Measurement of the electric charge of the top quark in $t\bar{t}$ events

(D0 Collaboration)

1LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3Universidade Federal do ABC, Santo André, Brazil
4University of Science and Technology of China, Hefei, People’s Republic of China
5Universidad de los Andes, Bogotá, Colombia
V. M. ABAZOV et al. PHYSICAL REVIEW D 90, 051101(R) (2014)

Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic

Czech Technical University in Prague, Prague, Czech Republic

Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Universidad San Francisco de Quito, Quito, Ecuador

LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France

LPSC, Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France

LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France

CEA, Ifus, SPP, Saclay, France

IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France

IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France, and Université de Lyon, Lyon, France

Physikalisches Institut A, RWTH Aachen University, Aachen, Germany

Physikalisches Institut, Universität Freiburg, Freiburg, Germany

Ludwig-Maximilians-Universität München, München, Germany

Panjab University, Chandigarh, India

Delhi University, Delhi, India

Tata Institute of Fundamental Research, Mumbai, India

University College Dublin, Dublin, Ireland

Korea Detector Laboratory, Korea University, Seoul, Korea

CINVESTAV, Mexico City, Mexico

Nikhef, Science Park, Amsterdam, The Netherlands

Radboud University Nijmegen, Nijmegen, The Netherlands

Joint Institute for Nuclear Research, Dubna, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow State University, Moscow, Russia

Institute for High Energy Physics, Protvino, Russia

Petersburg Nuclear Physics Institute, St. Petersburg, Russia

Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain

Uppsala University, Uppsala, Sweden

Taras Shevchenko National University of Kyiv, Kiev, Ukraine

Lancaster University, Lancaster LAI 4YB, United Kingdom

Imperial College London, London SW7 2AZ, United Kingdom

The University of Manchester, Manchester M13 9PL, United Kingdom

University of Arizona, Tucson, Arizona 85721, USA

University of California Riverside, Riverside, California 92521, USA

Florida State University, Tallahassee, Florida 32306, USA

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

University of Illinois at Chicago, Chicago, Illinois 60607, USA

Northern Illinois University, DeKalb, Illinois 60115, USA

Northwestern University, Evanston, Illinois 60208, USA

Indiana University, Bloomington, Indiana 47405, USA

Purdue University Calumet, Hammond, Indiana 46323, USA

University of Notre Dame, Notre Dame, Indiana 46556, USA

Iowa State University, Ames, Iowa 50011, USA

University of Kansas, Lawrence, Kansas 66045, USA

Louisiana Tech University, Ruston, Louisiana 71272, USA

Northeastern University, Boston, Massachusetts 02115, USA

University of Michigan, Ann Arbor, Michigan 48109, USA

Michigan State University, East Lansing, Michigan 48824, USA

University of Mississippi, University, Mississippi 38677, USA

University of Nebraska, Lincoln, Nebraska 68588, USA

Rutgers University, Piscataway, New Jersey 08855, USA

Princeton University, Princeton, New Jersey 08544, USA

State University of New York, Buffalo, New York 14260, USA
We present a measurement of the electric charge of top quarks using $t\bar{t}$ events produced in $p\bar{p}$ collisions at the Tevatron. The analysis is based on fully reconstructed $t\bar{t}$ pairs in lepton + jets final states. Using data corresponding to 5.3 fb$^{-1}$ of integrated luminosity, we exclude the hypothesis that the top quark has a charge of $Q = -4/3e$ at a significance greater than 5 standard deviations. We also place an upper limit of 0.46 on the fraction of such quarks that can be present in an admixture with the standard model top quarks ($Q = +2/3e$) at a 95% confidence level.

DOI: 10.1103/PhysRevD.90.051101 PACS numbers: 14.65.Ha, 13.85.Rm, 14.80.-j

The top quark (t), discovered in $p\bar{p}$ collisions at the Tevatron in 1995 [1], fits within the standard model (SM) of particle physics as the companion of the b quark in a weak-isospin doublet with an electric charge of $Q = +2/3e$. $t\bar{t}$ pairs via the strong interaction is the dominant production mode of top quarks at hadron colliders. In the SM, the top quark decays $\approx 99.9\%$ of the time to a W boson and a b quark, i.e., $t\rightarrow W^+b$ and its charge conjugate. However, beyond the SM (BSM) a new quark with a charge of $Q = -4/3e$ could contribute to the same final state with the corresponding decay of $t_{BSM}(\rightarrow 4/3e) \rightarrow W^-b$ and its charge conjugate [2,3]. This q_{BSM} is the down-type component of an exotic right-handed doublet with its companion quark having a charge of $Q = -1/3e$ [2].

