Planck 2013 results. XVIII.

Gravitational lensing-inferred background correlation

(Affiliations can be found after the references)

ABSTRACT

The multi-frequency capability of the **Planck** satellite provides information both on the integrated history of star formation (via the cosmic infrared background, or CIB) and on the distribution of dark matter (via the lensing effect on the cosmic microwave background, or CMB). The conjunction of these two unique probes allows us to measure directly the connection between dark and luminous matter in the high redshift (1 ≤ z ≤ 3) Universe. We use a three-point statistic optimized to detect the correlation between these two tracers. Following a thorough discussion of possible contaminants and a suite of consistency tests, using lens reconstructions at 100, 143 and 217 GHz and CIB measurements at 100–857 GHz, we report the first detection of the correlation between the CIB and CMB lensing. The well matched redshift distribution of these two signals leads to a detection significance of 42σ at 545 GHz and a correlation as high as 80% across these two tracers. Our full set of multi-frequency measurements (both CIB auto- and CIB-lensing cross-spectra) are consistent with a simple halo-based model, with a characteristic mass scale for the halos hosting CIB sources of log(M/M☉) = 10.5 ± 0.6. Leveraging the frequency dependence of our signal, we isolate the high redshift contribution to the CIB, and constrain the star formation rate (SFR) density at z ≥ 1. We measure directly the SFR density with around 2σ significance for three redshift bins between z = 1 and 7, thus opening a new window into the study of the formation of stars at early times.

Key words. Gravitational lensing – Galaxies: star formation – cosmic background radiation – dark matter – large-scale structure of Universe

1. Introduction

This paper, one of a set associated with the 2013 release of data from the **Planck** mission (**Planck Collaboration I 2013**), presents a first detection of a strong correlation between the infrared background anisotropies and a lensing-derived projected mass map. The broad frequency coverage of the **Planck** satellite provides two important probes of the high redshift Universe. In the central frequency bands of **Planck** (70, 100, 143, and 217 GHz), cosmic microwave background (CMB) fluctuations

© ESO 2013

Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries France and Italy), with contributions from NASA (USA) and telescope reflectors provided by a collaboration between ESA and a scientific consortium led and funded by Denmark.
dominate over most of the sky. Gravitational lensing by large-scale structure produces small shear and magnification effects in the observed fluctuations, which can be exploited to reconstruct an integrated measure of the gravitational potential along the line of sight Okamoto & Hu (2003). This “CMB lensing potential” is sourced primarily by dark matter halos located at $1 \lesssim z \lesssim 3$, halfway between ourselves and the last scattering surface (see Blandford & Jaroszynski 1981; Blanchard & Schneider 1987, or Lewis & Challinor 2006 for a review). In the upper frequency bands (353, 545, and 857 GHz), the dominant extragalactic signal is not the CMB, but the cosmic infrared background (CIB), composed of redshifted thermal radiation from UV-heated dust, enshrouding young stars. The CIB contains much of the energy from processes involved in structure formation. According to current models, the dusty star-forming galaxies (DSFGs), which form the CIB have a redshift distribution peaked between $z \sim 1$ and $z \sim 2$, and tend to live in $10^{11} - 10^{13} M_\odot$ dark matter halos (see, e.g., Béthermin et al. 2012, and references therein).

As first pointed out by Song et al. (2003), the halo mass and redshift dependence of the CMB lensing potential and the CIB fluctuations are well matched, and as such a significant correlation between the two is expected. This point is illustrated quantitatively in Fig. 1, where we plot estimates for the redshift- and mass- kernels of the two tracers. In this paper we report on the first detection of this correlation.

Measurements of both CMB lensing and CIB fluctuations are currently undergoing a period of rapid development. While the CMB mean was first detected using the FIRAS and DIRBE instruments aboard COBE (Puget et al. 1996; Fixsen et al. 1998; Hauser et al. 1998), CIB fluctuations were later detected by the Spitzer Space Telescope (Lagache et al. 2007) and by the BLAST balloon experiment (Viero et al. 2009) and the Herschel Space Observatory (Amblard et al. 2011; Viero et al. 2012), as well as the new generation of CMB experiments, including Planck, which have extended these measurements to longer wavelengths (Hall et al. 2010; Dunkley et al. 2011; Planck Collaboration XVIII 2011; Reichardt et al. 2012). The Planck early results paper: Planck Collaboration XVIII (2011) (henceforth referred to as PER) presented measurements of the angular power spectra of CIB anisotropies from arc-minute to degree scales at 217, 353, 545, and 857 GHz, establishing Planck as a potent probe of the clustering of the CIB, both in the linear and non-linear regimes. A substantial extension of PER is presented in a companion paper to this work (Planck Collaboration 2013, henceforth referred to as PIR).

The CMB lensing potential, on the other hand, which was first detected statistically through cross-correlation with galaxy surveys (Smith et al. 2007; Hirata et al. 2008, and more recently Bleem et al. 2012; Sherwin et al. 2012), has now been observed directly in CMB maps by the Atacama Cosmology Telescope and the South Pole Telescope (Das et al. 2011; van Engelen et al. 2012).

Planck’s frequency coverage, sensitivity and survey area, allow high signal-to-noise measurements of both the CIB and the CMB lensing potential. Accompanying the release of this paper, Planck Collaboration XVII (2013) reports the first measurement and characterisation of the CMB lensing potential with the Planck data, which has several times more statistical power than previous measurements, over a large fraction (approximately 70% of the sky). We will use this measurement of the lensing potential in cross-correlation with measurements of the CIB in the Planck HFI bands to make the first detection of the lensing-infrared background correlation. In addition to our measurement, we discuss the implications for models of the CIB fluctuations. The outline of this paper is as follows. In Sect. 2 we describe the data we will use, followed by a description of our pipeline for correlating the CIB and lensing signals in Sect. 3. Our main result is presented in Sect. 4, with a description of our error budget, consistency tests and an array of systematic tests in Sect. 5. We discuss the implications of the measured correlation for CIB modelling in Sect. 6.

2. Data sets

2.1. Planck maps

Planck (Tauber et al. 2010; Planck Collaboration I 2011) is the third generation space mission to measure the anisotropy of the CMB. It observes the sky with high sensitivity in nine frequency bands covering 30–857 GHz at an angular resolution from 31′ to 5'. The Low Frequency Instrument (LFI; Mandolesi et al. 2010; Bersanelli et al. 2010; Mennella et al. 2011) covers the 30, 44, and 70 GHz bands with radiometers that incorporate amplifiers cooled to 20 K. The High Frequency Instrument (HFI; Lamarre et al. 2010; Planck HFI Core Team 2011a) covers the 100, 143, 217, 353, 545, and 857 GHz bands with bolometers cooled to 0.1 K. Polarization is measured in all but the highest two bands.
We create three masks to exclude regions with bright extragalactic foreground emission. The first mask accounts for diffuse Galactic emission as observed in the Planck data. To allow us to test for the effects of residual Galactic emission on our results we create three different versions of this mask, each with a different masked area, such that 20, 40 or 60 % of the sky is unmasked. Each version of this mask is created directly from the Planck 353 GHz map, from which we remove the CMB using the 143 GHz channel as a CMB template before smoothing by a Gaussian with FWHM of 5°. The map is then thresholded such that the mask has the required sky fraction. Although the Galactic emission is stronger at 857 GHz, we expect the 353 GHz mask to better trace dust emission at the lower frequencies we use. The mask therefore accounts for Galactic dust and Galactic CO emission as explained in Planck Collaboration XII (2013). We will not worry about synchrotron emission, which is important at low frequencies, since its contribution at 100 GHz and at high Galactic latitudes is small, and, as with the dust component, will be uncorrelated with the lensing potential. The second mask covers bright point sources. This mask is created using algorithms tailored to detect point sources in the Planck data and is optimized for each frequency, as detailed in Planck Collaboration VII (2011) and Planck Collaboration (2011). The third mask is designed to remove extended high-latitude Galactic dust emission (“cirrus”), as traced by external HI data, as we will describe in Sect. 2.2.2.1. While the first two masks are described in Planck Collaboration XII (2013), the latter is specific to our cross-correlation analysis, as it provides a method to reduce the large-scale noise in our measurement, and the 3-point nature of our estimate ensures that it will not introduce a bias (although we test for this in Sect. 5). Ultimately, when we combine the three masks we obtain an effective sky fraction of 16, 30 and 43 % for the 20, 40 and 60 % Galactic masks, respectively.

