcal{L}_v = dv + \iota_v d\).
Lemma 3.1.1. Let X be a smooth manifold and let β be an n-form (not necessarily closed) on X. Given k vector fields v_1, \ldots, v_k ($k \geq 1$) on X, the following identity holds:

$$(-1)^k d_{v_1 \wedge \cdots \wedge v_k} \beta = \sum_{i \leq j \leq k} (-1)^{i+j-1} l_{[v_i,v_j]} \wedge v_{i+1} \wedge \cdots \wedge v_k \wedge v_{i+1} \wedge \cdots \wedge v_k \beta + \sum_{i=1}^k (-1)^i v_{i+1} \wedge \cdots \wedge v_k \mathcal{L}_{v_i} \beta + v_{i+1} \wedge \cdots \wedge v_k d\beta.$$

A special case of the above appeared as Lemma 3.7 in [32]. We thank M. Zambon for pointing out to us this generalization.

Proposition 3.1.2 (Thm. 5.2 [32], Thm. 4.7 [10]). Let (X, ω) be a pre-n-plectic manifold. There exists a Lie n-algebra $L_\infty(X,\omega)$ whose underlying chain complex is

$$\Omega^0(X) \xrightarrow{d} \Omega^1(X) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n-2}(X) \xrightarrow{(\partial, d)} \text{Ham}^{n-1}(X),$$

with $\text{Ham}^{n-1}(X)$ in degree zero, and whose multilinear brackets l_i are

$$l_1(x) = \begin{cases} 0 \oplus dx & \text{if } |x| = 1, \\ dx & \text{if } |x| > 1, \end{cases} \quad l_2(x_1, x_2) = \begin{cases} [v_1, v_2] + \iota_{v_1} \wedge \omega & \text{if } |x_1| = |x_2| = 0, \\ 0 & \text{otherwise}, \end{cases}$$

and, for $k > 2$:

$$l_k(x_1, \ldots, x_k) = \begin{cases} -(-1)^{\frac{k(k-1)}{2}} l_{v_1 \wedge \cdots \wedge v_k} \omega & \text{if } |x_1| = \cdots = |x_k| = 0, \\ 0 & \text{otherwise}, \end{cases}$$

where $x = v + \eta^*$ denotes a generic element $(\eta^0, \eta^1, \ldots, v + \eta^{n-1})$ in the chain complex.

Definition 3.1.3. We call the Lie n-algebra $L_\infty(X,\omega)$ defined in the statement of Proposition 3.1.2 the L_∞-algebra of local observables on (X, ω).

Remark 3.1.4. The projection map of def. 3.1.3 uniquely extends to a morphism of L_∞-algebras of the form $L_\infty(X,\omega) \xrightarrow{\pi} \mathfrak{X}_\text{Ham}(X)$, i.e., local observables of (X, ω) cover Hamiltonian vector fields. Below in [32] we turn to the classification of this map by an L_∞-algebra cocycle.

Example 3.1.5. If $n = 1$ then (X, ω) is a pre-symplectic manifold, the chain complex underlying $L_\infty(X,\omega) = \text{Ham}^1(X) = \{v + H \in \mathfrak{X}(X) \subset \mathcal{C}^\infty(X; \mathbb{R}) | \iota_v \omega + dH = 0\}$, and the Lie bracket is $[v_1 + H_1, v_2 + H_2] = [v_1, v_2] + \iota_{v_1} \wedge \omega$. If moreover ω is non-degenerate so that (X, ω) is symplectic, then the projection $v + H \mapsto H$ is a linear isomorphism $\text{Ham}^1(X) \xrightarrow{\sim} \mathcal{C}^\infty(X; \mathbb{R})$. It is easy to see that under this isomorphism $L_\infty(X,\omega)$ is the underlying Lie algebra of the usual Poisson algebra of functions. See also Prop. 2.3.9 in [8].

3.2. The Kirillov-Kostant-Souriau L_∞-algebra cocycle. Here we present an L_∞-algebra cocycle on the Lie algebra of Hamiltonian vector fields on a pre-n-plectic manifold, which generalizes the traditional KKS cocycle and the Heisenberg cocycle to higher geometry.

Definition 3.2.1. For X a smooth manifold, denote by $\mathcal{BH}(X,\mathfrak{bB}^{n-1}\mathbb{R})$ the abelian Lie $(n+1)$-algebra given by the chain complex $\Omega^0(X) \xrightarrow{d} \Omega^1(X) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n-1}(X) \xrightarrow{d} d \Omega^n(X)$, with $d \Omega^{n-1}(X)$ in degree zero.

Remark 3.2.2. The complex of def. 3.2.1 serves as a resolution of the cocycle complex $\Omega^0(X) \xrightarrow{d} \Omega^1(X) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n(X) \rightarrow 0$, for the de Rham cohomology of X up to degree $n - 1$ once delooped (i.e., shifted).
Proposition 3.2.3. Let \((X, \omega)\) be a \(pre-n\)-plectic manifold. The multilinear maps
\[
\omega[1] : v \mapsto -\iota_v \omega; \quad \omega[2] : v_1 \wedge v_2 \mapsto \iota_{v_1} \iota_{v_2} \omega; \quad \cdots
\]
\[
\omega[n+1] : v_1 \wedge v_2 \wedge \cdots \wedge v_{n+1} \mapsto -(-1)^{(n+1)} \iota_{v_1} \iota_{v_2} \cdots \iota_{v_{n+1}} \omega
\]
define an \(L_\infty\)-morphism \(\omega[\bullet] : \mathfrak{X}_{\text{Ham}}(X) \to BH(X, \mathbb{B}^{n-1})\), and hence an \(L_\infty\)-algebra \((n+1)\)-cocycle on the Lie algebra of Hamiltonian vector fields, def. [2.7.3] with values in the abelian \((n+1)\)-algebra of def. [3.2.4].

Proof. First notice that the underlying map on chain complexes is indeed well defined: by definition of Hamiltonian vector fields, if \(v\) is Hamiltonian, then there exists an \((n-1)\)-form \(H\) such that \(\iota_v \omega + dH = 0\) and so \(\omega[\bullet]\) takes values in \(BH(X, \mathbb{B}^{n-1})\). In general, an \(L_\infty\)-algebra morphism \(f : \mathfrak{g} \to \mathfrak{h}\) from a Lie algebra \(\mathfrak{g}\) to an abelian Lie \((n+1)\)-algebra \(\mathfrak{h}\) is equivalently a collection of linear maps \(\{f_k : \wedge^k \mathfrak{g} \to \mathfrak{h}\}_{k=1}^{\infty}\) with \(|f| = k - 1\) and such that the following identities hold for all \(k \geq 1\)
\[
d_h f_k(v_1 \wedge \cdots \wedge v_k) = \sum_{i<j} (-1)^{i+j} f_{k-1}([v_i, v_j]_\mathfrak{g} \wedge v_1 \wedge \cdots \wedge \hat{v_i} \wedge \cdots \wedge \hat{v_j} \wedge \cdots \wedge v_k). \]

Therefore, checking that \(\omega[\bullet]\) is an \(L_\infty\)-morphism reduces to checking the identities
\[
d \iota_{v_1} \wedge \cdots \wedge v_p \omega = \sum_{i<j} (-1)^{i+j+k} \iota_{[v_i, v_j]} \wedge v_1 \wedge \cdots \wedge \hat{v_i} \wedge \cdots \wedge \hat{v_j} \wedge \cdots \wedge v_k + \omega.
\]
These are satisfied — since the \(\omega\) is closed and the \(v_i\) are Hamiltonian — by Lemma 8.1.1.

Definition 3.2.4. The degree \((n+1)\) higher Kirillov-Kostant-Souriau \(L_\infty\)-cocycle associated to the \(pre-n\)-plectic manifold \((X, \omega)\) is the \(L_\infty\)-morphism \(\mathfrak{X}_{\text{Ham}}(X) \to BH(X, \mathbb{B}^{n-1})\) given in Prop. [3.2.3].

If \(\rho : \mathfrak{g} \to \mathfrak{X}_{\text{Ham}}(X)\) is a \(L_\infty\)-morphism encoding an action of an \(L_\infty\)-algebra \(\mathfrak{g}\) on \((X, \omega)\), then the composite \(\rho^* \omega[\bullet]\) is the corresponding Heisenberg \(L_\infty\)-algebra cocycle. This terminology is motivated by the following example [3.2.5]. Further discussion of this aspect is below in Section 4.4.

Example 3.2.5. Let \(V\) be a vector space equipped with a skew-symmetric multilinear form \(\omega : \wedge^{n+1} V \to \mathbb{R}\). Since \(V\) is an abelian Lie group, we obtain via left-translation of \(\omega\) a unique closed invariant form, which we also denote as \(\omega\). By identifying \(V\) with left-invariant vector fields on \(V\), the Poincare lemma implies that we have a canonical inclusion \(j_V : V \to \mathfrak{X}_{\text{Ham}}(V)\) of \(V\) regarded as an abelian Lie algebra into the Hamiltonian vector fields on \((V, \omega)\) regarded as a \(pre\ n\)-plectic manifold. Since \(V\) is contractible as a topological manifold, we have, by remark 3.2.2, a quasi-isomorphism \(BH(V, \mathbb{B}^{n-1}) \cong \mathbb{R}[n]\) of abelian \(L_\infty\)-algebras, given by evaluation at 0. Under this equivalence the restriction of the \(L_\infty\)-algebra cocycle \(\omega[\bullet]\) of def. 3.2.4 along \(j_V\) is an \(L_\infty\)-algebra map of the form \(j_V^* \omega[\bullet] : V \to \mathbb{R}[n]\) whose single component is the linear map \(\iota_{(-)} \omega : \wedge^{n+1} V \to \mathbb{R}\). For \(n = 1\) and \((V, \omega)\) an ordinary symplectic vector space the map \(\iota_{(-)} \omega : V \wedge V \to \mathbb{R}\) is the traditional Heisenberg cocycle.

Remark 3.2.6. The KKS \((n+1)\)-cocycle has a natural geometric origin as the Lie differentiation of a morphism of higher smooth groups canonically arising in higher geometric prequantization, see [12]. This can be seen as a deeper conceptual justification for def. 3.2.4.

3.3. The Kirillov-Kostant-Souriau \(L_\infty\)\-extension. Using the results presented above, we can now state and prove the main theorem of this section.

Theorem 3.3.1. Given a \(pre-n\)-plectic manifold \((X, \omega)\), the higher KKS \(L_\infty\)-cocycle \(\omega[\bullet]\) (def. 3.2.4) and the projection map \(\pi_L : L_\infty(X, \omega) \to \mathfrak{X}_{\text{Ham}}(X)\) (rem. 3.1.4) form a homotopy fiber
sequence of \(L_\infty\)-algebras, i.e., fit into a homotopy pullback diagram of the form

\[
\begin{array}{c}
L_\infty(X, \omega) \\
\downarrow \pi_L \\
\mathcal{X}_{\text{Ham}}(X) \\
\mathcal{X}_{\text{Ham}}(X) \mathcal{B}H(X, \mathcal{B}^{n-1} \mathbb{R})
\end{array}
\]

Proof. By theorem[3.0.3] it is sufficient to replace the map of chain complexes \(0 \to \mathcal{B}H(X, \mathcal{B}^{n-1} \mathbb{R})\) by any degewise surjection \(K \xrightarrow{\pi_R} \mathcal{B}H(X, \mathcal{B}^{n-1} \mathbb{R})\) out of an exact chain complex \(K\), such that its pullback along \(\omega_1\) is isomorphic to the underlying chain complex of \(L_\infty(X, \omega)\) and then to show that the \(L_\infty\)-structure of \(L_\infty(X, \omega)\) sits compatibly in the resulting square diagram. We take \(K\) to be the cone of the identity of the chain complex \(\Omega^0(X) \xrightarrow{\partial_0} \Omega^1(X) \xrightarrow{\partial_1} \cdots \xrightarrow{\partial_{n-1}} \Omega^{n-1}(X)\) with \(\Omega^{n-1}(X)\) in degree zero, and take \(\pi_R\) to be the chain map given by the vertical arrows in the following diagram:

\[
\begin{array}{ccccccccc}
\Omega^0(X) & \xrightarrow{\partial} & \Omega^1(X) & \xrightarrow{\partial} & \cdots & \xrightarrow{\partial} & \Omega^{n-1}(X) \\
\downarrow \text{id} & \downarrow \text{id} & \downarrow \text{id} & \cdots & \downarrow \text{id} & \downarrow \text{id} \\
\Omega^0(X) & \xrightarrow{\partial} & \Omega^1(X) & \xrightarrow{\partial} & \cdots & \xrightarrow{\partial} & \Omega^{n-1}(X) \\
\downarrow \text{id}_{\oplus 0} & \downarrow \text{id}_{\oplus 0} & \downarrow \text{id}_{\oplus 0} & \cdots & \downarrow \text{id}_{\oplus 0} & \downarrow \text{id}_{\oplus 0} \\
\Omega^0(X) & \xrightarrow{\partial} & \Omega^1(X) & \xrightarrow{\partial} & \cdots & \xrightarrow{\partial} & \Omega^{n-1}(X) \\
\downarrow \text{id} & \downarrow \text{id} & \downarrow \text{id} & \cdots & \downarrow \text{id} & \downarrow \text{id} \\
\Omega^0(X) & \xrightarrow{\partial} & \Omega^1(X) & \xrightarrow{\partial} & \cdots & \xrightarrow{\partial} & \Omega^{n-1}(X) \\
\end{array}
\]