The measured kinematic distributions of $t\bar{t}$ events, in particular, the $t\bar{t}$ mass spectrum, are consistent with the SM [4]. This type of BSM quark would therefore be likely to appear in an admixture with SM top quarks in the $t\bar{t}$ final state, and evade detection unless the charge of the top quark is measured explicitly.

Under an assumption that, except for the electric charge, all other properties of the BSM quark are identical to those of the SM top quark, experimental limits have been placed on the BSM nature of the top quark in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV by the D0 and CDF collaborations [5,6], at 92% and 99% confidence levels, respectively. A stringent exclusion has been reported by the ATLAS collaboration in pp collisions at $\sqrt{s} = 7$ TeV with a significance of more than 8 standard deviations (SD) [7]. In this paper, we discriminate between the SM top quark and the BSM quark under the above assumption, using data accumulated with the D0 detector in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV corresponding to an integrated luminosity of 5.3 fb$^{-1}$. A kinematic fit to the $t\bar{t}$ final state [8] is used to associate the b jets with the W bosons and the charge of the b jets is determined through a jet charge algorithm [9]. We then extend the analysis to examine the additional possibility that the two types of quarks can contribute in an admixture to the top and antitop quarks of the $t\bar{t}$ final state and place a stringent limit on the possible fraction of BSM quarks in the data.

The D0 detector [10] has a central tracking system, consisting of a silicon microstrip tracker and a central fiber tracker, both located within a 1.9 T superconducting solenoidal magnet, optimized for tracking and vertexing at pseudorapidities $|\eta| < 3$ and $|\eta| < 2.5$, respectively [11]. Central and forward preshower detectors are positioned just outside of the superconducting coil. A liquid-argon and
uram calorimeter has a central section covering pseudo-rapidities up to $|\eta| \approx 1.1$, and two end sections that extend coverage to $|\eta| \approx 4.2$, with all three housed in separate cryostats [12]. An outer muon system for $|\eta| < 2$ consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T iron toroids, followed by two similar layers after the toroids [13].

We use the lepton + jets final states of $t\bar{t}$ candidate events, where one W boson decays leptonically ($W \to \ell \nu_{\ell}$) with ℓ denoting an electron or a muon (μ) and the other into two light-flavor quarks ($W \to q\bar{q}$). The final state is therefore characterized by one isolated charged lepton of large transverse momentum relative to the beam axis (p_T), four jets generally originating from the $q\bar{q}$, ℓ, and b quarks, and a significant imbalance in transverse momentum (E_T) resulting from the undetectable neutrino.

The event selection, object identification, and event simulation of signal and background follow the procedures described in Ref. [14]. The primary interaction vertex (PV) from a $p\bar{p}$ collision must be reconstructed within 60 cm of the detector center. Electrons are required to have $p_T > 20$ GeV and $|\eta| < 1.1$, and muons are required to have $p_T > 20$ GeV and $|\eta| < 2.0$. Electrons and muons from lepton-tau decays ($W \to \ell\nu_{\ell} \tau \nu_{\tau}$) are included in the analysis. Jets are defined using an iterative cone algorithm [15] with a radius $R = 0.5$ in (η, ϕ) space, where ϕ is the azimuthal angle. We select events with four or more jets with $p_T > 20$ GeV and $|\eta| < 2.5$, at least two of which are required to be identified (tagged) as b jets through a neural network discriminant at a threshold for which the tagging efficiency for b jets is $\approx 55\%$ and the misidentification rate for light-flavor jets is $\approx 2\%$ [16]. The E_T is required to be greater than 20 and 25 GeV in the $e + \text{jets}$ and $\mu + \text{jets}$ events, respectively.

The production of $t\bar{t}$ pairs is simulated using the ALPGEN Monte Carlo (MC) generator [17] with a top quark mass of 172.5 GeV. We use the PYTHIA [18] program for parton evolution and GEANT [19] for simulating the D0 detector. The dominant background process is $W + \text{jets}$ production. Several additional sources of background are also considered. We simulate $W/Z + \text{jets}$, diboson (WW, WZ, and ZZ), and single top quark productions using ALPGEN, PYTHIA, and COMPHEP [20], respectively. The cross section for each background is normalized to next-to-leading-order predictions. The contribution from multijet background is estimated from data using the “matrix method” [21].