2.2. External data sets

2.2.1. HI maps

We use measurements of 21-cm emission from Galactic neutral hydrogen (HI) as a cirrus monitor. Outside of our Galactic and point source masks we use the HI data to construct a template of the dust emission in regions where the HI column density is low (less than $N_{HI} \lesssim 2 \times 10^{20}$ cm$^{-2}$), and we mask regions where it is high, since in these regions the HI and dust emission are not well correlated (Boulanger et al. 1996; Boulanger & Perault 1988, PER). The masking procedure that we use is described in detail in Planck Collaboration XXIV (2011). It consists of subtracting the HI dust template from the Planck temperature map at 857 GHz and calculating the skewness of the residuals in 5 deg2 regions. If the skewness is larger than a given value then the region is masked. This is an improvement over...
the usual cut-off in H\textsc{i} column density. We use the latest release from the Leiden/Argentina/Bonn (LAB) survey (Kalberla et al. 2005), which consists of the Leiden/Dwingeloo Survey (LDS) (Hartmann & Burton 1997) north of −30° declination, combined with the Instituto Argentino de Radioastronomia Survey (Arnal et al. 2000; Bajaja et al. 2005) south of −25° declination. The angular resolution of the combined map is approximatly 0.6° FWHM. The LAB Survey is the most sensitive Milky Way H\textsc{i} survey to date, with the greatest coverage both spatially and kinematically. We make use of projections of the Milky Way H\textsc{i} obtained by the following set of steps:

1. Inverse variance filter the CMB map.
2. Use the filtered CMB map as the input to a quadratic lensing estimator, which is designed to extract the off-diagonal contributions to the CMB covariance matrix induced by lensing.
3. Subtract a “mean-field bias”, which corrects for known non-lensing contributions to the covariance matrix, including instrumental noise inhomogeneity, beam asymmetry, and the Galaxy+point source mask.

The output from this pipeline is an estimate of the lensing potential in harmonic space \(\hat{\phi}_{LM} \) and an associated noise power spectrum \(N_{\ell}^{\phi} \), which we use to weight our cross-correlation estimates. We also produce a set of simulated lens reconstructions, which we use to establish our statistical error bars.

Our nominal lens reconstructions use the 143 GHz channel, however there is almost equivalent power to measure lensing using the 217 GHz channel. Combining both channels would reduce the noise power spectrum of our lens reconstruction by approximately 25%, compared with using either individually (the improvement is significantly less than 50% because a significant portion of the lens reconstruction noise is due to the finite number of CMB modes, which we are able to observe, and is correlated between the two channels). We choose to focus on 143 GHz here because it is significantly less susceptible to CIB contamination. We will use lens reconstructions based on the 100 and 217 GHz data for consistency tests.

2.2. IRIS/IRAS maps

As a consistency test we will use an additional tracer of the CIB that derives from re-processed IRAS maps at 60 and 100 μm. This new generation of IRAS maps, known as IRIS, benefits from improved zodiacal light subtraction, a calibration and zero level compatible with DIRBE, and an improved de-striping procedure (Miville-Deschênes & Lagache 2005). IRAS made two full-sky maps (HCON-1 and HCON-2), as well as a final map that covers 75% of the sky (HCON-3). The three maps had identical processing that included deglitching, checking of the zero-level stability, visual examination for glitches and artifacts, and zodiacal light removal. The three HCONs were then co-added, taking into account the inhomogeneous sky coverage maps, to generate the average map (HCON-0). Note that the Finkbeiner et al. (1999) maps are also constructed from the IRAS 100 μm data, and as such we will not investigate their cross-correlation properties since the IRIS map contains the same information. For simplicity we will assume that the effective IRIS beam is uniform across the sky and described by a Gaussian with FWHM of 4.3′.

3. Cross-correlation formalism and implementation

We now describe our statistical formalism and its implementation, with additional technical details given in the appendices. Our analysis consists of cross-correlating a full-sky reconstruction of the CMB lensing potential with a temperature map.

3.1. Reconstructing the CMB lensing potential

The CMB is lensed by the gravitational potential of all matter along the photon trajectory from the last scattering surface to us. The lensed CMB is a remapping of the unlensed CMB with the lensed temperature equal to \(\Theta(\hat{h}) = \Theta(\hat{h} + \nabla \phi) \), where \(\Theta(\hat{h}) \) is the unlensed CMB temperature and \(\phi \) is the lensing potential. We use the methodology described in Planck Collaboration XVII (2013) to obtain estimates \(\hat{\phi}_{LM} \) of the lensing potential in harmonic space, using the standard Okamoto & Hu (2003) quadratic estimator.

Complete details on the lens reconstruction procedure, which we use are given in Planck Collaboration XVII (2013), although we review it briefly in point form here. Our estimates of \(\hat{\phi} \) are obtained by the following set of steps:

pixels at resolution $N_{\text{side}} = 16 (8)$ that are outside the Galactic mask. We test that our conclusions do not depend on this resolution.

The details of our procedure is as follows. We subtract the 143 GHz Planck temperature map from each of the 217–857 GHz temperature maps to remove the CMB signal (this CMB subtraction is only done for the purposes of creating the dust template). We upgrade each of the $N_{\text{side}} = 512$ LAB maps compiled in Land & Slosar (2007) to the Planck map resolution of $N_{\text{side}} = 2048$. Within each region we then simultaneously fit for the amplitude of each H I velocity component in the CMB-subtracted maps, and use the two coefficients per region to assemble a full-sky (minus the mask) dust template for each of the 217–857 GHz channels. We smooth each template with a Gaussian of FWHM 10$''$ to remove the discontinuity at the patch boundaries, and then subtract the template from the original (CMB-unsubtracted) Planck maps.

We note that the accuracy of this procedure would be difficult to evaluate for all possible uses of the map, i.e., whether it might constitute a robust component separation method remains to be demonstrated. However, in the case of our cross-correlation analysis the dust-removal requirements are less severe, since the dust emission only contributes to our measurement as noise. We will describe later in Sect. 5.2 the effect on the cross-spectrum of removing this emission, and will place limits on the residual Galactic contamination in Sect. 5.3.5.

3.3. Measuring cross-correlations

To estimate the cross-correlation between the lensing potential and a tracer t, we calculate

$$\hat{C}_\ell^{tt} = \frac{1}{2\ell + 1} \sum_m \hat{c}_{\ell m}^{\phi t_m}. \quad (1)$$

As the CIB has an approximately ℓ^{-1} dependence and the lensing potential has an ℓ^{-2} dependence, we multiply the cross-spectra by ℓ^2, and then bin it in 15 linearly spaced bins between 100 $< \ell < 2000$. As we will discuss in Sect. 5, modes with $\ell < 100$ are not considered, due to possible lens mean-field systematic effects, and modes with $\ell > 2000$ are removed due to possible extragalactic foreground contamination. We have tested that our results are robust to an increase or decrease in the number of ℓ-bins.