By inspection and comparison with prop. [3.1.2] it is easy to see that the fiber product of chain complexes \(K\) and \(\mathcal{X}_{\text{Ham}}(X)\) over \(\mathcal{B}H(X, \mathcal{B}^{n-1} \mathbb{R})\) is the chain complex \(L_\infty(X, \omega)\) that underlies the \(L_\infty\)-algebra of local observables:

\[
\begin{array}{c}
L_\infty(X, \omega) \xrightarrow{f_1} K \\
\mathcal{X}_{\text{Ham}}(X) \xrightarrow{\omega} \mathcal{B}H(X, \mathcal{B}^{n-1} \mathbb{R})
\end{array}
\]

where \(f_1\) is the morphism

\[
f_1: v + \eta \mapsto \begin{pmatrix}
0 & 0 & \cdots & 0 \\
\eta^0 & \eta^1 & \cdots & \eta^{n-3} \\
\eta^1 & \eta^2 & \cdots & \eta^{n-2} \\
\eta^2 & \eta^3 & \cdots & \eta^{n-1}
\end{pmatrix}.
\]

As we already observed in remark [3.1.4] the chain map underlying \(\pi_L\) uniquely extends to an \(L_\infty\)-algebra morphism. Therefore to complete the proof, it is sufficient to show that we can lift the horizontal chain map \(f_1\) above to a morphism of \(L_\infty\)-algebras which makes the diagram

\[
\begin{array}{c}
L_\infty(X, \omega) \xrightarrow{f} K \\
\mathcal{X}_{\text{Ham}}(X) \xrightarrow{\omega} \mathcal{B}H(X, \mathcal{B}^{n-1} \mathbb{R})
\end{array}
\]

commute. This is easily realized by defining the “Taylor coefficients” of \(f\) for \(k \geq 2\) to be the degree \((k-1)\) maps \(f_k : \wedge^k L_\infty(X, \omega) \to K\) given by

\[
f_k : (v_1 + \eta^1_k) \wedge \cdots \wedge (v_k + \eta^k_k) \mapsto \begin{pmatrix}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
(-1)^{v_1 + \cdots + v_k + \omega} & 0 & \cdots & 0
\end{pmatrix}.
\]
3.4. The Heisenberg L_∞-extension. If a Lie algebra \mathfrak{g} acts on an n-plectic manifold by Hamiltonian vector fields, then the KKS L_∞-extension of $\mathfrak{X}_{\text{Ham}}(X)$, discussed above in \[\text{[3.4.2]}\] restricts to an L_∞-extension of \mathfrak{g}. This is a generalization of Kostant’s construction \[\text{[21]}\] of central extensions of Lie algebras to the context of L_∞-algebras. Perhaps the most famous of these central extensions is the Heisenberg Lie algebra, which is the inspiration behind the following terminology:

Definition 3.4.1. Let (X,ω) be a pre-n-plectic manifold and let $\rho : \mathfrak{g} \to \mathfrak{X}_{\text{Ham}}(X)$ be a Lie algebra homomorphism encoding an action of \mathfrak{g} on X by Hamiltonian vector fields. The corresponding **Heisenberg L_∞-algebra extension** $\mathfrak{heis}_\rho(\mathfrak{g})$ of \mathfrak{g} is the extension classified by the composite L_∞-morphism $\omega[\bullet] \circ \rho$, i.e., the homotopy pullback on the left of

$$
\begin{array}{ccc}
\mathfrak{heis}_\rho(\mathfrak{g}) & \longrightarrow & L_\infty(X,\omega) \\
\downarrow & & \downarrow \\
\mathfrak{g} & \longrightarrow & \mathfrak{X}_{\text{Ham}}(X) \\
\rho & & \omega[\bullet] \\
\end{array}
$$

Remark 3.4.2. It is natural to call an L_∞-morphism with values in the L_∞-algebra of observables of a pre-n-plectic manifold (X,ω) an ‘L_∞ comoment map’, which generalizes the familiar notion in symplectic geometry. Hence, one could say that an action ρ of a Lie algebra \mathfrak{g} on a pre-n-plectic manifold (X,ω) via Hamiltonian vector fields naturally induces such a co-moment map from the Heisenberg L_∞-algebra $\mathfrak{heis}_\rho(\mathfrak{g})$.

Example 3.4.3. For (V,ω) a symplectic vector space regarded as a symplectic manifold, the translation action of V on itself is via Hamiltonian vector fields (see example \[\text{[2.1.2]}\]). If one denotes by $\rho : V \to \mathfrak{X}_{\text{Ham}}(X)$ this action, then the induced Heisenberg L_∞-extension is the traditional Heisenberg Lie algebra.

Example 3.4.4. Let G be a (connected) compact simple Lie group, regarded as a 2-plectic manifold with its canonical 3-form $\omega := \langle -,[-,-] \rangle$ as in example \[\text{[2.1.2]}\]. The infinitesimal generators of the action of G on itself by right translation are the left invariant vector fields \mathfrak{g}, which are Hamiltonian. We have $H^1_{\text{dr}}(G) \cong H^1_{\text{CE}}(\mathfrak{g},\mathbb{R}) = 0$, and therefore a weak equivalence: $\text{BH}(G,\mathcal{B}\mathbb{R}) \simeq \mathbb{R}[2]$ given by the evaluation at the identity element of G. The resulting composite cocycle

$$
\langle -,[-,-] \rangle : \mathfrak{g} \longrightarrow \mathfrak{X}_{\text{Ham}}(X) \longrightarrow \mathbb{R}[2]
$$

is exactly the Lie algebra 3-cocycle that classifies the String Lie 2-algebra. By theorem \[\text{[B.0.8]}\] the String Lie 2-algebra is the homotopy fiber of this cocycle, in that we have a homotopy pullback square of L_∞-algebras

$$
\begin{array}{ccc}
\text{string}_{\mathfrak{g}} & \longrightarrow & 0 \\
\downarrow & & \downarrow \\
\mathfrak{g} & \longrightarrow & \mathbb{R}[2]
\end{array}
$$

Hence, the String Lie 2-algebra $\text{string}_{\mathfrak{g}}$ is the Heisenberg Lie 2-algebra of the 2-plectic manifold $(G,\langle -,[-,-] \rangle)$ with its canonical \mathfrak{g}-action ρ, i.e., $\mathfrak{heis}_\rho(\mathfrak{g}) \simeq \text{string}_{\mathfrak{g}}$. The relationship between $\text{string}_{\mathfrak{g}}$ and $L_\infty(G,\omega)$ was first explored in \[\text{[4]}\].

4. The dg-Lie algebra of infinitesimal quantomorphisms

The L_∞-algebra $L_\infty(X,\omega)$ discussed above in Section \[\text{[3]}\] has the nice property that the definition of its brackets generalizes the definition of the traditional Poisson bracket in an elegant way. We now present another L_∞-algebra that looks a little less elegant in components, but has a more manifest conceptual interpretation, namely as the dg-Lie algebra of infinitesimal automorphisms of a $U(1)$-n-bundle with connection that cover the diffeomorphisms of the base.
A main result of this section is Thm. 4.2.2 which establishes a weak equivalence between the aforementioned dg Lie algebra and $L_\infty(M,\omega)$.

4.1. Quantomorphism n-groups. Since, by definition, a prequantization of a pre-n-plectic manifold (X,ω) is a morphism of higher stacks $X \to B^nU(1)_{\text{conn}}$, a prequantized pre-$n$-plectic manifold is naturally an object in the overcategory (or “slice topos”) $H_{/B^nU(1)_{\text{conn}}}$. This leads to the following definition.

Definition 4.1.1. Let $\nabla_0, \nabla_1 : X \to B^nU(1)_{\text{conn}}$ be two morphisms representing (or “modulating”) principal $U(1)$-n-bundles with connection on X. A 1-morphism $(\phi, \eta) : \nabla_0 \to \nabla_1$ in $H_{/B^nU(1)_{\text{conn}}}$ is a homotopy commutative diagram of the form

$$
\begin{array}{ccc}
X & \xrightarrow{\phi} & X \\
\nabla_0 & \xleftarrow{\eta} & \nabla_1 \\
\downarrow & & \downarrow \\
B^nU(1)_{\text{conn}} & & B^nU(1)_{\text{conn}}
\end{array}
$$

A 2-morphism $(k, h) : (\phi_1, \eta_1) \to (\phi_2, \eta_2)$ is only between 1-morphisms such that $\phi_1 = \phi_2$ and is given by a homotopy commutative diagram of the form

$$
\begin{array}{ccc}
X & \xrightarrow{\phi_1=\phi_2} & X \\
\nabla_0 & \xleftarrow{k, \eta_1} & \nabla_1 \\
\downarrow & & \downarrow \\
B^nU(1)_{\text{conn}} & & B^nU(1)_{\text{conn}}
\end{array}
$$

where one has the (undisplayed) 2-arrow η_2 on the back face of the diagrams and an undisplayed 3-arrow $h : k \circ \eta_1 \to \eta_2$ decorating the bulk of the 3-simplex. Higher morphisms are defined similarly.

Remark 4.1.2. Since we are dealing with a commutative diagram of morphisms between (higher) stacks, we have the homotopy η appearing here as part of the data of the commutative diagram defining a 1-morphism. In particular, isomorphisms (or better, equivalences) between ∇_0 and ∇_1 will be pairs (ϕ, η) consisting of a diffeomorphism $\phi : X \to X$ and a gauge transformation of higher connections $\eta : \phi^*\nabla_1 \cong \nabla_0$. In particular, for the 1-plectic (i.e., symplectic) case, ∇_0 and ∇_1 correspond to principal $U(1)$-bundles with connection. If X is compact, then the 1-morphisms between them correspond to “strict contactomorphisms” $(P_0, A_0) \to (P_1, A_1)$ between the total spaces of the bundles with their connection 1-forms $A_i \in \Omega^1(P_i; \mathbb{R})$ regarded as “regular” contact forms. If $\nabla = \nabla_0 = \nabla_1$ and ∇ is regarded as the prequantization of its curvature, i.e., the symplectic 2-form ω, then such a contactomorphism is often called a *quantomorphism* in the geometric quantization literature.

The automorphisms $\text{Aut}_{/B^nU(1)_{\text{conn}}} (\nabla)$ of any object $\nabla \in H_{/B^nU(1)_{\text{conn}}}$ form an “n-group” (see, for example, Sec. 2.3 of [23]). And so, motivated by the terminology used in the above remark, we introduce the following definition.

Definition 4.1.3. Let $\nabla : X \to B^nU(1)_{\text{conn}}$ be a morphism modulating a $U(1)$-n-bundle with connection. The *quantomorphism n-group* of ∇, denoted $\text{QuantMorph}(\nabla)$, is the automorphism n-group $\text{Aut}_{/B^nU(1)_{\text{conn}}} (\nabla)$ equipped with its natural smooth structure.

Remark 4.1.4. In the above definition we described $\text{QuantMorph}(\nabla)$ as a “smooth n-group”. In order to make this precise, we need to say what a smooth family of automorphisms is. This is systematically done by working with smooth families from the very beginning, i.e., by replacing the hom-spaces $H(X, B^nU(1)_{\text{conn}})$ by what we call the “concretification” of the internal homs (the higher mapping stacks) $[X, B^nU(1)_{\text{conn}}]$. See Sec. 2.3.2 of [12] for precise discussion of this aspect. The intuition behind this smooth structure - which is all that we need for our purposes here - is that all local bundle data depend smoothly on a parameter varying in the base.
4.2. Infinitesimal quantumomorphisms as a strict model for the L_∞-algebra of observables.

Since the quantumomorphism n-group $\text{QuantMorph}(\nabla)$ is equipped with a smooth structure, it has a notion of “tangent vectors”. Roughly speaking, these correspond to maps out of the formal infinitesimal interval, $\text{Spec}(\mathbb{R}[\epsilon]/(\epsilon^2)) \to \text{QuantMorph}(\nabla)$. So it is not surprising that there is also an abstract notion of “Lie differentiation” in this context which, when applied to the smooth n-group $\text{QuantMorph}(\nabla)$, produces not a Lie algebra, but rather a Lie n-algebra, which will be denoted $\text{Lie}(\text{QuantMorph}(\nabla))$. (See Sec. 3.10.9 and Sec. 4.5.1.2 in [30] for more details on Lie differentiation).