The assignment of reconstructed objects to the products from $t\bar{t}$ decay is achieved through a constrained kinematic fit [8], which, for each possible assignment, minimizes a χ^2 function using the kinematic information of the reconstructed objects assuming the $t\bar{t}$ hypothesis for the final state objects. As constraints for the fit, we use the conservation of energy and momentum and the masses of the W boson and the top quark, $m_W = 80.4$ GeV and $m_t = 172.5$ GeV, respectively. The b-tagged jets are assumed to be jets originating from b quarks. We utilize the E_T and the mass constraint on the leptonically decaying W boson to infer the momentum of the neutrino. The assignment with the lowest χ^2 is used to reconstruct the $t\bar{t}$ decay chain. The b jet that is paired with the W boson decays into two leptons or two quarks in the $t\bar{t}$ event reconstruction is referred to, respectively, as b_ℓ or b_ν. The efficiency of correct assignment for b_ℓ and b_ν is $\approx 70\%$.

The charge of the lepton, Q_ℓ, determines the charge of the leptonically decaying W boson and consequently the opposite charge is assumed for the W boson that decays to $q\bar{q}$. The charge of the quark initiating a jet is estimated from the reconstructed jet charge, Q_j, using the method proposed in Ref. [9]. The charge of the b_ℓ and b_ν is denoted as Q_{b_ℓ} and Q_{b_ν}. We combine the charges of each W boson and its associated b jet to compute the charge of the top quark $Q_j = Q_{b_\ell} + Q_{b_\nu}$ for the top quark whose W boson decays leptonically, or $Q_{b_\nu} = -Q_{b_\ell} + Q_{b_\nu}$ for the top quark whose W boson decays into quarks. Using the modulus provides two quantities with the same distributions and thus a statistical benefit from merging them. The values of the b-jet charges Q_{b_ℓ}, Q_{b_ν} are computed from a jet-charge algorithm $Q_j = \left(\Sigma_i Q_i \cdot (p_{Ti})^{1/3}\right)/\left(\Sigma_i (p_{Ti})^{1/3}\right)$, where i runs over all reconstructed tracks within the jet with the requirements that each track has (i) a distance of closest approach within 0.2 cm relative to the PV and $p_T > 0.5$ GeV, and (ii) angular distance with respect to the jet axis $\Delta R(\text{track,jet}) \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.5$, with (iii) at least two tracks satisfying the above requirements. These track criteria and the exponent of 0.5 are the results of an optimization of the algorithm using simulated $t\bar{t}$ events. Events with both b_ℓ and b_ν passing these additional tracking requirements are considered for further analysis. The corresponding efficiency is greater than 0.99. Table I summarizes the sample composition and event yields.

<table>
<thead>
<tr>
<th>Process</th>
<th>Expected events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>263.1 $^{+17.9}_{-18.7}$</td>
</tr>
<tr>
<td>Dilepton $t\bar{t}$</td>
<td>9.4 $^{+0.0}_{-0.7}$</td>
</tr>
<tr>
<td>$W + \text{jets}$</td>
<td>12.7 ± 2.1</td>
</tr>
<tr>
<td>$Z + \text{jets}$</td>
<td>1.4 ± 0.5</td>
</tr>
<tr>
<td>Single top</td>
<td>3.0 ± 0.4</td>
</tr>
<tr>
<td>Other</td>
<td>0.6 ± 1.3</td>
</tr>
<tr>
<td>Total expectation</td>
<td>290.2 $^{+18.1}_{-18.8}$</td>
</tr>
<tr>
<td>Observed</td>
<td>286</td>
</tr>
</tbody>
</table>
following the application of all selection criteria and reconstruction of the charge of the top quark.

The reconstruction of the jet charge is studied using a “tag-and-probe” method in an inclusive two-jet (dijet) data sample \([23]\) enriched in \(b\bar{b}\) events, referred to as the “tight dijet (TD) sample.” The TD sample consists of events with: (i) exactly two jets, each \(b\) tagged, with \(p_T > 20\) GeV and \(|\eta| < 2.5\); (ii) the \(\Delta\phi\) between the two jets of \(> 3.0\) radians; and (iii) one jet (referred to as the “tag jet”) containing a muon (referred to as the “tagging muon”) with \(p_T > 4\) GeV and \(\Delta R(\mu, \text{jet}) < 0.5\). We refer to the other jet in the dijet event as the “probe jet.”