We expect the error bars to be correlated across bins to some extent, due to pseudo-C_ℓ mixing induced by the mask, and between frequencies, because the lens reconstruction noise is common. In addition, any foregrounds that are present in multiple channels will introduce correlated noise. The foreground mask will also induce a coupling between different modes of the unmasked map. This cross-coupling can be calculated explicitly using the mixing matrix formalism introduced in Hivon et al. (2002). Using this formalism and our best-fit models we have evaluated the correlation between different bins of the cross-correlation signal for our nominal binning scheme. We find that the mask-induced correlation is less than 2% across all bins at all frequencies. We will thus neglect it in our analysis. For this reason, and based on the results we obtain from simulations, we do not attempt to “deconvolve” the mask from the cross-spectrum (see e.g., Hivon et al. 2002) and instead correct for the power lost through masking the maps by a single sky fraction, f_{sky}, ignoring the mode coupling.

As will be discussed later in Sect. 6.1, when we fit models to the cross-spectrum we will assume that the noise correlation between bins can be neglected and that the band-powers are flat.

3.4. Simulating cross-correlations

In order to validate our measurement pipeline and to confirm that our estimate of the cross-spectrum is unbiased we create simulated maps of the lensed CMB and CIB that have the expected statistical properties.

Using the Planck only favored ΛCDM cosmology as described in Planck Collaboration XVI (2013) we generate a theoretical prediction of the lensing potential spectrum using CMB (Lewis et al. 2000), from which we create 300 maps of ϕ that are used to lens 300 CMB realizations using the approach described in Planck Collaboration XVII (2013). We then use the PER best-fit CIB model to generate CIB auto- and CIB-\phi cross-spectra, from which we create CIB realizations that are correctly correlated with ϕ in each HFI band. The PER model that we use describes the CIB clustering at HFI frequencies using a halo approach, and simultaneously reproduces known number counts and luminosity function measurements. At each frequency we add a lensed CMB realization to each of the CIB realizations and then smooth the maps using a symmetric beam with the same FWHM as the beam described in Sect. 2.1. Once this set of realizations has been generated we apply the reconstruction procedure described above to produce an estimate of the lensing potential map, and then calculate the cross-power spectrum using our measurement pipeline.

These simulations will miss some complexities inherent in the Planck mission. They do not take into account inhomogeneous and correlated noise, and we do not simulate asymmetric beam effects. In addition, we do not simulate any foreground components, and we instead take a different approach to determine their contribution. While simplistic, we believe that our simulations are good enough for the purposes of this particular measurement. In Sect. 5 we will discuss possible limitations, as well as how we test for systematic effects that are not included in the simulations.

We use the simulated maps to check that our pipeline correctly recovers the cross-spectrum that was used to generate the simulations. For the ℓ-bins used in our analysis, we find that the recovered spectrum is unbiased (to within the precision achievable with 300 simulations), and with a noise level consistent with expectations. The noise in the recovered spectrum is discussed in Sect. 5.1.

4. A strong signal using Planck HFI data

We now describe the result of applying our pipeline to our nominal data set, i.e., the lens reconstruction at 143 GHz and the foreground reduced Planck HFI temperature maps with a 40% Galactic mask, which when combined with the point source mask and H I mask leaves 30.4% of the sky unmasked. The results are presented in Fig. 3. The error bars correspond to the naive scatter measured within each bin. The thin black line corresponds to the expected CIB-lensing correlation predicted using the PER CIB model (the HOD parameters of the PER 217 GHz best-fit model were used at 100 and 143 GHz since no CIB clustering measurement at these frequencies is available). As can be seen from these plots, the noise is strongly correlated across frequencies, especially at the lowest frequencies where the CMB dominates the error budget. A detailed analysis of the uncertainties and potential systematic errors attached to this result is presented in Sect. 5.

As clearly visible in Fig. 3, a strong signal is detected. To set a reference point and naively quantify its statistical significance when taken at face value, we define a detection signifi-
Fig. 3. Angular cross-spectra between the reconstructed lensing map and the temperature map at the six HFI frequencies. The error bars correspond to the scatter within each band. The solid line is the expected result based on the PER model and is not a fit to these data (see Fig. 16 for an adjusted model), although it is already a satisfying model. In each panel we also show the correlation between the lens reconstruction at 143 GHz and the 143 GHz temperature map in grey. This is a simple illustration of the frequency scaling of our measured signal and also the strength of our signal as compared to possible intra-frequency systematic errors.

cance as follows. We count the number of standard deviations as the quadrature sum of the significance in the different multipole bins:

\[s_\nu = \sqrt{\sum_{i=1}^{15} \left(\frac{C_{\ell}^{\nu}}{\Delta C_{\ell}^{\nu}} \right)^2} \].

For our nominal parameters this gives us 3.6 \(\sigma \), 4.3 \(\sigma \), 8.3 \(\sigma \), 31 \(\sigma \), 42 \(\sigma \), and 32 \(\sigma \), at, respectively, 100, 143, 217, 343, 545 and 857 GHz. Note that these numbers include an additional 20% contribution to the statistical error to account for mode correlations (which we discuss in Sect. 5.1), but do not include systematic errors or our point source correction. As a comparison, in each panel we plot the correlation between the lens reconstruction at 143 GHz and the 143 GHz map in grey. This shows the frequency scaling of our measured signal and also the strength of the signal, as compared to possible intra-frequency systematic effects. This will be studied in depth in Sect. 5.

This first pass on our raw data demonstrates a strong detection that is in good agreement with the expected CIB-lensing signal. To get a better intuition for this detection, we show in Fig. 4 the real-space correlation between the observed temperature and the lens deflection angles. This figure allows us to visualize the correlation between the CIB and the CMB lensing deflection angles for the first time. These images were generated using the following stacking technique. We first mask the 545 and 857 GHz temperature maps with our combined mask that includes the 20% Galaxy mask, and identify 20,000 local maxima and minima in these maps. We also select 20,000 random locations outside the masked region to use in a null test. We then band pass filter the lens map between \(\ell = 400–600 \) to remove scales larger than our stacked map as well as small-scale noise. We stack a 1 deg\(^2\) region around each point in both the filtered temperature map and lensing potential map, to generate stacked CIB and stacked lensing potential images. We take the gradient of the stacked lensing potential to calculate the deflection angles, which we display in Fig. 4 as arrows. The result of the stacking over the maxima, minima and random points is displayed from left to right in Fig. 4. The strong correlation seen already in the cross-power spectrum is clearly visible in both the 545 and 857 GHz extrema, while the stacking on random locations leads to a lensing signal consistent with noise. From simulations, we expect a small off-set (\(\approx 1'' \)) in the deflection field. This offset
was corrected for in this plot. We have verified in simulations that this is due to noise in the stacked lensing potential map that shifts the peak. As expected, we see that the temperature maxima of the CIB, which contain a larger than average number of galaxies, deflect light inward, i.e., they correspond to gravitational potential wells, while temperature minima trace regions with fewer galaxies and deflect light outward, i.e., they correspond to gravitational potential hills.