The defining equations of $\text{Lie}(\text{QuantMorph}(\nabla))$ can be conceptually described as the infinitesimal versions of the defining equations for the quantumomorphism n-group. In particular, a degree zero element in $\text{Lie}(\text{QuantMorph}(\nabla))$ will be an infinitesimal version of a pair $(\phi : X \to X, h : \phi^*\nabla \to \nabla)$, i.e., a pair (v, b) consisting of a vector field v on X and an “infinitesimal homotopy” b such that $b : \mathcal{L}_v\nabla \to 0$, where \mathcal{L}_v is the Lie derivative along v. Degree 1 elements in $\text{Lie}(\text{QuantMorph}(\nabla))$ will be homotopies between the b's, and so on. The notion of taking the Lie derivative of a morphism of higher stacks may give pause, but it has an obvious interpretation if we represent the map $\nabla : X \to B^nU(1)_{conn}$ as a Čech-Deligne cocycle \bar{A} on X (def. 2.2). In this context, $\mathcal{L}_v\nabla$ corresponds to the usual Lie derivative $\mathcal{L}_v\bar{A}$ for vector fields acting on differential forms. Moreover, in this context the Dold-Kan correspondence tells us that, for example, an infinitesimal homotopy $b : \mathcal{L}_v\nabla \to 0$ is simply an element θ of the total Čech-de Rham complex $(\text{Tot}^*(\mathcal{U}, \omega), d_{\text{Tot}})$ satisfying $\mathcal{L}_v\bar{A} = d_{\text{Tot}}\theta$. The above discussion is the intuition behind the following:

Definition/Proposition 4.2.1. Let X be a smooth manifold and $n \in \mathbb{N}$. If \bar{A} is a Čech-Deligne n-cocycle on X relative to some cover \mathcal{U}, then the $d\mathbb{g}$ Lie algebra of infinitesimal quantumomorphisms

$$\text{dgLie}_{\text{Qu}}(X, \bar{A})$$

is the strict Lie n-algebra whose underlying complex is

$$\text{dgLie}_{\text{Qu}}(X, \bar{A})^0 = \{v + \tilde{\theta} \in \mathfrak{x}(M) \oplus \text{Tot}^{n-1}(\mathcal{U}, \omega) \mid \mathcal{L}_v\bar{A} = d_{\text{Tot}}\bar{\theta}\},$$

with differential

$$\text{dgLie}_{\text{Qu}}(X, \bar{A})^{n-1} \xrightarrow{d_{\text{Tot}}} \text{dgLie}_{\text{Qu}}(X, \bar{A})^n \cdots \xrightarrow{d_{\text{Tot}}} \text{dgLie}_{\text{Qu}}(X, \bar{A})^1 \xrightarrow{0 \oplus d_{\text{Tot}}} \text{dgLie}_{\text{Qu}}(X, \bar{A})^0,$$

and whose graded Lie bracket is the semidirect product bracket for the Lie algebra of vector fields acting on differential forms by Lie derivative:

\[
[v_1 + \bar{\theta}_1, v_2 + \bar{\theta}_2] = [v_1, v_2] + \mathcal{L}_{v_1}\bar{\theta}_2 - \mathcal{L}_{v_2}\bar{\theta}_1; \quad [v + \bar{\theta}, \bar{n}] = -[\bar{n}, v + \bar{\theta}] = \mathcal{L}_v\bar{n}; \quad [\bar{n}, \bar{n}] = 0.
\]

The next theorem reveals the relationship between the above dgla of infinitesimal quantumomorphisms and the L_∞-algebra of local observables. It is the higher analogue of the well-known fact in traditional prequantization that the underlying Lie algebra of the Poisson algebra on a prequantized symplectic manifold is isomorphic to the Lie algebra of $U(1)$-invariant connection-preserving vector fields on the total space of the prequantum bundle.

Theorem 4.2.2. Let (X, ω) be an integral pre-n-plectic manifold (def. 2.1.1), \mathcal{U} a good open cover of X, and ∇ a prequantization of (X, ω) (def. 2.2.4) presented by a Čech-Deligne cocycle $\bar{A} = \sum_{i=0}^n A^{n-i}$ in $\text{Tot}^n(\mathcal{U}, U(1)_{\text{Del}})$. There exists an L_∞-quasi-isomorphism $f : L_\infty(X, \omega) \xrightarrow{\simeq} \text{dgLie}_{\text{Qu}}(X, \bar{A})$ between the L_∞-algebra of local observables (def. 3.1.3) and the dgla of infinitesimal quantumomorphisms (def. 4.2.1), whose linear term is

\[
f_1(x) = \begin{cases} v - H|_\mathcal{U}_x + \sum_{i=0}^n (-1)^i v_i A^{n-i} & \forall x = v + H \in \text{Ham}^{n-1}(X) \\ -x|_\mathcal{U}_x & \forall x \in \Omega^{n-1-i}(X) \quad i \geq 1 \end{cases}
\]

and whose higher components f_k are explicitly determined by Eq. A.1.10.
Proof. The linear morphism f_1 is essentially the familiar quasi-isomorphism between the de Rham complex and the total Čech-de Rham complex. Proving that f_1 lifts to an L_{∞}-morphism and explicitly determining the higher components of this L_{∞}-morphism is a lengthy but straightforward computation. We report it in Appendix A. □

Remark 4.2.3. By homological perturbation theory [19] one knows that there must exist some L_{∞} algebra structure on the chain complex

$$\Omega^0(X) \xrightarrow{d} \Omega^1(X) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n-2}(X) \xrightarrow{(0,d)} \text{Ham}^{n-1}(X)$$

making it an L_{∞}-algebra quasi-isomorphic to the dgla $dgLie_{Qu}(X, \bar{A})$. The remarkable information provided by Theorem 4.2.2 is that this L_{∞} algebra structure is identified with that provided by Proposition 3.1.2.

Corollary 4.2.4. The image of the natural projection $dgLie_{Qu}(X, \bar{A}) \rightarrow \mathfrak{x}(X)$ is the subspace $\mathfrak{x}_{\text{Ham}}(X)$ of Hamiltonian vector fields. That is, the infinitesimal quantomorphisms cover infinitesimal Hamiltonian n-plectomorphisms.

Remark 4.2.5. Theorem 4.2.2 implies that $dgLie_{Q}(X, \bar{A})$ is independent, up to equivalence, of the choice of prequantization \bar{A} of ω. It also says that $dgLie_{Q}(X, \bar{A})$ is a ‘rectification’ or ‘semi-strictification’ of the L_{∞}-algebra $L_{\infty}(X, \omega)$.

5. Inclusion into Atiyah and Courant L_{∞}-algebras

If (X, ω) is a prequantized symplectic manifold, and (P, A) is the corresponding prequantum bundle, then there is an embedding, induced by the morphism given in Thm. 4.2.2, of the Lie algebra of observables on X into the Lie algebra of $U(1)$-invariant vector fields on P. The latter is the Lie algebra of global sections of the Atiyah algebroid of P (see, for example, Sec. 2 of [33] and Def. 5.1.1 below). The integrated analog of this embedding is a canonical map from the group of quantomorphisms to the group of bisections [11, Chap. 15] of the Lie groupoid that integrates the Atiyah algebroid. This groupoid is usually called the gauge groupoid of P, but we prefer to call it the 'Atiyah groupoid'. Likewise, we call its group of bisections the 'Atiyah group'. Such a bisction is just an equivariant diffeomorphism of P covering a diffeomorphism of the base X, and hence it “forgets” the connection 1-form A.

In analogy with the above, we now explain how similar embeddings of quantomorphisms naturally arise in the higher case. This provides the motivation for the Lie-theoretic results presented in this section.

5.0.1. Higher Atiyah groups and the Courant n-group. Recall from Section 2.22 that the n-stack $B^{n}U(1)_{\text{conn}}$ is presented via the Dold-Kan correspondence by the presheaf of chain complexes

$$C^{\infty}(-; U(1)) \xrightarrow{d \log} \Omega^1(-) \xrightarrow{d} \Omega^2(-) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n(-)$$

with $\Omega^n(-)$ in degree zero. We can also consider the n-stack $B(B^{n-1}U(1)_{\text{conn}})$, which is the delooping of the $(n-1)$ stack $B^{n-1}U(1)_{\text{conn}}$. It is presented by the presheaf

$$C^{\infty}(-; U(1)) \xrightarrow{d \log} \Omega^1(-) \xrightarrow{d} \Omega^2(-) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n-1}(-) \rightarrow 0$$
with $\Omega^{n-1}(-)$ in degree 1. In general, there is more, namely a commutative diagram

$$
\begin{array}{cccccccc}
C^\infty(-; U(1)) & \overset{\text{diag}}{\longrightarrow} & \Omega^1(-) & d & \cdots & d & \Omega^{n-1}(-) & d & \Omega^n(-) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
C^\infty(-; U(1)) & \overset{\text{diag}}{\longrightarrow} & \Omega^1(-) & d & \cdots & d & \Omega^{n-1}(-) & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\cdots & & \cdots & & \cdots & & \cdots & & \cdots \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
C^\infty(-; U(1)) & \overset{\text{diag}}{\longrightarrow} & 0 & d & \cdots & 0 & 0 & 0 & 0
\end{array}
$$

corresponding to a sequence of natural forgetful morphisms of stacks

$$
\mathcal{B}^n U(1)_{\text{conn}} \to \mathcal{B}(\mathcal{B}^{n-1} U(1)_{\text{conn}}) \to \mathcal{B}^2(\mathcal{B}^{n-2} U(1)_{\text{conn}}) \to \cdots \to \mathcal{B}^n U(1),
$$

where at each step the top differential form data for the connection are forgotten.

If $\nabla : X \to \mathcal{B}^n U(1)_{\text{conn}}$ is the morphism representing a $U(1)$-n-bundle with connection on a smooth manifold X, then the forgetful morphisms realize X both as an object over $\mathcal{B}(\mathcal{B}^{n-1} U(1)_{\text{conn}})$ and as an object over $\mathcal{B}^n U(1)$. Therefore we have a sequence of automorphism n-groups of ∇:

$$
\text{Aut}_{/\mathcal{B}^n U(1)_{\text{conn}}} (\nabla) \to \text{Aut}_{/\mathcal{B}(\mathcal{B}^{n-1} U(1)_{\text{conn}})} (\nabla) \to \text{Aut}_{/\mathcal{B}^n U(1)} (\nabla).
$$

All of these automorphism n-groups have a smooth structure and are "concretified" in the sense of Remark 1.4. We call the n-group $\text{Aut}_{/\mathcal{B}^n U(1)} (\nabla)$ the ‘Atiyah n-group’ of ∇, since for the case $n = 1$, it is the previously mentioned Atiyah group. We call $\text{Aut}_{/\mathcal{B}(\mathcal{B}^{n-1} U(1)_{\text{conn}})} (\nabla)$ the ‘Courant n-group’ of ∇, since for the $n = 2$ case it can be thought of as the object that integrates the Courant Lie 2-algebra. (see Def. 5.2.2 below). A more detailed discussion of these objects as the bisections of smooth ∞-groupoids appears in [12].

Conceptually speaking, the infinitesimal analogue of the above sequence of n-groups is a sequence of Lie n-algebras

$$
\text{LieQuantMorph}(\nabla) \to \text{LieCourant}(\nabla) \to \text{LieAtiyah}(\nabla),
$$

where $\text{LieQuantMorph}(\nabla)$ is the Lie n-algebra of infinitesimal quantomorphisms described in the beginning of Sec. 1.2. The elements of $\text{LieAtiyah}(\nabla)$ are to be thought of as those infinitesimal autoequivalences which preserve only the underlying $U(1)$-n-bundle of ∇, while $\text{LieCourant}(\nabla)$ consists of those infinitesimal autoequivalences which preserve all of the connection data on the n-bundle except the highest degree part.

Recall that we modeled the Lie n-algebra $\text{LieQuantMorph}(\nabla)$ by using the dg Lie algebra $\text{dgLie}_{\mathcal{Q}_n}(X, \hat{\Lambda})$ given in Def/Prop. 1.2.1. Similarly, we define below dg Lie algebras which can be thought of as models for $\text{LieAtiyah}(\nabla)$ and $\text{LieCourant}(\nabla)$ for the $n = 1$ and $n = 2$ cases. We consider these particular cases in order to relate our results to the traditional theory of prequantum $U(1)$-bundles and also more recent work on Courant algebroids and $U(1)$-bundle gerbes.

5.1. **The $n = 1$ case.** Here (X, ω) is an ordinary pre-symplectic manifold, and the algebra of local observables $L_\infty(X, \omega)$ (Def. 3.1.3) is the underlying Lie algebra of the Poisson algebra of Hamiltonian functions. A prequantization ∇ is an ordinary $U(1)$-principal bundle with connection over X.