The TD sample contains a small fraction of \(c\bar{c}\) and light parton dijet events. The contribution from light partons is considered negligible since a MC study finds the \(b\)-tagging efficiency for a light parton jet to be a factor of 20 smaller than for a \(c\) jet. The fraction of \(c\bar{c}\) events in the TD sample is estimated using the \(p_T\) of the tagging muon relative to the axis of the tag jet \((p_T^{\text{jet}})\). Muons originating from \(b\)-quark decays tend to have larger values in the \(p_T^{\text{jet}}\) spectrum than those from \(c\)-quark decays. We fit the \(p_T^{\text{jet}}\) distribution in data with the distributions from \(b\bar{b}\) and \(c\bar{c}\) events simulated using PYTHIA and find that the fraction of \(c\bar{c}\) events in the TD sample is \(x_c = 0.093 \pm 0.009\) (stat).

The tagging muon in a dijet event is used to infer the charge of the quark initiating the tag jet and consequently to determine whether the probe jet is initiated by a quark or an antiquark. However, the tagging muon can originate from either a direct decay of a \(B\) hadron or “charge-flipping” processes such as cascade decays of \(B\) hadrons, e.g., \(b \rightarrow c \rightarrow \ell\), or neutral \(B\) meson mixings. In the charge-flipping processes, the charge of the tagging muon can be opposite to that expected, and therefore mistag the probe jet. We simulate the charge-flipping processes using \(Z \rightarrow b\bar{b}\) (MC) events generated with the PYTHIA program, and find that a fraction \(x_f = 0.352 \pm 0.008\) (stat) of the tagging muons have a charge opposite to that of the initial \(b\) quarks [24]. This value is verified by examining the charge correlation between muons in a subset of the TD data sample where an additional muon, having the same quality as the tagging muon, is required in the probe jet.

The performance of the jet-charge algorithm depends on the kinematic properties of the jet, mainly due to a dependence of the tracking efficiency on \(p_T\) and \(|\eta|\). The kinematics of the dijet samples used to extract the jet-charge distributions differ from those of \(\bar{t}\bar{t}\) events, whose jet charges we wish to model. To account for the differences in the performance arising from these kinematic differences, we first reweight the \(\bar{t}\bar{t}\) MC events to get the same jet \(p_T\) and \(|\eta|\) spectra as observed in the dijet events. The ratio of the distributions of jet charge \(Q_j\) between the nominal and the reweighted \(\bar{t}\bar{t}\) samples is parametrized and used as a correction function. This kinematic correction, 8% on average, is applied to the charge distributions of the probe jets, thereby modifying the jet-charge distributions from dijet data so that they model jets in \(\bar{t}\bar{t}\) events.

To find the distributions of the jet charge for jets originating from \(b\), \(b\), \(c\), or \(\bar{c}\) quarks, denoted as \(P_b(Q_j), P_c(Q_j), P_{\bar{c}}(Q_j)\), and \(P_{\bar{c}}(Q_j)\), respectively, we utilize the distributions of the jet charge in probes jets of positive \((P_+(Q_j))\) and negative \((P_-(Q_j))\) tagging muons. In the presence of \(c\bar{c}\) contamination and of charge flipping processes (i.e., \(x_c > 0\) and \(x_f > 0\)), we find

\[
P_+ (Q_j) = (1 - x_c)|x_f P_b(Q_j) + (1 - x_f)P_{\bar{c}}(Q_j)| + x_c P_c(Q_j),
\]

and a similar expression for its charge conjugate. This requires extra inputs to solve for four unknown distributions. We use an additional data sample with a different composition from the TD sample. This “loose dijet (LD) sample” is defined using the same selection criteria as for the TD events except that the tag jets are not required to pass \(b\)-tagging requirements. We find that the LD sample has a larger fraction of \(c\bar{c}\) contributing with \(x'_c = 0.352 \pm 0.014\), and a charge-flipping probability consistent with that found in the TD sample \((x'_f = x_f)\). The distributions for jet charge \(P^\pm (Q_j)\) obtained from the probe jets in the LD sample provide the additional equations,