5. Statistical and systematic error budget

The first pass of our pipeline suggests a strong correlation of the CIB with the CMB lensing potential. We now turn to investigate the strength and the origin of this signal. We will first discuss the different contributions to the statistical error budget in Sect. 5.1, and then possible systematic effects in Sect. 5.2. Although the most straightforward interpretation of the signal is that it arises from dusty star-forming galaxies tracing the large-scale mass distribution, in Sect. 5.3 we consider other potential astrophysical origins for the observed correlation.

5.1. Statistical error budget

In this section we discuss any noise contribution that does not lead to a bias in our measurement. The prescription adopted throughout this paper is to obtain the error estimates from the naive Gaussian analytical error bars calculated using the measured auto-spectra of the CIB and lensing potential. We find that these errors are approximately equal to 1.2 times the naive scatter within an \(\ell \)-bin, and we will sometimes use this prescription where appropriate for convenience (as will be stated in the text). This is justified in Appendix A where we consider six different methods of quantifying the statistical errors using both simulations and data. The Gaussian analytical errors, \(\Delta \hat{C}_{\ell}^{TT} \), are calculated using the naive prescription

\[
 f_{\text{sky}} (2\ell + 1) \Delta \ell \left(\Delta \hat{C}_{\ell}^{TT} \right)^2 = \hat{C}_{\ell}^{TT} \hat{C}_{\ell}^{\Phi \Phi} + \left(C_{\ell}^{TT} \right)^2 ,
\]

where as before \(f_{\text{sky}} \) is the fraction of the sky that is unmasked, \(\Delta \ell = 126 \) for our 15 linear bins between \(\ell = 100 \) and \(\ell = 2000 \), \(\hat{C}_{\ell}^{TT} \) and \(\hat{C}_{\ell}^{\Phi \Phi} \) are the spectra measured using the data, and \(C_{\ell}^{TT} \) is the model cross spectrum. This last term provides a negligi-
will illustrate how the very nature of our measurement, a 3-point function, makes it particularly robust to many systematic effects, and we will check for their signatures using null tests. For example, there is no noise bias in the 3-point measurement, and many effects that can lead to biases in the auto-spectrum of ϕ do not affect us.

5.2. Potential sources of systematic error

We begin by describing our knowledge of known systematic effects, before discussing others that could bias our result. To account for an error in the calibration of the temperature maps, we simply add in quadrature a calibration uncertainty to our error bars. In Sect. 5.2.2 we use null tests to check that these errors are consistent with our data. In addition we use the null tests to search for evidence that the calibration has changed between surveys, for example due to gain drifts. We account for beam errors in a conservative manner by using a constant error at each frequency equal to the maximum error in the beam multipoles, B_ℓ, at any ℓ (see PIR for details). The B_ℓ uncertainty is larger at high-ℓ with, for example, values at $\ell = 1500$ of 79.5 $\%$, 8.2 $\%$, 0.53 $\%$, 0.95 $\%$, 0.31 $\%$, and 0.70 $\%$, at 100–857 GHz, respectively. The calibration error is therefore larger than the beam error at all ℓ between 217 and 857 GHz but smaller at high ℓ in the 100 and 143 GHz channels. We add the beam error in quadrature in an ℓ- and frequency-dependent manner. As discussed in Planck Collaboration XVII (2013), uncertainties in the beam transfer (as well as the fiducial CMB power spectrum C_ℓ^T) propagate directly to a normalization uncertainty in the lens reconstruction. Based on the beam eigenmodes of Planck Collaboration VII (2013), it is estimated in Planck Collaboration XVII (2013) that beam uncertainty leads to an effective normalization uncertainty of approximately 0.2$\%$ and 143 and 217 GHz, and 0.8$\%$ at 100 GHz. To be conservative, on top of the calibration and beam error we will add in quadrature a 2$\%$ uncertainty on the overall lens normalization.

CMB lens reconstruction recovers modes of the lensing potential through their anisotropic distorting effect on small-scale hot and cold spots in the CMB. The quadratic estimator, which we use to reconstruct the lensing potential is optimized to measure the lensing induced statistical anisotropy in CMB maps. However, other sources of statistical anisotropy, such as the sky mask, inhomogeneous noise, and beam asymmetries, produce signals, which can potentially overlap with lensing. These introduce a “mean-field” bias, which we estimate using Monte Carlo simulations and subtract from our lensing estimates. Inaccuracies in the simulation procedure will lead to errors in this correction, particularly if the correction is large. The mean-field introduced by the application of a Galaxy and point-source mask, for example, which can be several orders above magnitude larger than the lensing signal at $\ell < 100$. This is discussed further in Appendix B of Planck Collaboration XVII (2013). The mask mean-field is a particular concern for us because it has the same phases as the harmonic transform of the mask. If our masked CIB maps have a non-zero monopole, for example, it will correlate strongly with any error in the mask mean-field correction. For this reason we do not use any data below $\ell = 100$ in our analysis.

To summarize, we do not expect these known systematic effects to be present at a significant level. Nevertheless, we still perform a set of consistency tests that would be sensitive to them or other unknown effects.

5.2. Instrumental and observational systematic effects

A number of systematic errors affect the Planck HFI analysis and we briefly discuss some of them here. A more complete discussion can be found in Planck HFI Core Team (2011b). We
5.2.2. Null tests

The Planck scanning strategy, its multiple frequency bands and its numerous detectors per frequency, offer many opportunities to test the consistency of our signal (see Sect. 2.1). We focus on such tests in this section. Our aim is to reveal any systematic effects that could lead to a spurious correlation. For all of the tests presented, we will quote a \(\chi^2 \) value as well as the number of degrees of freedom (\(N_{\text{deg}} \)) as a measure of the consistency with the expected null result. Throughout this section, black error bars in plots will correspond to the measured scatter within an \(\ell \) bin multiplied by 1.2, as was justified in Sect. 5.1 and Appendix A, and will also include a CIB calibration error and a beam error, while the coloured boxes correspond to the analytical errors of the corresponding signal (i.e., not the difference corresponding to the null test). Plotting these two error bars illustrates how important any deviation could be to our signal. Throughout this section, we will illustrate our findings with the 545 GHz correlation, since it is our prime band for this measurement, but our conclusions hold at other frequencies.

The first test we conduct is to take the temperature difference between the two half-ring (HR) maps to cancel any signal contribution, and therefore investigate the consistency of our measurements with our statistical errors on all time scales. We null the temperature maps and correlate with our nominal lensing map. The results are shown in the left panel of Fig. 6. We see a significant deviation from null only when considering survey differences. This particular failure can probably be explained by apparent gain drifts due to nonlinearity in the analog-digital conversion (Planck Collaboration VI 2013; Planck Collaboration VIII 2013), not yet corrected at this frequency. Note however that the predicted variation is about 1% while the deviation from null would call for a variation of 1.5-2%. But in any case, its amplitude is too small to significantly affect our measurement.

We see a significant deviation from null only when considering survey differences. This particular failure can probably be explained by apparent gain drifts due to nonlinearity in the analog-digital conversion (Planck Collaboration VI 2013; Planck Collaboration VIII 2013), not yet corrected at these frequency. But in any case, its amplitude is too small to significantly affect our measurement.

The second test uses multiple detectors at a given frequency that occupy different parts of the focal plane. These detector sets are used to construct the “detset” maps that were described in Sect. 2.1. The two “detset” maps are subtracted and then correlated with our nominal lens reconstruction. This test is particularly sensitive to long term noise properties or gain variations, as we do not expect these to be correlated from detector to detector. Since this detector division breaks the focal plane symmetry, it is also a good check for beam asymmetry effects. Here again, we do not find any significant deviation, as illustrated in the middle panel of Fig. 6.