From any closed 2-form ω, one can construct a Lie algebroid over X whose global sections form the following Lie algebra (see for example, Sec. 2 of [33]):
Definition 5.1.1. Let \((X, \omega)\) be a presymplectic manifold. The Atiyah Lie algebra \(\mathfrak{atiyah}(X, \omega)\) is the vector space \(\mathfrak{X}(X) \oplus C^\infty(X; \mathbb{R})\) endowed with the Lie bracket
\[
[v_1 + c_1, v_2 + c_2]_{\mathfrak{atiyah}} = [v_1, v_2] + \mathcal{L}_{v_1}c_2 - \mathcal{L}_{v_2}c_1 - \omega(v_1, v_2).
\]

Obviously the underlying vector space of the Lie algebra \(L_\infty(X, \omega)\) is a subspace of \(\mathfrak{atiyah}(X, \omega)\).

A straightforward calculation shows that the inclusion
\[
L_\infty(X, \omega) \hookrightarrow \mathfrak{atiyah}(X, \omega)
\]
is a Lie algebra morphism. Just like in our construction of the dglA \(\text{dglLie}_{Qu}(\mathcal{X}, \mathcal{A})\) (Def/Prop 4.2.1), we now represent the prequantization \(\nabla\) by a Čech-Deligne 1-cocycle \((2.2)\), and obtain a model for \(\text{LieAtiyah}(\nabla)\).

Definition 5.1.2. If \(\mathcal{A} = A^1 + A^0\) is a Čech-Deligne 1-cocycle on \(X\) relative to some cover \(\mathcal{U}\), then \(\text{LieAlg}_{\text{At}}(X, \mathcal{A})\) is the Lie algebra whose underlying vector space is
\[
\text{LieAlg}_{\text{At}}(X, \mathcal{A}) = \{ v + \bar{\theta} \in \mathfrak{X}(X) \oplus C^0(\mathcal{U}; \Omega^0) \mid \mathcal{L}_v A^0 = \delta \bar{\theta} \}
\]
with Lie bracket \([v_1 + \bar{\theta}_1, v_2 + \bar{\theta}_2]_{\text{At}} = [v_1, v_2] + \mathcal{L}_{v_1} \bar{\theta}_2 - \mathcal{L}_{v_2} \bar{\theta}_1\).

Since \(\mathcal{L}_v A^0 = \iota_v d \log A^0\), it is easy to see that an element of \(\text{LieAlg}_{\text{At}}(X, \mathcal{A})\) is the local data corresponding to a \(U(1)\)-invariant vector field on the total space \(P\) of the prequantum bundle, i.e., a global section of the Atiyah algebroid \(TP/U(1) \to X\). Moreover, by construction, there is an inclusion of Lie algebras
\[
dg\text{Lie}_{Qu}(X, \mathcal{A}) \hookrightarrow \text{LieAlg}_{\text{At}}(X, \mathcal{A})
\]
exhibiting the infinitesimal quantomorphisms as the Lie subalgebra of vector fields on \(P\) that preserve the connection.

The following proposition describes the relationship between \(\text{LieAlg}_{\text{At}}(X, \mathcal{A})\) and \(\mathfrak{atiyah}(X, \omega)\), which one can think of as an extension of Thm. 4.2.2 for the \(n = 1\) case.

Proposition 5.1.3. There exists a natural Lie algebra isomorphism
\[
\psi: \mathfrak{atiyah}(X, \omega) \xrightarrow{\cong} \text{LieAlg}_{\text{At}}(X, \mathcal{A})
\]
such that the following diagram commutes
\[
\begin{array}{ccc}
\mathfrak{atiyah}(X, \omega) & \xrightarrow{\psi} & \text{LieAlg}_{\text{At}}(X, \mathcal{A}) \\
\downarrow & & \downarrow \\
L_\infty(X, \omega) & \xrightarrow{f} & \text{dgLie}_{Qu}(X, \mathcal{A})
\end{array}
\]
where \(f: L_\infty(M, \omega) \xrightarrow{\cong} \text{dgLie}_{Qu}(X, \mathcal{A})\) is the isomorphism of Lie algebras given in Thm. 4.2.2 and the vertical morphisms are the inclusions \((5.1.1)\) and \((5.1.2)\).

Proof. It follows from Thm. 4.2.2 that the isomorphism \(f: L_\infty(M, \omega) \xrightarrow{\cong} \text{dgLie}_{Qu}(X, \mathcal{A})\) is \(f(v + c) = v - c|_{\mathcal{U}_\alpha} + \iota_v A^1\). Hence, we define \(\psi: \mathfrak{atiyah}(X, \omega) \to \text{LieAlg}_{\text{At}}(X, \mathcal{A})\) to be \(\psi(v + c) = v - c|_{\mathcal{U}_\alpha} + \iota_v A^1\). Note that if \(\mathcal{L}_v A^0 = \delta \bar{\theta}\), then \(\delta(\bar{\theta} + \iota_v A^1) = 0\). Hence \(\psi\) is an isomorphism of vector spaces. The fact that \(\psi\) preserves the Lie brackets follows from the equalities \(\mathcal{L}_{v_1} \iota_{v_2} A^1 = \iota_{[v_1, v_2]} A^1 + \iota_{v_2} \iota_{v_1} A^1 = \iota_{v_1} \iota_{v_2} A^1 + \iota_{v_1 \wedge v_2} \omega\). \(\square\)

Remark 5.1.4. Note that the isomorphism \(\psi\) in the above Proposition uses the connection \(A\) to lift horizontally a vector field on \(M\) to a vector field on \(P\) in the standard way.
5.2. The $n = 2$ case. Here (X, ω) is a pre-2-plectic manifold. A prequantization ∇ of (X, ω) is a $U(1)$-bundle gerbe (or principal $U(1)$ 2-bundle) over X equipped with a 2-connection.

In addition to the Lie 2-algebra of local observables $L_\infty(X, \omega)$, there are two other Lie 2-algebras one can build directly from any closed 3-form ω. It seems that the first of these has not appeared previously in the literature, while the second one originates in Roytenberg and Weinstein’s work on Courant algebroids \cite{Roytenberg-Weinstein}. (The 2-term truncation we use here is due to subsequent work by Roytenberg \cite{Roytenberg}.)

Definition/Proposition 5.2.1. Let ω be a pre-2-plectic structure on X. The *Atiyah Lie 2-algebra* $\mathfrak{atiyah}(X, \omega)$ is the graded vector space

$$\mathfrak{atiyah}(X, \omega)^0 = \mathfrak{X}(X); \quad \mathfrak{atiyah}(X, \omega)^1 = \Omega^0(X);$$

endowed with the brackets

$$[\eta]^0_0 = 0; \quad [v_1, v_2]^0_0 = [v_1, v_2]; \quad [v, \eta]^0_2 = \mathcal{L}_v \eta; \quad [v_1, v_2, v_3]^0_3 = -\iota_{v_1} \wedge \iota_{v_2} \wedge \iota_{v_3} \omega$$

(with all other brackets zero by degree reasons).

Definition/Proposition 5.2.2. Let ω be a pre-2-plectic structure on X. The *Courant Lie 2-algebra* $\mathfrak{courant}(\omega)$ is the graded vector space

$$\mathfrak{courant}(X, \omega)^0 = \mathfrak{X}(X) \oplus \Omega^1(X); \quad \mathfrak{courant}(X, \omega)^1 = \Omega^0(X);$$

endowed with the brackets

$$[\eta]^1_1 = d\eta; \quad [v + \theta, \eta]^1_2 = \frac{1}{2} \iota_v d\eta$$

$$[v_1 + \theta_1, v_2 + \theta_2]^2_2 = [v_1, v_2] + \mathcal{L}_{v_1} \theta_2 - \mathcal{L}_{v_2} \theta_1 - \frac{1}{4} d(\iota_{v_1} \theta_2 - \iota_{v_2} \theta_1) - \iota_{v_1} \wedge \iota_{v_2} \omega$$

$$[v_1 + \theta_1, v_2 + \theta_2, v_3 + \theta_3]^3_3 = -\frac{1}{6} \bigl(\langle [v_1 + \theta_1, v_2 + \theta_2]^2_2, v_3 + \theta_3 \rangle + \text{cyc. perm.} \bigr)$$

where $\langle \ , \ \rangle$ is the natural symmetric pairing between sections of $T^* X \oplus TX$, i.e., $\langle v_1 + \theta_1, v_2 + \theta_2 \rangle := \iota_{v_1} \theta_2 + \iota_{v_2} \theta_1$ (and with all other brackets zero by degree reasons).

The relationship between these Lie 2-algebras is given by the next proposition.

Proposition 5.2.3. There exists a natural sequence of L_∞ morphisms

$$L_\infty(X, \omega) \xrightarrow{\phi} \mathfrak{courant}(X, \omega) \xrightarrow{\psi} \mathfrak{atiyah}(X, \omega),$$

where the nontrivial components of the morphism ϕ are

$$\phi_1(v + \theta) = v + \theta; \quad \phi_1(\eta) = \eta; \quad \phi_2(v_1 + \theta_1, v_2 + \theta_2) = -\frac{1}{2} (\iota_{v_1} \theta_2 - \iota_{v_2} \theta_1)$$

and the nontrivial components of the morphism ψ are

$$\psi_1(v + \theta) = v; \quad \psi_1(\eta) = \eta; \quad \psi_2(v_1 + \theta_1, v_2 + \theta_2) = -\frac{1}{2} (\iota_{v_1} \theta_2 - \iota_{v_2} \theta_1)$$

Proof. The fact that ϕ is an L_∞-morphism is the content of Thm. 7.1 in \cite{Roytenberg}. To show ψ is a L_∞-morphism, we first perform several straightforward computations using the Cartan calculus in order to obtain the following equalities:

$$\psi_2(d\eta, v + \theta) = \psi_1([\eta, v + \theta]^0_0] - [\psi_1(\eta), \psi_1(v + \theta)]^0_2;$$

$$[v_1 + \theta_1, v_2 + \theta_2, v_3 + \theta_3]^1_3 = -\frac{1}{4} (\iota_{v_1} \mathcal{L}_{v_2} \theta_3 - \iota_{v_2} \mathcal{L}_{v_3} \theta_1 + \text{cyc. perm.}) + \frac{1}{2} \iota_{v_1} \wedge \iota_{v_2} \wedge \iota_{v_3} \omega;$$

$$\psi_2([v_1 + \theta_1, v_2 + \theta_2]^2_2, v_3 + \theta_3] + \text{cyc. perm.} = -\frac{1}{4} (\iota_{v_1} \mathcal{L}_{v_2} \theta_1 - \iota_{v_2} \mathcal{L}_{v_3} \theta_1 + \text{cyc. perm.})$$

$$- (\iota_{v_1} \wedge \iota_{v_2} \theta_3 + \text{cyc. perm.}) - \frac{1}{2} \iota_{v_1} \wedge \iota_{v_2} \wedge \iota_{v_3} \omega;$$

$$[\psi_1(v_1 + \theta_1), \psi_2(v_2 + \theta_2, v_3 + \theta_3)]^1_3 + \text{cyc. perm.} = -\frac{1}{4} (\iota_{v_1} \mathcal{L}_{v_2} \theta_1 - \iota_{v_2} \mathcal{L}_{v_3} \theta_1 + \text{cyc. perm.})$$

$$- (\iota_{v_1} \wedge \iota_{v_2} \theta_3 + \text{cyc. perm.}).$$

We then use the above to verify that the equalities given in \cite[Def. 34]{L-infty-algebras} are satisfied. \qed
If \((X, \omega)\) is prequantized, then we represent the prequantum 2-bundle \(\nabla : X \to B^2U(1)\) with a Čech-Deligne 2-cocycle, and obtain dg Lie algebras that we think of as modeling the previously discussed \(L_\infty\)-algebras \(\text{Lie}_{\text{Atiyah}}(\nabla)\) and \(\text{Lie}_{\text{Courant}}(\nabla)\). In what follows, \(\Omega^{\leq 0}\) and \(\Omega^{\leq 1}\) denote the cochain complexes of sheaves

\[
\Omega^0(-) \to 0 \to 0 \to 0 \to \cdots; \quad \Omega^1(-) \xrightarrow{d} \Omega^1(-) \to 0 \to 0 \to \cdots
\]

respectively, with both having \(\Omega^0(-)\) in degree zero.