\[
P^\pm (Q_j) = (1 - x'_c)|x'_f P_b(Q_j) + (1 - x'_f)P_{\bar{c}}(Q_j)| + x'_c P_c(Q_j),
\]

and similarly for its charge conjugate. The distributions for jet charge are constructed by solving Eqs. (1) and (2), and their charge conjugate equations. These charge templates \(P_b(Q_j), P_c(Q_j), P_{\bar{c}}(Q_j), \) and \(P_{\bar{c}}(Q_j)\), normalized to unity, serve as the probability density functions (PDF) for the charge of the jet originating from a given quark. The \(b\)-jet and \(\bar{b}\)-jet templates are shown in Fig. 1. The equivalent jet...
charge templates for each background process are derived through the same procedure as used for signal templates.

The templates for jet charge are used to extract the top quark charge templates as Q_t and Q_{b}, respectively. A single PE consists of the same number of composition in Table I. Systematic uncertainties, detailed for each event, as follows. For the templates through the same procedure as used for signal templates. The templates for jet charge are used to extract the top quark charge templates as Q_t and Q_{b}, respectively, according to the charge

To measure the charge of the top quark, we discriminate between the SM and BSM possibilities using a likelihood ratio:

$$
\Lambda = \frac{\prod_i P^{SM}(Q_i)}{\prod_i P^{BSM}(Q_i)},
$$

where $P^{SM}(Q_i)$ and $P^{BSM}(Q_i)$ are the probabilities of observing the top quark charge Q_i under the SM and BSM hypotheses, respectively, according to the charge templates in Fig. 2. The superscript i runs over all the 572 available measurements of Q_i. The values of Λ for the SM and BSM top quarks are evaluated through pseudo-experiments (PE) using $P^{SM}(Q_i)$ and $P^{BSM}(Q_i)$, respectively. A single PE consists of the same number of measurements as in data, randomly selected from the signal and background Q_i distributions according to the sample composition in Table I. Systematic uncertainties, detailed below, are accounted for in each PE by modifying the top quark charge templates as

$$
P(Q_i) = P^0(Q_i) + \sum_i \nu_i (P^{\pm}(Q_i) - P^0(Q_i)),
$$

where $P^0(Q_i)$ is the nominal probability distribution of Q_i, $P^{\pm}(Q_i)$ are those obtained from changes of ±1 SD made for systematic source i, and ν_i are nuisance parameters. The ν_i are assumed to be uninteresting physical parameters, e.g., uncertainties that can be integrated over, and correspond to random variables drawn from a standard normal distribution. We verify that variations in templates are linear with changes in the nuisance parameters.

The data yields the value $\ln(\Lambda_{D}) = 20.93$. This value is compared to the distributions of Λ for the SM and BSM assumptions shown in Fig. 3. We find the measured Λ_{D} is consistent with the SM hypothesis and obtain a p value of 6.0×10^{-8} under the BSM hypothesis, which corresponds to an exclusion of the BSM nature of the top quark with a significance of 5.4 SD.

We also consider the possibility that the observed distribution of events corresponds to a mixture of the SM and BSM top quarks. The fraction f of the SM top quarks is determined using a binned likelihood fit. The likelihood of the charge distribution in data is consistent with the sum of the SM and BSM templates that includes the background from Fig. 2, with the number of events as a function of Q_i given by

$$
n_i = f \times N \times P^{SM}(Q_i) + (1 - f) \times N \times P^{BSM}(Q_i),
$$

where N is the total number of measurements of Q_i, and P^{SM}_i and P^{BSM}_i is the probability of observing the SM and BSM top quarks, respectively, in bin i. The fraction f is

![FIG. 2 (color online). Combined distribution in the charge Q_i for $t\bar{t}$ candidates in data compared with expectations from the SM and the BSM. The background contribution (BG) is represented by the green-shaded histogram. The expected distributions are normalized to unity and used as the PDF $P^{SM}(Q_i)$ and $P^{BSM}(Q_i)$ in Eq. (3).](image1)

![FIG. 3 (color online). Distributions of $\ln(\Lambda)$ for the SM (histograms on the right) and BSM (histograms on the left) models from 10^9 PE, compared to the measurement (arrow). The solid lines show the expected distributions, while the dashed histograms show the distributions expected in the absence of systematic uncertainties. The value of $\ln(\Lambda_{D})$ is displayed by the black vertical line.](image2)
distribution in data yields the fraction \(f_0 \) for kinematic differences in the distributions of jet charge between the simulation and their latest experimental result.