The third test we conduct makes use of the redundant sky coverage, using multiple surveys to cancel the signal. As above, we null the temperature signal and correlate with the nominal lens reconstruction. This test is particularly sensitive to any long term, i.e., month timescale drifts that could affect our measurement. It is also a good test for any beam asymmetry effects, as individual pixels are observed with a different set of orientations in each survey. Since only the first two surveys are complete for this particular data release, we only use the two full survey maps to avoid complications with the partially completed third survey. Here again, we do not find any significant deviation, as illustrated in the right panel of Fig. 6.

![Fig. 6](image)

Fig. 6. Null tests at 545 GHz. **Left:** difference spectra obtained by nulling the signal in the HR temperature map before correlating it with our nominal \(\phi \) reconstruction. **Middle:** temperature signal nullled using different detectors at 545 GHz. **Right:** temperature signal nullled using the first and second survey maps. The black error bars correspond to the scatter measured within an \(\ell \)-bin, while the coloured bands correspond to the analytical estimate. Except for the survey null test (see text for details), these tests are passed satisfactorily except, as illustrated by the quoted \(\chi^2 \) and \(N_{\text{ dof}} \), thus strengthening confidence in our signal.

![Fig. 7](image)

Fig. 7. **Left:** difference between the cross-spectra measured using the 20% Galactic mask (20% is the unmasked sky fraction) from that measured with our default 40% Galactic mask. **Middle:** spectra obtained when differing the 60% and 40% Galaxy mask measurements. For both left and middle panels and all Galactic masks, the same point source and H I masks are used, which removes an additional fraction of the sky. **Right:** difference between the cross-spectra calculated with the H I cleaned temperature maps from those with no H I cleaning. This cross-spectrum is thus the correlation between the H I template and the \(\phi \) reconstruction. The error bars are calculated in the same way as in Fig. 6. Again, the null tests are passed with an acceptable \(\chi^2 \).

To conclude, this first set of stringent consistency tests have shown that there is no obvious contamination of our measurements due to instrumental effects. In addition, the reasonable \(\chi^2 / N_{\text{ dof}} \) obtained gives us confidence in our statistical noise evaluation. Although we measure the noise directly from the data, this success was not guaranteed.

5.3. Astrophysical contamination

We now turn to possible astrophysical biases to our measurement. We will discuss successively known astrophysical contaminants that can either come from Galactic or extragalactic origin. Once again, besides our knowledge of these signals, we will rely heavily on consistency tests made possible by having multiple full sky frequency maps.
5.3.1. Galactic foregrounds

Galactic foregrounds have two possible effects on our measurement. The first is the introduction of an extra source of noise. The second is that contamination of the lensing reconstruction by any Galactic signal, e.g., synchrotron, free-free or dust, which could then correlate with foreground emission present in the temperature maps, remains a source of bias that has to be investigated. We will show that this bias is small. To do so, we take three approaches. We first investigate various Galactic masks, then perform the lensing reconstruction at various frequencies, and finally investigate the effect of a dust-cleaning procedure.

First, we consider two additional masks, either more aggressive or more conservative than our fiducial one. Both were introduced in Sect. 2.1. The first one leaves approximately 20% of the sky unmasked, while the second one leaves approximately 60% of the sky. Given the strong dependence of Galactic foregrounds on Galactic latitude, any Galactic contamination should vary strongly when we switch between masks. Comparing the measurements using these masks with our fiducial 40% mask in the left and centre panels of Fig. 7, we do not see any substantial deviation from our fiducial measurements. This excludes strong Galactic contamination of our results.

Second, we perform the lens reconstruction at 100 and 217 GHz, different from the fiducial frequency of 143 GHz, and compare their correlation with the temperature maps. Given the strong dependence of the Galactic emission with frequency, $T \propto \nu^{-3}$ for synchrotron and $T \propto \nu^2$ for dust in this frequency range, any contamination of our signal would have a strong frequency dependence. The comparison with the 100 GHz (217 GHz) reconstruction is presented in the left (centre) panel of Fig. 8. The right panel shows the difference of the cross-spectra calculated using the 143 GHz reconstruction with a more aggressive Galaxy mask (20% instead of 40%), to reduce possible Galactic contaminants in the reconstruction, and the nominal reconstruction. The three differences are consistent with null as demonstrated by the quoted χ^2 and $N_{	ext{ dof}}$.

Third, we investigate more specifically how cirrus, the dominant Galactic contaminant for our higher frequency channels, affects our measurements. We rely on the dust cleaning procedure detailed in Sect. 3.2 that aims to remove the H1-correlated dust component. This procedure leads to a decrease in the variance measured outside the mask of 22, 65, 73 and 73% in the 217, 353, 545 and 857 GHz maps, respectively. This frequency dependence is expected given the dust scaling. However, in Fig. 7, where we show the differences between the cleaned and non-cleaned cross-spectra, we observe that the large scale H1 cleaning, even though it makes a substantial impact on the power within our map, only makes a small change at low-ℓ in the cross-spectrum, as well as reducing the noise at all multipoles. If we quantify the effect of our “local” H1 cleaning on the detection significance level computed using only statistical errors, we find that the significance is increased by 4, 4, 28, and 36% at 217, 353, 545 and 857 GHz, respectively. Also, not surprisingly, we observe that for frequencies up to 353 GHz where the statistical errors are dominated by the CMB, the H1 cleaning has almost no effect on the cross-spectra. From the three studies in this section we conclude that there are no obvious signs of Galactic foreground contamination in our cross-correlation.

5.3.2. Point source contamination

We now discuss another well-known potential source of contamination, namely the contribution of unresolved point sources visible either through their radio or dust emission. Our concern is that a correlation between a spurious lens reconstruction caused by unresolved point sources can correlate with sources in the temperature map. Although in Sect. 5.3.1 our null test using lens reconstructions at different frequencies suggests that unresolved point sources are not an obvious contaminant, we will now perform a more detailed test designed specifically to search for point source contamination. Following Smith et al. (2007); Osborne et al. (2013), we will construct a point source estimator designed to be more sensitive than the lensing estimator to point source contamination. Our focus here will be on possible contamination from the point source shot-noise bispectrum. In Sect. 5.3.5 we will discuss contamination from a scale dependent bispectrum.

Our (unnormalized) quadratic estimator, which is designed to detect point source contributions is given by

$$\left(\bar{\Theta}^{143}\tilde{n}\right)_{LM}^2 \equiv \sum_{LM} Y_{LM}(\hat{n}) \left(\bar{\Theta}^{143}\tilde{n}\right)_L^2,$$

where Θ is the inverse-variance filtered sky map. This estimator is simply the square of the inverse-variance filtered sky map, which is a more sensitive probe of point sources than the standard lensing estimator.

In Fig. 9 we plot the cross-spectrum of $\left(\bar{\Theta}^{143}\tilde{n}\right)_{LM}^2$ measured at 143 GHz and Θ_{LM}^{I14} for the full set of HFI channels. This cross-spectrum is probing the same point source contributions that could bias our estimates of C_{ℓ}^{TT}, however with a greater signal-to-noise ratio.