Definition/Proposition 5.2.4. If \(\bar{A} = A^2 + A^1 + A^0\) is a Čech-Deligne 2-cocycle on \(X\) relative to some cover \(\mathcal{U}\), then we denote by \(\text{dgLie}_{\text{At}}(X, \bar{A})\) and \(\text{dgLie}_{\text{Cou}}(X, \bar{A})\) the dg-Lie algebras whose underlying complexes are

\[
\begin{align*}
\text{dgLie}_{\text{At}}(X, \bar{A})^0 &= \{v + \bar{\theta} \in \mathfrak{X}(X) \oplus \text{Tot}^1(\mathcal{U}, \Omega^{\leq 0}) \mid \mathcal{L}_v A^0 = d_{\text{Tot}} \bar{\theta}\} \\
\text{dgLie}_{\text{At}}(X, \bar{A})^1 &= \text{Tot}^0(\mathcal{U}, \Omega^{\leq 0})
\end{align*}
\]

and

\[
\begin{align*}
\text{dgLie}_{\text{Cou}}(X, \bar{A})^0 &= \{v + \bar{\theta} \in \mathfrak{X}(X) \oplus \text{Tot}^1(\mathcal{U}, \Omega^{\leq 1}) \mid \mathcal{L}_v (A^1 + A^0) = d_{\text{Tot}} \bar{\theta}\} \\
\text{dgLie}_{\text{Cou}}(X, \bar{A})^1 &= \text{Tot}^0(\mathcal{U}, \Omega^{\leq 1})
\end{align*}
\]

both equipped with the differential \(0 \oplus d_{\text{Tot}}\), and whose graded Lie brackets are (for both cases)

\[
\begin{align*}
[v_1 + \bar{\theta}_1, v_2 + \bar{\theta}_2] &= [v_1, v_2] + \mathcal{L}_{v_1} \bar{\theta}_2 - \mathcal{L}_{v_2} \bar{\theta}_1 \\
[v + \bar{\theta}, \bar{\eta}] &= - [\bar{\eta}, v + \bar{\theta}] = \mathcal{L}_v \bar{\eta}; \quad [\bar{\eta}, \bar{\eta}] = 0.
\end{align*}
\]

The dg Lie algebra \(\text{dgLie}_{\text{At}}(X, \bar{A})\) was constructed by Collier \[11\] Def. 6.11, Thm. 8.18, and he rigorously proved that its degree zero elements correspond to infinitesimal autoequivalences of the \(U(1)\) 2-bundle represented by the Čech 2-cocycle \(A^0\). He also constructed \(\text{dgLie}_{\text{Cou}}(X, \bar{A})\) and proved that its degree zero elements are the infinitesimal autoequivalences the \(U(1)\) 2-bundle equipped with a connective structure represented by the truncated Čech-Deligne 2-cocycle \(A^1 + A^0\) \[11\] Def. 10.38, Prop. 10.48. There is an obvious map of dg Lie algebras \(\text{dgLie}_{\text{Cou}}(X, \bar{A}) \xrightarrow{p} \text{dgLie}_{\text{At}}(X, \bar{A})\), which in degree zero forgets the \(C^0(\mathcal{U}, \Omega^1)\) component. It is also clear that the dg Lie algebra \(\text{dgLie}_{\text{Qu}}(X, \bar{A})\) of infinitesimal quantomorphisms (Def/Prop. 4.2.1) embeds into \(\text{dgLie}_{\text{Cou}}(X, \bar{A})\). Hence the next result follows automatically by construction.

Proposition 5.2.5. There is a natural sequence of dg Lie algebras

\[
\text{dgLie}_{\text{Qu}}(X, \bar{A}) \xrightarrow{i} \text{dgLie}_{\text{Cou}}(X, \bar{A}) \xrightarrow{p} \text{dgLie}_{\text{At}}(X, \bar{A})
\]

that we interpret as modeling the sequence \(5.0.2\).

In \[11\] Theorem 12.50, Collier constructed a weak equivalence of Lie 2-algebras between a local Čech description of the Courant Lie 2-algebra \(5.2.2\) and the dg Lie algebra \(\text{dgLie}_{\text{Cou}}(X, \bar{A})\). We conclude with the following proposition which strengthens this result by incorporating our Thm. 4.2.3 and Prop. 5.2.3. It can also be viewed as the higher analog of Prop. 5.1.3.

Proposition 5.2.6. If \((X, \omega)\) is a prequantized pre-2-plectic manifold, then there exist natural weak equivalences of Lie 2-algebras \(f^a : \text{Atiyah}(X, \omega) \xrightarrow{\sim} \text{dgLie}_{\text{At}}(X, \bar{A})\) and \(f^c : \text{Courant}(X, \omega) \xrightarrow{\sim} \text{dgLie}_{\text{Cou}}(X, \bar{A})\).
\[\text{equation for } \bar{H} \]

Hence the above diagram commutes. Next, using the identities from Sec. 1.0.1 and the cocycle we define the non-trivial components of \(\bar{H} \). In terms of the notation above, Prop. A.1 and Eqs. (A.6) imply that the weak equivalence

\[
\begin{align*}
\text{Proof.} \quad & f_1(v + \theta) = v - \theta + \iota_v(A^2 - A^1); \\
& f_2(v_1 + \theta_1, v_2 + \theta_2) = \iota_{v_1} \theta_2 - \iota_{v_2} \theta_1 + \iota_{v_1 \wedge v_2} A^2.
\end{align*}
\]

(Above we have suppressed the restriction of global forms on \(X \) to open sets \(U_a \in \mathcal{U} \).) Hence, we define the non-trivial components of \(f^c \) to be

\[
\begin{align*}
f_1^c(v + \theta) &= v - \theta + \iota_v(A^2 - A^1); \\
f_2^c(v_1 + \theta_1, v_2 + \theta_2) &= \frac{1}{2}(\iota_{v_1} \theta_2 - \iota_{v_2} \theta_1) + \iota_{v_1 \wedge v_2} A^2.
\end{align*}
\]

Similarly, we define \(f^a \) by

\[
\begin{align*}
f_1^a(v) &= v - \iota_v A^1; \\
f_1^a(\eta) &= -\eta; \\
f_2^a(v_1, v_2) &= \iota_{v_1 \wedge v_2} A^2.
\end{align*}
\]

Note that if \(v + \bar{\theta} \) is a degree 0 element of \(\text{dgLie}_{\text{Conn}}(X, \bar{A}) \), then \(d_{\text{Tot}}(\bar{\theta} - \iota_v(A^2 - A^1)) = 0 \). Similarly, if \(v + \bar{\theta} \) is a degree 0 element of \(\text{dgLie}_{\text{At}}(X, \bar{A}) \), then \(d_{\text{Tot}}(\bar{\theta} + \iota_v A^1) = 0 \). It then follows from the Poincaré Lemma that both \(f_1^c \) and \(f_2^a \) are quasi-isomorphisms of chain complexes.

It follows immediately from the definitions (Prop. 5.2.3 and Prop. 5.2.5) that \(f_1^c \circ \phi_1 = i \circ f_1 \) and \(f_2^a \circ \psi_1 = p \circ f_1^c \). Simple calculations show that the following equations hold:

\[
\begin{align*}
(f^c \circ \phi)_2(v_1 + \theta_1, v_2 + \theta_2) &= f_1^c \phi_2(v_1 + \theta_1, v_2 + \theta_2) + f_2^c(\phi_1(v_1 + \theta_1), \phi_1(v_2 + \theta_2)) \\
&= i \circ f_2(v_1 + \theta_1, v_2 + \theta_2),
\end{align*}
\]

\[
\begin{align*}
(f^a \circ \psi)_2(v_1 + \theta_1, v_2 + \theta_2) &= f_2^a \psi_2(v_1 + \theta_1, v_2 + \theta_2) + f_2^a(\psi_1(v_1 + \theta_1), \psi_1(v_2 + \theta_2)) \\
&= p \circ f_2(v_1 + \theta_1, v_2 + \theta_2).
\end{align*}
\]

Hence the above diagram commutes. Next, using the identities from Sec. 1.0.1 and the cocycle equation for \(\bar{A} \), we obtain the following equalities:

\[
\begin{align*}
\llbracket f_1^c(v_1 + \theta_1), f_2^c(v_2 + \theta_2) \rrbracket_{\text{Conn}} &= [v_1, v_2] - \mathcal{L}_{v_1} \theta_2 + \mathcal{L}_{v_2} \theta_1 + \iota_{v_1 \wedge v_2}(A^2 - A^1) \\
&\quad + \iota_{v_1 \wedge v_2} \omega - d_{\text{Tot}}(\iota_{v_1 \wedge v_2} A^2) \\
\llbracket f_2^a([v_1 + \theta_1, v_2 + \theta_2]_{\text{Conn}}, v_3 + \theta_3) \rrbracket + \text{cyc. perm.} &= \frac{1}{2} \left(\iota_{v_1} \mathcal{L}_{v_2} \theta_2 - \iota_{v_2} \mathcal{L}_{v_1} \theta_1 + \text{cyc. perm.} \right) \\
&\quad + \left(\iota_{v_1 \wedge v_2} \mathcal{L}_\theta + \iota_{v_1 \wedge v_2} \mathcal{L}_{\omega} - \text{cyc. perm.} \right) + \frac{3}{2} \iota_{v_1 \wedge v_2 \wedge v_3} A^2.
\end{align*}
\]
And similarly for f^a:

$$f^a_2 \left([v_1, v_2], v_3 \right) + \text{cyc. perm.} = \epsilon_{[v_1, v_2] \wedge v_3} A^2 + \text{cyc. perm.}.$$

Using these in conjunction with Lemma 3.1.1, it is easy to verify that f^c and f^a are L-morphisms (see, e.g., [1] Def. 34]).

Appendix A. An Explicit Weak Equivalence Between $L_\infty(X, \omega)$ and $\text{dgLie}_\mathbb{Q}(X, \bar{A})$

In this section, we prove Thm. 4.2.2. Namely, given a pre n-plectic manifold (X, ω) and a prequantization presented by a Čech-Deligne cocycle, we define for all $\bar{A} = \sum_{i=0}^n A^{n-i}$ a Čech-Deligne cocycle, we define for all $m \geq 1$:

$$\bar{A}(m) := \sum_{i=0}^n (-1)^{mi} A^{n-i}.$$

- (L, l_1) denotes the underlying complex of the Lie n-algebra $L_\infty(X, \omega)$ introduced in Def. 3.1.3:
 $$L_0 = \{ v + H \in \mathcal{X}_{\text{Ham}}(X) \oplus \Omega^{n-1}(X) \mid dH = -\iota_v \omega \}$$
 $$L_i = \Omega^{n-1-i}(X) \quad i \geq 1$$
 with differential
 $$l_1 \theta = \begin{cases} 0 + d\theta, & |\theta| = 1 \\ d\theta, & |\theta| > 1. \end{cases}$$

The higher k-ary brackets of $L_\infty(X, \omega)$ are denoted by l_2, \ldots, l_{n+1}.

- (L', l'_1) denotes the underlying complex of the dgla $\text{dgLie}_\mathbb{Q}(X, \bar{A})$ introduced in Def. 4.2.1:
 $$L'_0 = \{ v + \bar{\theta} \in \mathcal{X}(X) \oplus \text{Tot}^{n-1}(\mathcal{U}, \Omega) \mid \mathcal{L}_v \bar{A} = d_{\text{Tot}} \bar{\theta} \}$$
 $$L'_i = \text{Tot}^{n-1-i}(\mathcal{U}, \Omega) \quad i \geq 1,$$
 with differential
 $$l'_1 \bar{\theta} = \begin{cases} 0 + d_{\text{Tot}} \bar{\theta}, & |\bar{\theta}| = 1 \\ d_{\text{Tot}} \bar{\theta}, & |\bar{\theta}| > 1. \end{cases}$$

The Lie bracket on $\text{dgLie}_\mathbb{Q}(X, \bar{A})$ is denoted by $l'_2 = [\cdot, \cdot]$.

- Elements of arbitrary degree in L (resp. L') will be denoted as x_1, x_2, \ldots (resp. $\bar{x}_1, \bar{x}_2, \ldots$) where
 $$x_i := v_i + \theta_i \quad \text{(resp. } \bar{x}_i := v_i + \bar{\theta}_i).$$

It is understood that we set $v_i = 0$ if $|x_i| > 0$ (resp. $|\bar{x}_i| > 0$). So for example, for any $x_1, \ldots, x_k \in L$ and any $\bar{x}_1, \bar{x}_2 \in L'$ the following equalities hold:

$$l_2(x_1, x_2) = [v_1, v_2] + \iota_{v_1 \wedge v_2} \omega; \\
l_{k \geq 3}(x_1, \ldots, x_k) = -(-1)^{\binom{k+1}{2}} \iota_{x_1 \wedge \cdots \wedge x_k} \omega; \\
[\bar{x}_1, \bar{x}_2] = [v_1, v_2] + \mathcal{L}_{v_1} \bar{\theta}_2 - \mathcal{L}_{v_2} \bar{\theta}_1.$$
• For all \(m \geq 2 \) we define a map \(S_m : L^\otimes m \to L \), where

\[
S_m(x_1, \ldots, x_m) = \sum_{i=1}^m (-1)^i t_{v_1} \cdots \wedge t_{v_m} x_i.
\]

It is clear from our above notation that \(S_m(x_1, \ldots, x_m) = 0 \) if two or more arguments have degree \(> 0 \). Note that \(S_m \) is a graded skew-symmetric map of degree \(m-1 \) and \(S_{m>0} = 0 \).