The maximum likelihood fit is repeated for each systematic source using the templates modified by the systematic effect, and the resulting deviation from the nominal value is taken as the corresponding systematic uncertainty.

The largest uncertainty, of 0.07, is due to the limited size of the selected dijet samples used to model the charge templates for \(b \)-quark jets. Several systematic sources yield uncertainties on the measurement at the \(\approx 3\% \) level, such as (i) the determination of \(x_f \), reflecting differences in the mixing parameters and decay rates of \(B \) hadrons between the simulation and their latest experimental values [26], (ii) the parametrization of the corrections for kinematic differences in the distributions of jet charge for the dijet and \(t\bar{t} \) samples, and (iii) modeling of signal, where the effects of higher-order corrections, parton evolution, and hadronization are estimated using \(\bar{t}t \) events simulated with MC@NLO [27] interfaced with HERWIG [28] for parton evolution.

The maximum likelihood fit to the top quark charge distribution in data yields the fraction \(f = 0.88 \pm 0.13 \text{(stat)} \pm 0.11 \text{(syst)} \). We employ the ordering-principle suggested by Feldman and Cousins [29] to set limits on \(f \). The total uncertainty, i.e., the quadratic sum of the statistical and systematic uncertainties in Table II, is assumed to be a Gaussian distribution in \(f \). For the observed value, we find that the hypothesis that all top quarks in the data are BSM quarks is excluded at greater than 5 SD, as shown in Fig. 4, which is consistent with the results obtained from the likelihood ratio. We also find a lower limit of \(f = 0.54 \) at a 95% C.L., which corresponds to an equivalent upper limit on the fraction of BSM quarks of \(f \leq 0.46 \) at the same level of significance.

The systematic uncertainties on the fraction \(f \) are listed in Table II, and are classified in three categories: uncertainties related to (i) modeling of signal and background events; (ii) simulation of detector response; and (iii) analysis procedures and methods. The maximum likelihood fit is repeated for each systematic source using the templates modified by the systematic effect, and the resulting deviation from the nominal value is taken as the corresponding systematic uncertainty.

<table>
<thead>
<tr>
<th>Category</th>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal/background</td>
<td>Top quark mass</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Color reconnection</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Background normalization</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Lepton charge mismeasurement</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Jet energy scale</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>Jet identification</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Initial/final state radiation</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>b-tagging efficiency</td>
<td>0.01</td>
</tr>
<tr>
<td>Detector</td>
<td>Luminosity</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>(\Delta \phi) in TD sample selection</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Determination of (x_c)</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Determination of (x_f)</td>
<td>0.03</td>
</tr>
<tr>
<td>Method</td>
<td>Kinematic corrections</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Dijet sample statistics</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>MC template statistics</td>
<td>0.03</td>
</tr>
</tbody>
</table>

The total uncertainty, \(\text{Total systematic uncertainty} = 0.11 \), is extracted by maximizing the likelihood without constraining \(f \) to physically allowed values.

FIG. 4 (color online)

Confidence belts from the Feldman-Cousins approach for 1 SD (inner), 3 SD (middle), and 5 SD (outer). The red solid line shows the average of the measured values \(f_{\text{meas}} \) for each input fraction \(f_{\text{true}} \) and the vertical dashed line represents the fraction \(f = 0.88 \) observed in the data.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

[11] The pseudorapidity is defined as $\eta = -\ln[\tan(\theta/2)]$, where θ is the polar angle with respect to the beam axis measured at the center of the detector.

[23] The dijet sample is a subset of the data sample collected with an additional layer of the D0 silicon system [R. Angstadt et al., Nucl. Instrum. Methods Phys. Res., Sect. A 622, 298 (2010)] corresponding to 4.3 fb^{-1} of integrated luminosity. The effect of this additional layer is estimated from the simulation and taken into account in obtaining the charge templates for the first 1.0 fb^{-1} of events collected without this layer.

[24] Using such simulations, we find that the charge-flipping fraction has contributions of 0.23 from cascade decays, 0.11 from neutral B meson mixings, and 0.01 from misidentified electric charge.

[25] The two observables are expected to have the same distributions. However, two tagged jets are statistically independent and thus no strong correlation is expected.