There is one complication here, which is that just as lens reconstruction may be biased by point source contributions, the point source estimator is correspondingly biased by lensing. The bias to the plotted cross-spectrum is given by

$$\langle \left(\bar{\Theta}^{143}\tilde{n}\right)^2_{LM}\Theta_{LM}^{I14}\rangle \phi = \frac{C_{\ell}^{I14\phi}}{C_{\ell}^{I}} \sum_{m_1m_2} \sum_{l_1l_2} \frac{Y_{LM}^{\phi}}{C_{\ell}^{I}} \frac{G_{LM}^{m_1m_2}}{m_1m_2} \left[\left(-1\right)^{m_1} C_{l_1}^{\phi} + \left(-1\right)^{m_2} C_{l_2}^{\phi} \right],$$

where ϕ is the harmonic index of the point source estimator and C_{ℓ}^{I} is the angular power spectrum of the HFI channels.
Planck Collaboration: *Planck* 2013 results. XVIII. Gravitational lensing-infrared background correlation

where \(G^{m_1m_2m_3}_{\ell_1\ell_2\ell_3} = \int d\theta Y_{\ell_1m_1}(\theta) Y_{\ell_2m_2}(\theta) Y_{\ell_3m_3}(\theta) \), \(\tilde{C}_\ell \) is the unlensed CMB spectrum, \(C_\ell^{\phi \phi} \) is the estimator, we have estimated \(S^\ell \) from the spectra of Fig. 9 be-

\[
\Theta_{\ell m} \approx \Theta_{\ell m}/C_\ell^{\phi \phi}.
\]

We have calculated this contribution using our measured \(C_\ell^{\phi \phi} \) and subtracted it from the data points of Fig. 9.

We can consider the effect of shot noise on this cross-spectrum. With the shot-noise bispectrum defined by

\[
\langle \Theta_{\ell_1m_1} \Theta_{\ell_2m_2} \Theta_{\ell_3m_3} \rangle_S = \langle S^\ell \rangle
\]

the bias to the plotted cross-spectrum is given as

\[
\langle (\tilde{\Theta}^{143}_{\ell_1}, \tilde{\Theta}^{143}_{\ell_2}) \rangle_S = \langle S^\ell \rangle
\]

This bias is plotted for best-fit values of \(\langle S^\ell \rangle \) as the black lines in Fig. 9. To minimize systematic effects that might bias the estimator, we have estimated \(\langle S^\ell \rangle \) from the spectra of Fig. 9 be-

... between multipoles between \(\ell = 500 \) and 2000. The fitted \(\langle S^\ell \rangle \) amplitudes are given in Table 1.

These amplitudes match our expectations, for example see Planck Collaboration XIII (2011). We observe a decrease in the amplitude of the point source contribution going from 100 to 217 GHz, which corresponds to a dominant contribution from radio point sources. We do not see any evidence of a dusty galaxy contribution to the shot-noise bias. These conclusions have been verified using less restrictive point source masks that cover fewer sources.

With estimates of \(\langle S^\ell \rangle \) in hand, we estimate a corresponding bias to \(C_\ell^{\phi \phi} \), given by

\[
\langle \phi_{\ell M} \tilde{\phi}_{\ell M} \rangle_S = \langle S^\ell \rangle
\]

Fig. 10. Frequency spectrum of our cross-spectra averaged within \(\ell \)-bins (black points with associated error bars). The light shaded regions correspond to the HFI frequency bands. The solid black curve corresponds to the best-fit CIB assuming a Gispert et al. (2000) spectrum, while the dot-dashed line assumes a Fixsen et al. (1998) spectrum. The dashed black line corresponds to the best-fit model when allowing for an SZ component in addition to the Gispert et al. (2000) CIB shape. The blue dots correspond to the associated absolute value of the best-fit SZ component. We conclude from this plot that the SZ effect is not an important contaminant.

most massive clusters approximately 1 % of CMB photons passing through them get scattered. On average, their energy will be increased, which leads to a measurable spectral distortion. This is the so-called thermal Sunyaev-Zeldovich (SZ) effect (Sunyaev & Zeldovich 1970). At the location of a galaxy cluster the CMB appears colder at frequencies below about 220 GHz and hotter at higher frequencies, with a temperature change proportional to the cluster optical depth to Compton scattering and to the electron temperature. Since hot electrons in clusters also trace the large scale matter potential that is traced by CMB lensing, we expect an SZ-induced contamination in our measurement at some level. We will show below that the level of contamination is negligible. In these calculations we ignore the small relativistic corrections to the thermal SZ spectrum (e.g., Nozawa et al. 2000). We also ignore the kinetic SZ signal coming from the bulk motion of hot electrons in clusters, since it is subordinate to the thermal signal (Sunyaev & Zeldovich 1980; Reichardt et al. 2012; Hand et al. 2012).

The frequency dependence of the SZ signal in our map depends on the detector bandpasses and

\[
f(\nu) = \frac{\int df h(\nu) g(\nu)}{\int df h(\nu)}.
\]

where \(h(\nu) \) is the detector bandpass and \(g(\nu) \) is the SZ frequency dependence, which in the non-relativistic limit is \(g(\nu) = x (e^x + 1)/(e^x - 1) - 4 \), with \(x = h\nu/k_BT_{\text{CMB}} \). The effect of the bandpass only makes a large difference at 217 GHz near the null of the SZ signal. The thermal SZ affects our measurement in two ways. First, since the SZ emission in our maps is not a Gaussian random field (e.g., Wilson et al. 2012) it introduces a spurious signal into our lens reconstruction that will correlate with the SZ signal in our CIB map. As shown in Osborne et al. (2013),

5.3.3. SZ contamination

A fraction of CMB photons travelling from the surface of recombination are scattered by hot electrons in galaxy clusters. In the

Table 1. Point source estimator. The measured quantity \(\langle S^\ell \rangle \), as defined in Eq. 9, is given as a function of frequency.

<table>
<thead>
<tr>
<th>Frequency [GHz]</th>
<th>(\langle S^\ell \rangle) (\times 10^5 \mu K^2)</th>
<th>(No. of (\ell))</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>11.7 ± 5.8</td>
<td>(2.0)</td>
</tr>
<tr>
<td>143</td>
<td>4.3 ± 1.8</td>
<td>(2.3)</td>
</tr>
<tr>
<td>217</td>
<td>3.7 ± 1.6</td>
<td>(2.2)</td>
</tr>
<tr>
<td>353</td>
<td>6.1 ± 3.9</td>
<td>(1.6)</td>
</tr>
<tr>
<td>545</td>
<td>−79 ± 39</td>
<td>(−2.0)</td>
</tr>
<tr>
<td>857</td>
<td>(−1.9 ± 2.1) \times 10^3</td>
<td>(−0.9)</td>
</tr>
</tbody>
</table>
this is well approximated by a Poisson noise term and is thus already addressed by our treatment of point sources in Sect. 5.3.2. The spurious lensing signal will also correlate with other components in our map such as the CIB. However, we ignore these terms since they will be smaller than those that correlate directly with the SZ emission. Additionally, a contribution comes from SZ emission in our CIB map that correlates with the lensing potential itself. The latter is the dominant term and we discuss it in this section.