• For all \(m \geq 1 \) we define the linear maps \(f_m : L^\otimes m \to L' \):

\[
f_1(x) = v - \text{res}(\theta) + t_v \bar{A}(1),
\]

\[
f_{2 \leq m \leq n}(x_1, \ldots, x_m) = \frac{1}{2} \left(\text{res} \circ S_m(x_1, \ldots, x_m) + t_{v_1} \cdots \wedge t_{v_m} \bar{A}(m) \right),
\]

and \(f_{m>0} = 0 \). Note that each \(f_m \) is graded skew-symmetric with \(|f_m| = m-1 \). Below, we will often suppress the restriction map in the definitions. These are the structure maps we will use to construct an \(L_\infty \) quasi-morphism.

• Finally, we define the following auxiliary linear maps \(I_m^{(1)}, I_m^{(2)}, I_m^{(3)} : L^\otimes m \to L' \), for all \(m \geq 1 \), where \(J_1^2 = I_3^{(3)} = 0 \) and

\[
I_m^{(1)}(x_1, \ldots, x_m) = \sum_{\sigma \in \text{Sh}(1, m-1)} \chi(\sigma)(-1)^m f_m(l_1(x_{\sigma(1)}), \ldots, x_{\sigma(m)}),
\]

\[
I_m^{(2)}(x_1, \ldots, x_m) = \sum_{\sigma \in \text{Sh}(2, m-2)} \chi(\sigma)f_{m-1}(l_2(x_{\sigma(1)}, x_{\sigma(2)}), \ldots, x_{\sigma(m)}),
\]

\[
I_m^{(3)}(x_1, \ldots, x_m) = \sum_{\sigma \in \text{Sh}(k, m-k)} \chi(\sigma)(-1)^{k(m-k)+1} f_{m+1-k}(l_k(x_{\sigma(1)}, \ldots, x_{\sigma(k)}), \ldots, x_{\sigma(m)}).
\]

Above, \(\chi(\sigma) = (-1)^e(\sigma) \), where \(e(\sigma) \) is the Koszul sign of the permutation. We also define for all \(m \geq 1 \) maps \(J_m : L^\otimes m \to L' \), where \(J_1 = 0 \) and

\[
J_m^{(2)}(x_1, \ldots, x_m) = \sum_{\substack{s \leq m \leq \alpha \in m-s \in \text{Sh}(s, m-s) \atop \tau \in \text{Sh}(s, m-s) \atop \tau(1) < \tau(\alpha + 1)}} \chi(\tau)(-1)^{s-1}(-1)^{\ell-1}(1)^{x_{\tau(s)}}(\sum_{\alpha=1}^m |x_{\tau(s)}|) [f_s(x_{\tau(1)}, \ldots, x_{\tau(s)}), f_t(x_{\tau(s+1)}, \ldots, x_{\tau(m)})].
\]

Proposition A.1. The linear map \(f_1 : L \to L' \) is a quasi-isomorphism of chain complexes.

Proof. It is clear from the definition that \(f_1 \) is a chain map. Since \(A \) is a Čech-Deligne cocycle, and since the interior product \(t_v \) commutes with the Čech differential, we have \(d_{tot} t_v \bar{A}(1) = dt_v A^n + \sum_{i=1}^m L_v A^{n-i} \). This implies that \(v + \bar{\theta} \in L'_0 \) if and only if \(d_{tot}(\bar{\theta} - t_v \bar{A}(1)) = \text{res}(t_v \omega) \).

Let \(\bar{L} \) be the complex whose underlying graded vector space is

\[
\bar{L}_0 = \{ v + \bar{\theta} \in \mathcal{X}(\mathcal{X}) \oplus \text{Tot}^{n-1}(\mathcal{U}, \Omega) \mid d_{tot} \bar{\theta} = \text{res}(t_v \omega) \}; \quad \bar{L}_i = L'_i \quad i > 0,
\]

and whose differential is \(\bar{L}_1 = \tilde{l}_1 \), the same differential as on \(L' \). The chain map \(f_1 \) then is equal to the composition: \(L \xrightarrow{\tau} \bar{L} \xrightarrow{\phi} L' \), where, using notation \((A.3) \), \(r(x) = v + \bar{\theta} + t_v \bar{A}(1) \). Note that \(\phi \) is a isomorphism of complexes.

Next, let \(\{ \rho_v \} \) be a partition of unity subordinate to the cover \(\mathcal{U} = \{ U_\alpha \} \). Define a map \(K : \tilde{C}^i(\mathcal{U}, \Omega) \to \tilde{C}^{i-1}(\mathcal{U}, \Omega) \) to be \((K \theta)_{\alpha_0, \ldots, \alpha_{i-1}} = \sum_{\alpha} \rho(\theta)_{\alpha_0, \ldots, \alpha_{i-1}} \), and let \(D' : \tilde{C}^i(\mathcal{U}, \Omega) \to \tilde{C}^i(\mathcal{U}, \Omega^{i+1}) \) be the “signed” de Rham differential \(D' = (-1)^i d \theta \). Then, see [6] Prop. 9.5, there exists a chain map \(j : \text{Tot}^\bullet(\mathcal{U}, \Omega) \to \Omega^\bullet(\mathcal{X}) \) such that

\[
j \circ \text{res} = \text{id}_{\Omega^\bullet(\mathcal{X})}, \quad \text{id}_{\text{Tot}^\bullet(\mathcal{U}, \Omega)} - \text{res} \circ j = d_{\text{tot}} H + H d_{\text{tot}},
\]
where $H: \text{Tot}^\bullet(U, \Omega) \to \text{Tot}^\bullet(U, \Omega)$ is the chain homotopy given as follows: if $\tilde{\theta} = \sum_{i=0}^m \theta^{m-i}$, with $\theta^{m-i} \in \tilde{C}^i(U, \Omega^{m-i})$, then $H(\tilde{\theta}) = \sum_{i=0}^{m-1} (H\theta)_i$, where

\begin{equation}
(H\tilde{\theta})_j = \sum_{j=i+1}^m K \circ (-D''K) \circ \cdots \circ (-D''K) \theta^{m-j} (-D''K) \theta^{m-j} \in \tilde{C}^j(U, \Omega^{m-1-i}).
\end{equation}

Hence, the restriction map res is a quasi-isomorphism between the de Rham and Čech-de Rham complexes, and j is its homotopy inverse.

Let $j: L \to L$ to be the chain map $j(\bar{x}) = v - j(\tilde{\theta})$. Note that j is well-defined on degree 0 elements since $d_{\text{Tot}} \tilde{\theta} = \text{res}(v, \omega)$. Let $H: L \to L$ to be the degree 1 map $H(\bar{x}) = H(\tilde{\theta})$. We now show that H is a chain homotopy i.e., $id_L - r \circ j = l_1 \bar{H} + \bar{H}l_1$. Since (A.9) holds, it follows that we just need to check this on degree 0 elements. Since we have the equality $d_{\text{Tot}} \tilde{\theta} = \text{res}(v, \omega) \in \tilde{C}^0(U, \Omega^m)$ for all $v + \tilde{\theta} \in L$, it follows from the definition of H (A.10) that $H(d_{\text{Tot}} \tilde{\theta}) = 0$. So (A.9) implies that the above identity holds for degree 0 as well. Therefore r is a quasi-isomorphism, and hence f_1 is a quasi-isomorphism.

Technical lemmas. In the remainder of the appendix we show that the maps $f_{2 \leq m \leq n}: L^\otimes m \to L'$ given by equation (A.6) lift the map $f_1: L \to L'$ to an L_∞-morphism between $L_\infty(X, \omega)$ and $\text{dgLie}_{Q_0}(X, \bar{A})$. Prop. (A.1) implies that this lift will be an L_∞-quasi-isomorphism. We present here several small computational results necessary for the proof.

Lemma A.2. For all $m \geq 2$ and $x_1, \ldots, x_m \in L$, we have

\begin{equation}
I_m^{\geq 2}(x_1, \ldots, x_m) = -(-1)\left(\frac{m+1}{\nu}\right)(-1)^m \sum_{i=1}^m (-1)^i \epsilon_{i1}^{\nu} \cdots \epsilon_{i1}^{\nu} (l_1 \theta_i).
\end{equation}

Proof. Equations (A.6) and (A.7) imply that

\begin{equation}
I_m^{\geq 2}(x_1, \ldots, x_m) = -(-1)\left(\frac{m+1}{\nu}\right)(-1)^m \sum_{i=1}^m (\nu i - 1) \epsilon_{i1}^{\nu} (l_1 \theta_i).
\end{equation}

The vector field associated to $l_1 x_i = l_1 (v_i + \theta_i)$ is zero, hence

\[S_m(x_1, x_2, \ldots, x_m) = -\epsilon_{i1}^{\nu} \cdots \epsilon_{i1}^{\nu} (l_1 \theta_i), \]

and furthermore, any non-zero terms contributing to the sum (A.12) necessarily have $\epsilon(\sigma(i)) = 1$.

Lemma A.3. If $x_1, x_2 \in L$, then $I_m^{(2)}(x_1, x_2) = -[v_1, v_2] + \epsilon_{i1}^{\nu} \cdots \epsilon_{i1}^{\nu} A(1)$, and for all $m > 2$ and $x_1, \ldots, x_m \in L$, the following equality holds:

\begin{equation}
I_m^{\geq 2}(x_1, \ldots, x_m) = -(-1)^{\nu} \left(\binom{m}{\nu} \epsilon_{i1}^{\nu} \cdots \epsilon_{i1}^{\nu} + \sum_{i<k}^{m} (\nu i + \nu j) \epsilon_{i1}^{\nu} \cdots \epsilon_{i1}^{\nu} A(m-1) \right)
\end{equation}

Proof. The $m = 2$ case follows immediately from the definitions. For $m > 2$, recall the definition of $I_m^{(2)}$ (A.7) and note the following equality of summations:

\begin{equation}
- \sum_{\sigma \in \text{Sh}(2, m-2)} \chi(\sigma) = \sum_{1 \leq i<k \leq m} (-1)^{i+k} \epsilon(i, k).
\end{equation}

A summand contributing to $I_m^{(2)}$ is of the form

\begin{equation}
f_{m-1}(l_2(x_i, x_k), x_1, \ldots, x_{i1}^{\nu}, \ldots, x_{i1}^{\nu}, \ldots, x_{i1}^{\nu}) = -(-1)^{\nu} \left(S_{m-1}(l_2(x_i, x_k), x_1, \ldots, x_{i1}^{\nu}, \ldots, x_{i1}^{\nu}, \ldots, x_{i1}^{\nu}) + \epsilon_{i1}^{\nu} \cdots \epsilon_{i1}^{\nu} A(m-1) \right).
\end{equation}
The second term on the right-hand side above vanishes if \(|x_i| > 0\) for any \(i\), hence taking the summation (A.14) of all such terms gives

\[
(A.16) \quad \sum_{1 \leq i < k \leq m} (-1)^{i+k} t_{[v_i,v_k]} \wedge v_1 \wedge \cdots \wedge \hat{v}_k \cdots \wedge v_m \hat{A}(m-1).
\]

Using (A.4), we rewrite the first term on the right-hand side of (A.15) as

\[
S_{m-1}(l_2(x_1, x_k), x_1, \ldots, \hat{x}_i, \ldots, \hat{x}_k, \ldots, x_m) = (-1)^{i+k} t_{v_i \wedge \cdots \wedge v_m} \omega
\]

(A.17)

\[+ \left(- \sum_{j=1}^{i} + \sum_{j=i+1}^{k-1} - \sum_{j=k+1}^{m} \right) (-1)^j t_{[v_i,v_k]} \wedge v_1 \wedge \cdots \wedge \hat{v}_j \cdots \wedge v_m \theta_j.\]

The first term on the right-hand side of (A.17) vanishes if \(|x_i| > 0\) for any \(i\). The second term vanishes if more than one \(x_i\) has degree greater than 0. Hence, the summation (A.14) of the terms (A.17) is

\[
(A.18) \quad \left(\frac{m}{2} \right) t_{v_1 \wedge \cdots \wedge v_m} \omega + \left(- \sum_{i < j}^{i < j < k} - \sum_{i < j < k}^{j < i < k} - \sum_{i < k < j} \right) (-1)^{i+k+j} t_{[v_i,v_k]} \wedge v_1 \wedge \cdots \wedge \hat{v}_j \cdots \wedge v_m \theta_j.
\]

Combining the above with (A.10) completes the proof.

\[\square\]

Lemma A.4. For all \(m \geq 3\) and \(x_1, \ldots, x_m \in L\), the following equality holds:

\[
(A.19) \quad I_{m}^{\geq m}(x_1, \ldots, x_m) = (-1)^{\binom{m+1}{2}} (-1)^m \binom{m}{2} t_{v_1 \wedge \cdots \wedge v_m} \omega.
\]

Proof. Let \(\sigma \in \text{Sh}(k, m-k)\). We have the following equalities:

\[
(A.20) \quad f_1(l_m(x_\sigma(1), \ldots, x_\sigma(m))) = (-1)^{\binom{m+1}{2}} t_{v_\sigma(1) \wedge \cdots \wedge v_\sigma(m)} \omega,
\]

and, for all \(k < m\):

\[
(A.21) \quad f_{m+1-k}(l_k(x_\sigma(1), \ldots, x_\sigma(k)), \ldots, x_\sigma(m)) = (-1)^{\binom{m+k+1}{2}} S_{m+1-k}(l_k(x_\sigma(1), \ldots, x_\sigma(k)), \ldots, x_\sigma(m))
\]

\[= (-1)^{\binom{m+k}{2}} (-1)^k t_{v_\sigma(1) \wedge \cdots \wedge v_\sigma(m)} l_k(x_\sigma(1), \ldots, x_\sigma(k))
\]

\[= (-1)^{\binom{m+k}{2}} (-1)^{\binom{-k+2}{2}} t_{v_\sigma(1) \wedge \cdots \wedge v_\sigma(m)} \omega.
\]

The second-to-last equality above follows from the fact that \(|l_k| > 0\) for \(k \geq 3\). Combining (A.20), and (A.21), with the definition of \(I_{m}^{\geq m}\) gives

\[
(A.22) \quad I_{m}^{\geq m}(x_1, \ldots, x_m) = \sum_{k=3}^{m} \sum_{\sigma \in \text{Sh}(k,m-k)} \chi(\sigma) (-1)^k (-1)^{\binom{m-k}{2}} (-1)^{\binom{k+1}{2}} (-1)^{\binom{m-k+2}{2}} t_{v_\sigma(1) \wedge \cdots \wedge v_\sigma(m)} \omega.
\]

The sum on the right-hand side above vanishes if, for any \(i\), \(|x_i| > 0\). Non-zero summands above have \(\chi(\sigma) = (-1)^\sigma\), and since \(\omega\) is skew-symmetric, reordering the vector fields will cancel this sign. The number of unshuffles appearing in the summation is \(\binom{m+k}{k}\), therefore, summing over \(\sigma\) gives

\[
(A.23) \quad I_{m}^{\geq m}(x_1, \ldots, x_m) = \sum_{k=3}^{m} (-1)^k (-1)^{\binom{k+1}{2}} (-1)^{\binom{m-k+2}{2}} \binom{m}{k} t_{v_1 \wedge \cdots \wedge v_m} \omega.
\]

It’s easy to see that \((-1)^k (-1)^{\binom{k+1}{2}} (-1)^{\binom{m-k+2}{2}} = -(-1)^{\binom{m+1}{2}} (-1)^{m-k} \cdot (-1)^k\). Substituting the above sign into (A.23) and using the fact that \(\sum_{k=0}^{m} \binom{m}{k} (-1)^k = 0\) gives the equality (A.19). \(\square\)
Lemma A.5. For all $m \geq 2$ and $x_1, \ldots, x_m \in L$ the following equality holds:

$J^{m \geq 2}(x_1, \ldots, x_m) = \sum_{i=1}^{m} (-1)^{i-1} \left[f_1(x_i), f_{m-1}(x_1, \ldots, \hat{x}_i, \ldots, x_m) \right]$. \hfill (A.24)

Proof. Recalling the definition of J^m [A.8], it is easy to see that $J^2(x_1, x_2) = \left[f_1(x_1), f_1(x_2) \right]$. For the $m > 2$ case, it follows from the definition of the bracket [A] that

$J^{m \geq 3}(x_1, \ldots, x_m) = \left[f_1(x_1), f_{m-1}(x_2, \ldots, x_m) \right]$

\hfill (A.25)

\[+ \sum_{i \geq 2} \chi(\tau(i))(-1)^m \left[f_{m-1}(x_1, x_2, \ldots, \hat{x}_i, \ldots, x_m), f_1(x_i) \right]. \]

Above $x_i = x_{\tau(m)}$, so $\chi(\tau(i)) = (-1)^{m-i} \epsilon(\tau(i)) = (-1)^{m-i}(-1)^{|x_i|} \sum_{j>|x_i|}$. It follows from the antisymmetry of the bracket and the definition of the structure maps that the summation on the right-hand side of [A.25] is

\[\sum_{i \geq 2} (-1)^{i-1} \left[f_1(x_i), f_{m-1}(x_1, x_2, \ldots, \hat{x}_i, \ldots, x_m) \right]. \]

Hence, the equality [A.24] holds. \hfill □

Lemma A.6. For all $m \geq 3$ and $x_1, \ldots, x_m \in L$ the following equality holds:

$(-1)^{(\overline{m})}J^{m \geq 3}(x_1, \ldots, x_m) = 2 \left(\sum_{i \leq j < k} - \sum_{i < j < k} + \sum_{j < i < k} \right) (-1)^{i+j+k} \left[f_{v_1}, f_{v_2}, \ldots, f_{v_m} \right]$

\[+ \sum_{i \leq j} (-1)^{i+j} L_{v_i} \theta_j - 2 \sum_{i \neq j} (-1)^{i+j} L_{v_i} \theta_j + 2 \sum_{i \neq j} (-1)^{i+j} L_{v_j} \theta_i \]

\[- \sum_{i \geq 1} (-1)^i L_{v_i} \theta_i \]

\hfill (A.27)

Proof. Lemma A.5 and the definitions of the bracket $[\cdot, \cdot]$ and f_{m-1} imply that

\[(-1)^{(\overline{m})}J^{m \geq 2}(x_1, \ldots, x_m) = \sum_{i} (-1)^{i+1} \left(\left[f_{v_1}, f_{v_2}, \ldots, f_{v_m} \right] \right). \]

The definition of S_{m-1} [A.4] implies that the first summation on the right-hand side of [A.28] is

\[\sum_{i} (-1)^{i+1} L_{v_i} S_{m-1}(x_1, \ldots, \hat{x}_i, \ldots, x_m) = \sum_{i} (-1)^{i+1} \left(L_{v_i} f_{v_1} \ldots \hat{v}_i \ldots f_{v_m} \right) \]

\[- L_{v_i} f_{v_1} \ldots \hat{v}_i \ldots f_{v_m} \theta_i \]

\hfill (A.29)

The commutator [1.0.2] implies that

\[t_{[v_1, v_2, \ldots, v_m]} = L_{v_i} f_{v_1} \ldots \hat{v}_i \ldots f_{v_m} - f_{v_1} \ldots \hat{v}_i \ldots f_{v_m} L_{v_i}. \]

This and the definition of the Schouten bracket [1.0.1] give the following equalities:

\[\sum_{i < j} (-1)^{i+j+1} L_{v_i} f_{v_1} \ldots \hat{v}_i \ldots f_{v_m} \theta_j = \left(\sum_{i < j} +2 \sum_{j < i} \right) (-1)^{i+j+k} t_{[v_1, v_2]} L_{v_i} \theta_j, \]

\hfill (A.30)

\[+ \sum_{j < i} (-1)^{i+j+1} L_{v_i} f_{v_1} \ldots \hat{v}_i \ldots f_{v_m} \theta_j, \]

\[\sum_{i < j} (-1)^{i+j+1} L_{v_i} f_{v_1} \ldots \hat{v}_i \ldots f_{v_m} \theta_j = \left(2 \sum_{i < j} + \sum_{i < j} \right) (-1)^{i+j+k} t_{[v_1, v_2]} L_{v_i} \theta_j, \]

\hfill (A.31)

\[+ \sum_{j < i} (-1)^{i+j+1} L_{v_i} f_{v_1} \ldots \hat{v}_i \ldots f_{v_m} \theta_j. \]
As for the second summation on the right-hand side of (A.28), note that the identity (1.0.2) for the commutator gives
\[
\sum_i (-1)^i \mathcal{L}_{\nu_i} \epsilon_{v_1 \wedge v_i \wedge \ldots \wedge v_m} \hat{A}(m - 1) = \sum_i (-1)^i (\nu_{\epsilon_{v_1 \wedge v_i \wedge \ldots \wedge v_m}} + \epsilon_{v_1 \wedge v_i \wedge \ldots \wedge v_m} \mathcal{L}_{\nu_i}) \hat{A}(m - 1).
\]

The definition of the Schouten bracket implies that
\[
\sum_i (-1)^i \epsilon_{v_1, v_i \wedge \ldots \wedge v_m} \hat{A}(m - 1) = -2 \sum_{i < j} (-1)^{i+j} \epsilon_{v_i, v_j \wedge v_1 \wedge \ldots \wedge v_m} \hat{A}(m - 1).
\]

The above equality, along with (A.32), (A.30), and (A.31), gives the desired expression for $J^m \geq 3$.

\[\square\]

Lemma A.7. For all $m \geq 2$ and $x_1, \ldots, x_m \in L$ the following equality holds:
\[
l'_1 f_m(x_1, \ldots, x_m) = -(-1)^{\binom{m+1}{2}} (dS_m(x_1, \ldots, x_m) + (-1)^m \epsilon_{v_1 \wedge \ldots \wedge v_m} \omega + \mathcal{L}_{\nu_1 \wedge \ldots \wedge v_m} \hat{A}(m - 1)).
\]

Proof. The definitions of f_m and l'_1 imply that
\[
l'_1 f_m(x_1, \ldots, x_m) = -(-1)^{\binom{m+1}{2}} (dS_m(x_1, \ldots, x_m) + d_{\text{Tot}} \epsilon_{v_1 \wedge \ldots \wedge v_m} \hat{A}(m)).
\]

The Čech differential commutes with interior product. Hence,
\[
d_{\text{Tot}} \epsilon_{v_1 \wedge \ldots \wedge v_m} \hat{A}(m) = \epsilon_{v_1 \wedge \ldots \wedge v_m} \delta \hat{A}(m) + d \epsilon_{v_1 \wedge \ldots \wedge v_m} A^n + \sum_{i=1}^n (-1)^{m+i} d \epsilon_{v_1 \wedge \ldots \wedge v_m} A^{n-i}.
\]

Since \hat{A} is a Čech-Deligne n-cocycle,
\[
\epsilon_{v_1 \wedge \ldots \wedge v_m} \delta \hat{A}(m) = -(-1)^m \epsilon_{v_1 \wedge \ldots \wedge v_m} \sum_{i=1}^n (-1)^{m-1} i d A^{n-i}.
\]

Hence, Cartan’s formula $\mathcal{L}_{v_1 \wedge \ldots \wedge v_m} = d \epsilon_{v_1 \wedge \ldots \wedge v_m} - (-1)^m \epsilon_{v_1 \wedge \ldots \wedge v_m} d$ implies that
\[
d_{\text{Tot}} \epsilon_{v_1 \wedge \ldots \wedge v_m} \hat{A}(m) = d \epsilon_{v_1 \wedge \ldots \wedge v_m} A^n + \sum_{i=1}^n (-1)^{m-1} \mathcal{L}_{v_1 \wedge \ldots \wedge v_m} A^{n-i}
\]
\[= (-1)^m \epsilon_{v_1 \wedge \ldots \wedge v_m} \omega + \sum_{i=0}^n (-1)^{m-1} \mathcal{L}_{v_1 \wedge \ldots \wedge v_m} A^{n-i}.
\]

The result then follows from the definition of $\hat{A}(m - 1)$ A.2.

\[\square\]

Proof of Theorem 4.2.2. To prove that the maps $f_k : L \otimes k \to L'$ give an L_∞-morphism [22 Def. 5.2], we must verify that for all $m \geq 1$
\[
l'_1 f_m(x_1, \ldots, x_m) + \sum_{j+k=m+1} \sum_{\sigma \in \text{Sh}(k, m-k)} \chi(\sigma) (-1)^{(j-1)+1} f_j(\mathcal{L}_{\nu_1} \epsilon_{v_1 \wedge v_i \wedge \ldots \wedge v_m})
\]
\[+ \sum_{s+t=m} \sum_{\tau \in \text{Sh}(s, m-s, r)} \chi(\tau) (-1)^{s-1} (-1)^{r-1} \sum_{i=1}^n (-1)^{r+1} \mathcal{L}_{\nu_i} \epsilon_{v_1 \wedge \ldots \wedge v_m} \omega]
\[= 0.
\]

or, in our notation:
\[
(l'_1 f_m + \langle \mathcal{I} \rangle_{(1)} + \langle \mathcal{I} \rangle_{(2)} + \langle \mathcal{I} \rangle_{(3)} + \langle J \rangle_{m}) (x_1, \ldots, x_m) = 0 \quad \forall m \geq 1.
\]

For $m = 1$, (A.33) holds, since f_1 is a chain map. For $m = 2$, we have $\langle \mathcal{I} \rangle_{(3)} = 0$ by definition, and it follows from Lemmas A.2 and A.3 that
\[
\langle \mathcal{I} \rangle_{(1)} (x_1, x_2) + \langle \mathcal{I} \rangle_{(2)} (x_1, x_2) = \nu_{v_1, v_2} - \nu_{v_1, \nu_{v_1}} \epsilon_{v_1} + \nu_{v_1, \nu_{v_1}} \epsilon_{v_1} - \epsilon_{v_1, \nu_{v_1}} \epsilon_{v_1}.
\]

From Lemma A.5 we have
\[
J^2 (x_1, x_2) = \nu_{v_1, v_2} - \nu_{v_1, \nu_{v_1}} \epsilon_{v_1} + \nu_{v_1, \nu_{v_1}} \epsilon_{v_1} - \epsilon_{v_1, \nu_{v_1}} \epsilon_{v_1} - \epsilon_{v_1, v_2} \epsilon_{v_1}.
\]

This completes the proof of the theorem. \[\square\]
Hence, the above equalities, along with Lemma \(A.7\) imply that the left-hand side of \(A.33\) is
\[
\ell v_1 (1 - d) \theta_1 + \ell v_2 (d - l_1) \theta_1 + 2 l v_1 \ell v_2 \omega.
\]
If \(|x_1| = |x_2| = 0\), then \(l_1 = 0\) and the \(\theta_i\) are Hamiltonian, i.e.,
\[
- \ell v_1 d \theta_1 = \ell v_2 d \theta_1 = - \ell v_1 \ell v_2 \omega.
\]
If \(|x_1| > 0\), then \(v_i = 0\) and \(l_1 \theta = d \theta_i\). Therefore, in either case, \(A.33\) holds.