To measure a contribution from the SZ-lensing correlation we attempt to separate the SZ and CIB emission based on their differing spectral shapes. We consider all frequencies from 100 to 857 GHz, but we will illustrate this procedure by considering only two \(\ell \) bands: \(\ell = 300–450; \) and 1200–1450. The first is well inside the linear regime, while the second receives a more important non-linear contribution. However, we have checked that if we consider different \(\ell \)-bins we obtain similar conclusions. We model the signal within each \(\ell \) band as \(s(\nu) = a_1 \nu c(\nu) + a_2 \nu f(\nu) \), where \(c(\nu) \) and \(f(\nu) \) are, respectively, the CIB frequency dependence (as proposed in Fixsen et al. 1998 or Gispert et al. 2000) and the SZ frequency dependence obtained from Eq. 10. For each \(\ell \) band, we will solve for \(a_1, \ell \) and \(a_2, \ell \) minimizing the associated \(\chi^2 \) while forcing both amplitudes to be positive. As an approximation to the error in each multipole band we calculate the scatter of the signal within the band and multiply it by 1.2, as discussed in Sect. 5.1.

In Fig. 10 we show the measured frequency spectrum within each \(\ell \) band, along with the best-fit SZ-lensing and CIB-lensing spectra. For the CIB-only fit with the Gispert et al. (2000) frequency dependence we find a relatively poor fit in the lowest \(\ell \)-bin, \(\chi^2 \) (dof) = 15.5 (5), but an improved fit in the higher \(\ell \)-bin, \(\chi^2 \) (dof) = 4.15 (5). Including the SZ component gives \(\Delta \chi^2 = 0.52 \) and 1.34 in the low and high \(\ell \) bins for one extra degree of freedom. When we use the Fixsen et al. (1998) frequency dependence we find an improved fit, with \(\chi^2 \) (dof) = 2.25 (5) and 5.49 (5) in the low and high-\(\ell \)-bins, respectively. Overall, the improvement in the \(\chi^2$/\text{dof}$ when including the SZ component does not justify inclusion of the SZ component in the model, with the poor fit driven by the lowest frequency bands where the CIB scaling is rather unconstrained. In fact, our measurements might constitute the first constraints to date on this scaling. From these results we conclude that including the SZ-lensing correlation in
our data does not improve the fit in the ℓ range of interest to us and thus we do not consider it necessary to correct for.

As an extra validation of this result, we now verify its consistency with current models of the CIB and SZ emission. For this purpose, we use the calculation of the correlation from Osborne et al. (2013), based on Babich & Pierpaoli (2008), which models the SZ emission as a statistically isotropic signal modulated by a biased density contrast, where the bias depends on the cluster mass and redshift. To obtain an estimate of the contribution to the cross-spectrum at 217–857 GHz we assume that the measured cross-spectrum at 143 GHz is entirely due to thermal SZ emission (note that we do this to find what we believe to be an upper limit on the SZ contribution at 217–857 GHz; for the reasons stated above we do not expect the 143 GHz correlation to be due to SZ). Since the SZ signal at 143 GHz gives a decrement in the CMB, and the CIB emission gives an enhanced signal, it is possible that this approach could still underestimate the SZ signal. We find that in order to fit the cross-spectrum at 143 GHz using only the SZ-lensing correlation requires an amplitude of (2.4 ± 1.6) times our calculated SZ-lensing cross-spectrum. In Fig. 11 the dashed line shows the magnitude of this SZ signal scaled to each frequency using Eq. 10. The small contribution it makes at 217–857 GHz further suggests that we can neglect this component. At 217 GHz the signal is negative, while at higher frequencies it is positive.

5.3.4. ISW contamination

The Integrated Sachs-Wolfe (ISW) effect describes the redshifting (blueshifting) of photons travelling through gravitational potential wells (hills) that decay as the photons travel through them (Sachs & Wolfe 1967). The induced modulation of the CMB mean by the gravitational potential generates CMB fluctuations that correlate with the lensing potential, which also traces out the gravitational potential perturbations (Seljak & Zaldarriaga 1999; Goldberg & Spergel 1999; Lewis et al. 2011). Note that because the mean of the CIB is relatively much smaller than its fluctuation, the ISW induced CIB fluctuations make a negligible change to total CIB anisotropy. The CMB ISW induced signal has the same frequency dependence as the CMB and so is only a significant contaminant for us at low frequencies. We evaluate this signal using a theoretical calculation performed in CAMB (Lewis et al. 2000). The results are shown as the solid line in Fig. 11. It is a negligible contribution at all frequencies, except in the lowest ℓ-bin of the lowest frequencies, where the measured cross-spectrum is consistent with zero.

5.3.5. CIB bispectrum

Having calculated the bias from the point source shot noise in Sect. 5.3.2, we now discuss a more complicated form of the unresolved point source 3-point function that could be present in our data, namely the clustering contribution. While unknown (although the first detection was recently reported in Crawford et al. (2013)), the CIB bispectrum is potentially a direct contaminant to our measurement. Because of the non-linear clustering of DSFGs (PER), it has to exist. But because of the very large redshift kernel that characterizes the CIB, this non-Gaussian effect will be washed out, reducing its importance. Nevertheless, we ought to study it carefully.

If important, this effect would show up as a departure of the data from the best-fit curve in Fig. 9, since the best-fit model that we used assumes only a Poissonian shot-noise contribution.

We do not see any significant deviation in Fig. 9. Still, in order to isolate this effect we create cross-spectra with increased sensitivity to the clustered point source signal. We do this by calculating the lens reconstruction at 100 GHz and 545 GHz, where, respectively, the radio and dusty point source contribution is stronger. The 545 GHz map has a much larger Galactic dust signal than our nominal 143 GHz map. However, unlike in our fiducial estimates, here we do not attempt to project out dust contamination from the map used to perform our lens reconstruction as this would also remove some of the CIB signal in the bispectrum. As was found in Sect. 5.3.1 the cross-correlation between the 100 GHz reconstruction and the 100 GHz temperature map does not show any large difference with the cross-spectrum obtained using the 143 GHz signal. We are thus not sensitive enough to detect a bias from the clustering of radio sources using this method. However, we do detect a strong cross-correlation between the raw 545 GHz lens reconstruction and the 545 GHz temperature map. This cross-spectrum is shown in Fig. 12 for three different Galaxy masks. The line shows the point source shot-noise template derived in Sect. 5.3.2, fit to the cross-spectrum with the 10% Galaxy mask at ℓ above 1300. If the signal were entirely due to extragalactic point sources, then the signal would be independent of masking, and we do see a convergence of the signal at high ℓ as the size of the Galactic mask is increased. At low ℓ, however, there is a large Galactic contribution and the convergence with the reduced mask size is less clear. We thus conclude that a strong contribution from Galactic dust is present in this measurement at all ℓ.

We do not attempt to calculate accurately the shape of the clustering contribution to the CIB bispectrum here, since it is beyond the scope of this work, even though a simple prescription for it has recently been proposed in Lacasa et al. (2012). To separate the Galactic from non-Galactic contributions in our bispectrum measurement is difficult, even if a strong Galactic signal is clearly present, given the strong dependence of the signal on variations of the Galactic mask in Fig. 12. However, the combination of dust cleaning that we perform in our nominal pipeline, coupled with the fact that our nominal pipeline uses the 143 GHz map for lens reconstruction, means that we do not...
Planck Collaboration: Planck 2013 results. XVIII. Gravitational lensing-infrared background correlation

Fig. 11. Foreground components at each frequency. The data points and error bars show our results. The dashed line is an estimated upper limit on the magnitude of the SZ contamination derived in Sect. 5.3.3. We show the absolute value of this contribution, which is negative at frequencies less than 217 GHz. The dot-dashed line is the extragalactic point source contribution, with an amplitude measured from our data as derived in Sect. 5.3.2. Again we show the absolute value, with the signal being negative below $\ell \sim 1200$. The oscillating solid line corresponds to the calculated ISW contamination.

observe any dependence with masking in our measurement, as seen in Fig. 7. Because of this, the CIB bispectrum is unlikely to be a large contribution to our measurement. Furthermore, even if we were to assume that all of the signal seen in Fig. 12 was extragalactic in nature, using the Gispert et al. (2000) frequency scaling for the CIB (also appropriate for the Galactic dust in fact, Planck Collaboration XXIV 2011), the roughly $-1700 \mu K \cdot sr$ observed at $\ell = 400$ for the 40% Galactic mask would only lead to a $-0.02 \mu K \cdot sr$ signal in Fig. 11, which is an order of magnitude smaller than our measured signal. To conclude, although our analysis does not lead to a clean measurement of the CIB bispectrum, we can safely assume that it is not a contaminant to our measurement.