For the \(m \geq 3\) case, note that Lemma 3.1.1 combined with Cartan’s formula for the Lie derivative implies that for any \(x_1, \ldots, x_m \in L:\)
\[
(-1)^m \mathcal{L}_{v_1 \wedge \cdots \wedge v_m} A(m - 1) = \sum_{i<j} (-1)^{i+j} \mathcal{L}_{v_i \wedge v_j} \mathcal{L}_{v_1 \wedge \cdots \wedge v_m} A(m - 1)
\]
\[+ \sum_i (-1)^i \mathcal{L}_{v_1 \wedge \cdots \wedge v_i} \mathcal{L}_{v_1 \wedge \cdots \wedge v_m} A(m - 1),\]
and
\[
(-1)^{m-1} \sum_{j=1}^m (-1)^j \mathcal{L}_{v_1 \wedge \cdots \wedge v_j \wedge v_1} \theta_j = \sum_{i<j<k} (-1)^{i+j+k} \mathcal{L}_{v_i \wedge v_k} \mathcal{L}_{v_j} \mathcal{L}_{v_1 \wedge \cdots \wedge v_m} \theta_j
\]
\[+ \sum_{i<j} (-1)^{i+j} \mathcal{L}_{v_1 \wedge \cdots \wedge v_j \wedge v_i} \mathcal{L}_{v_1 \wedge \cdots \wedge v_m} \theta_j.
\]
Combining the above equalities with Lemmas \(A.3\), \(A.4\) and \(A.6\) gives
\[\text{(I)}(m_1) + \text{(I)}(m_2) + \text{(I)}(m_3)(x_1, \ldots, x_m) = \left(\frac{-1}{2}\right)^m (-1)^{m-1} \sum_{j=1}^m \sum_{i<j} (-1)^{i+j} \mathcal{L}_{v_1 \wedge \cdots \wedge v_j \wedge v_i} \theta_j.
\]

Cartan’s formula also implies that
\[
\sum_{j=1}^m (-1)^j \mathcal{L}_{v_1 \wedge \cdots \wedge v_j} A(m - 1) = d S_m (x_1, \ldots, x_m) = \sum_{j=1}^m (-1)^{j} \mathcal{L}_{v_1 \wedge \cdots \wedge v_j} d \theta_j.
\]
Using this, along with Eq. \(A.35\) and the results of Lemmas \(A.2\) and \(A.7\) we conclude that the left-hand side of \(A.33\) is
\[
-\left(\frac{-1}{2}\right)^m \sum_{i=1}^m (-1)^i \mathcal{L}_{v_1 \wedge \cdots \wedge v_i} \mathcal{L}_{v_1 \wedge \cdots \wedge v_m} (l_1 \theta_i) - \sum_{j=1}^m (-1)^j \mathcal{L}_{v_1 \wedge \cdots \wedge v_j} d \theta_j + m \mathcal{L}_{v_1 \wedge \cdots \wedge v_m} \omega.
\]
If all \(x_i\) are degree 0, then \(l_1 = 0\) and all \(\theta_i\) are Hamiltonian, which implies that
\[
\sum_{j=1}^m (-1)^j \mathcal{L}_{v_1 \wedge \cdots \wedge v_j} d \theta_j = m \mathcal{L}_{v_1 \wedge \cdots \wedge v_m} \omega.
\]
If \(|x_i| > 0\) for some \(x_i\) then \(v_k = 0\) and \(l_1 \theta_k = d \theta_k\). Hence, in either case, \(A.33\) holds. This completes the proof of the theorem.

APPENDIX B. A RECOGNITION PRINCIPLE FOR HOMOTOPY FIBERS OF L\(_\infty\)-MORPHISMS

In this section we provide a proof of the recognition principle for homotopy fibers of \(L\(_\infty\)-algebra morphisms that has been used in Section 3. The proof is based on the following two facts recalled in the Introduction. First, every \(L\(_\infty\)-morphism \(f_\infty : g \to A\) to a dg-Lie algebra \(A\) uniquely factors as \(g \xrightarrow{v} \mathcal{R}(g) \xrightarrow{\xi_g \circ \mathcal{R}(f_\infty)} A\), where \(\xi_A : \mathcal{R}(A) \to A\) is the dg-Lie algebra homomorphism in the factorization of the identity of \(A\) as \(A \xrightarrow{\xi_A} \mathcal{R}(A) \xrightarrow{\xi_A} A\). Second, the adjunction \((\mathcal{R} \dashv i)\) induces an equivalence between the homotopy theories of dg-Lie algebras and \(L\(_\infty\)-algebras and so, if \(f_\infty : g \to h\) is an \(L\(_\infty\)-morphism between two \(L\(_\infty\)-algebras, then an \(L\(_\infty\)-algebra \(\xi\) presents the homotopy fiber of \(f_\infty\) if \(\xi\) is \(L\(_\infty\)-quasi-isomorphic to the homotopy fiber of \(\mathcal{R}(f_\infty) : \mathcal{R}(g) \to \mathcal{R}(h)\) in the category of dglas.
Lemma B.0.7. Let \(\mathfrak{g} \) be an \(L_\infty \)-algebra, \(A \) a dgl, and \(f_\infty : \mathfrak{g} \to A \) an \(L_\infty \) morphism. Let \(p_A : B \to A \) be a fibration in the category of dglas, with \(H_* (B) = 0 \). The fiber product

\[
\begin{array}{c}
\mathcal{R}(\mathfrak{g}) \times_A B \\
\downarrow \pi_{(\mathfrak{g})} \\
\mathcal{R}(\mathfrak{g}) \\
\end{array}
\begin{array}{c}
\pi_{B,\infty}
\end{array}
\begin{array}{c}
\downarrow p_A \\
A
\end{array}
\]

is a dgl model for the homotopy fiber of \(f_\infty \).

Proof. Consider the commutative diagram of dglas

\[
\begin{array}{c}
\mathcal{R}(\mathfrak{g}) \times_A B \\
\downarrow \pi_{(\mathfrak{g})} \\
\mathcal{R}(\mathfrak{g}) \\
\end{array}
\begin{array}{c}
\pi_{(\mathfrak{g}),\infty}
\end{array}
\begin{array}{c}
\downarrow p_A \\
A
\end{array}
\]

where the rightmost diagram and the outer diagram are pullbacks. By the pasting law, also the leftmost diagram is a pullback. Since \(p_A \) is a fibration and \(\xi_A \) is a weak equivalence, the map \(\pi_{\mathcal{R}(A)} \) is a fibration and the map \(\pi_B \) is a weak equivalence. It follows that \(\pi_{\mathcal{R}(A)} \) is a fibrant replacement of \(0 \to \mathcal{R}(A) \). Hence \(\mathcal{R}(\mathfrak{g}) \times_A B \) is a model for the homotopy fiber of \(\mathcal{R}(f_\infty) \) in the category of dglas. \(\square \)

Theorem B.0.8. Let \(\mathfrak{g} \) be an \(L_\infty \)-algebra, \(A \) a dgl, and \(f_\infty : \mathfrak{g} \to A \) an \(L_\infty \) morphism. Let \(p_A : B \to A \) be a fibration in the category of dglas, with \(H_* (B) = 0 \). Assume we have a commutative diagram of \(L_\infty \)-algebras

\[
\begin{array}{c}
(g \times_A B, Q) \\
\downarrow \pi_{(\mathfrak{g}),\infty} \\
g \\
\end{array}
\begin{array}{c}
\pi_{B,\infty}
\end{array}
\begin{array}{c}
\downarrow p_A \\
A
\end{array}
\]

for a suitable \(L_\infty \)-structure \(Q \) on the fiber product of chain complexes \(g \times_A B \) of \(p_A \) with the linear component of \(f_\infty \), with \(\pi_{(\mathfrak{g}),\infty} \) and \(\pi_{B,\infty} \) \(L_\infty \)-morphisms lifting the linear projections \(\pi_{\mathfrak{g}} \) and \(\pi_B \). Then \((g \times_A B, Q) \) is a model for the homotopy fiber of \(f_\infty \).

Proof. Applying the rectification functor to the diagram of \(L_\infty \)-morphisms above we get a commutative diagram of dglas

\[
\begin{array}{c}
\mathcal{R}(g \times_A B, Q) \\
\downarrow \pi_{(\mathfrak{g}),\infty} \\
\mathcal{R}(\mathfrak{g}) \\
\end{array}
\begin{array}{c}
\pi_{B,\infty}
\end{array}
\begin{array}{c}
\downarrow \pi_{(\mathfrak{g}),\infty} \\
\mathcal{R}(B) \\
\end{array}
\begin{array}{c}
\pi_{(\mathfrak{g}),\infty}
\end{array}
\begin{array}{c}
\downarrow (p_A) \\
\mathcal{R}(A)
\end{array}
\]

Using the counit of the adjunction \((\mathcal{R} \dashv i) \), we can extend this to a commutative diagram of dglas

\[
\begin{array}{c}
\mathcal{R}(g \times_A B, Q) \\
\downarrow \pi_{(\mathfrak{g}),\infty} \\
\mathcal{R}(\mathfrak{g}) \\
\end{array}
\begin{array}{c}
\pi_{B,\infty}
\end{array}
\begin{array}{c}
\downarrow \pi_{B,\infty} \\
\mathcal{R}(B) \\
\end{array}
\begin{array}{c}
\xi_B \\
\downarrow \pi_B \\
\mathcal{R}(A) \\
\end{array}
\begin{array}{c}
\xi_A \\
p_A \\
A
\end{array}
\]

By the universal property of the pullback of dglas, the outer rectangle is equivalent to the datum of a morphism of dglas \(\psi : \mathcal{R}(g \times_A B, Q) \to \mathcal{R}(\mathfrak{g}) \times_A B \), where \(\mathcal{R}(\mathfrak{g}) \times_A B \) is the pullback of
The rightmost subdiagram is a pullback by definition, while the total diagram is
\[
\begin{array}{ccc}
\mathfrak{g} \times_A B & \xrightarrow{\pi_B} & B \\
\mathfrak{g} & \xrightarrow{(v_\mathfrak{g}, id_B)} & \mathcal{R}(\mathfrak{g}) \times_A B \\
\mathfrak{g} & \xrightarrow{(v_\mathfrak{g})_1} & \mathcal{R}(\mathfrak{g}) \\
\mathfrak{g} & \xrightarrow{(f_\mathfrak{g})_1} & A
\end{array}
\]
since \(\xi_A \circ \mathcal{R}(f_\infty) \circ (v_\mathfrak{g})_1 = (\xi_A \circ \mathcal{R}(f_\infty) \circ v_\mathfrak{g})_1 = (f_\infty)_1 \), and so it is a pullback by hypothesis. Then, by the pasting law, also the leftmost subdiagram is a pullback. The map \(\pi_\mathfrak{g}(\mathfrak{g}) \) is a fibration, since \(p_A \) is fibration, and all chain complexes are fibrant. Hence, since \((v_\mathfrak{g})_1 \) is a quasi-isomorphism, its pullback \(\eta_1 = ((v_\mathfrak{g})_1, id_B) \) is also a quasi-isomorphism.

References