5.4. Final statistical and systematic error budget

Throughout the suite of tests for instrumental and observational systematic errors presented in Sect. 5.2, as well as the suite of tests for possible astrophysical contaminants presented in Sect. 5.3, we have established the robustness of our measurement. The fact that our consistency tests do not lead to any significant deviation gives us confidence in our error budget. As described in Sect. 5.2 we add to them an overall calibration uncertainty, beam uncertainty, and lens normalization uncertainty, consistent with the Planck data processing paper (Planck HFI Core Team 2011b). We gather the measured band-powers in Table 2, along with our statistical and systematic errors. These band-powers have been corrected for the point source component measured in Sect. 5.3.2, whose amplitude is also given in Table 2.

Once all systematic effects are factored in, we claim a detection significance of 3.6 (3.5), 4.3 (4.2), 8.3 (7.9), 31 (24), 42 (19), and 32 (16) σ statistical (statistical and systematic) at 100, 143, 217, 353, 545 and 857 GHz, respectively.

6. Interpretation and discussion

The correlation we have investigated leads to a very strong signal at most HFI frequencies. After a thorough examination of possible instrumental and astrophysical origins, we interpret it as originating from the spatial correlation between the sources of the CIB and the matter responsible for the gravitational deflection of CMB photons. In this section, we build on this result
so for two lines – or Gispert et al. (2000) – solid black line – SED. We do not have any preference for the latter. We expect our measurements to follow the procedure outlined in Sect. 5.3.3, we plot in Fig. 10 the best-fit CIB component with either a Fixsen et al. (1998) – dot-dashed black line or Gispert et al. (2000), with a slight difference in our measurement compared to Gispert et al. (2000). The models presented in this section will allow us to use both the spectral dependence and the relative amplitudes of the ℓ-bins that was lost in Fig. 10. We now describe the general methodology we will use, before describing our models in detail.

6.1. Model comparison methodology

For the purpose of model fitting, we will utilize both the CIB-lensing cross-spectra measured in this paper and the CIB auto-spectra obtained from PIR. We use the CIB-lensing cross-spectra for two purposes: to improve constraints on the model parameters; and to provide a consistency test of models fit to the CIB auto- and frequency cross-spectra alone. As will be seen in PIR, the cross-spectra of the CIB at different frequencies provide powerful constraints on the CIB emissivity.

We use the log-likelihood

\[
\ln L(p) = - \frac{1}{2} \sum_{\ell} \sum_{ij} \left[\hat{C}_\ell - \hat{C}_\ell(p) \right] (N^{-1})_{ij} \left[\hat{C}_\ell - \hat{C}_\ell(p) \right]^T.
\]

(11)

where \(\hat{C} \) and \(\hat{C} \) are the data and theory spectra with parameters \(p \), the \(i \) and \(j \) indices denote the type of spectra (e.g., 100 GHz × 50 or 100 GHz × 100 GHz), and \(N \) is the covariance matrix that includes both statistical and systematic errors. We make the approximation that the covariance matrix is diagonal, i.e., we treat the errors for different bins of each auto- and cross-spectrum as being uncorrelated. The small (∼ 2%) mask-induced model-mapping between neighbouring bins supports this approximation.

However, calibration and beam errors (which are corre-
lateral between the auto- and cross-spectra at a given frequency), as well as the lens normalization error (which is also correlated across spectra) are not accounted for in this approximation. In addition, the lens reconstruction has some sensitivity to all modes of the temperature maps, and so different ϕ modes are correlated to some degree. We also neglect the fact that the contribution to the error from the CIB signal itself (the orange line in Fig. 5) is also substantially correlated from frequency to frequency. However, our evaluation using simulations suggests that these effects are too small to significantly affect our procedure. We thus resort to simply adding the beam, calibration and normalization uncertainties in quadrature to the statistical errors. The posterior probability distributions of model parameters are determined using now standard Markov Chain Monte Carlo techniques (e.g., Knox et al. 2001; Lewis & Bridle 2002).

6.2. Two modelling approaches

The strength of the correlation signal should come as no surprise, given our current knowledge of the lensing potential and the characteristics of the DSFGs, in particular their emissivity and clustering properties. Mostly driven by linear physics, the former is well understood theoretically, as confirmed by recent observations (Smith et al. 2008; Hirata et al. 2008; Das et al. 2011; van Engelen et al. 2012). Assuming the currently favored ΛCDM cosmology, we can consider it to be known to better than 10% in the multipole range of interest to us, an uncertainty dominated by the uncertainty in the normalization of the primordial power spectrum. Given that this is much smaller than the theoretical uncertainties related to DSFGs, we will fix the cosmology to the currently favoured ΛCDM model in Planck (2013), and will focus our analysis on the modelling of the DSFGs.

At a given redshift we model the fluctuations in the mean CIB emission, j, as being proportional to the fluctuations in the number of galaxies, n_g (Haiman & Knox 2000),

$$\delta j \propto j \frac{\delta n_g}{n_g}. \tag{12}$$

With this hypothesis, the goal of the CIB modelling becomes twofold: first, to better understand the statistical properties of the dusty galaxy number density, δn_g; and second, to reconstruct the mean emissivity of the CIB as a function of redshift.

In this paper we will use two different models of the CIB emission. The first model (described in Sect. 6.2.1 and inspired by Hall et al. 2010) uses a single bias parameter at all frequencies with the mean CIB emissivity modelled as a two parameter Gaussian. This model is not designed to be physically realistic, and furthermore we will marginalize over an arbitrary amplitude in this case. Nevertheless, we present this simple model to show that our measurements are quite consistent with broad expectations of the CIB. The second model, described in Sect. 6.2.2, is a natural extension of the Halo Occupation Density (HOD) approach used in PER (see also Pénin et al. 2011, and references therein). But unlike the results obtained in PER we now use a single HOD to describe the spectra at all frequencies. This is possible by allowing for deviations from the Béthermin et al. (2011) model (hereafter B11) that was used to fix the emissivity.

6.2.1. Linear bias model

As a first pass at interpreting our measurement, we will consider a redshift independent linear bias model with a simple parametric SED. This model was found to provide a reasonable fit to the auto-spectra in the linear regime in PER. Throughout this paper we use the Limber approximation, and in this section, since we...
are using a linear model, we write the relevant angular spectra as
\[
C_{\ell}^{XY} = \int d\chi W^{X}(\chi)W^{Y}(\chi)P_{m}(k = \ell/\chi),
\]
(13)

where \(X\) and \(Y\) are either the CIB at frequency \(\nu\) or the lensing potential \(\phi\), the integral is over \(\chi\), the comoving distance along the line of sight, \(\chi\), is the comoving distance to the last scattering surface, \(P_{m}(k)\) is the matter power spectrum at distance \(\chi\), and the \(W^{X}\) functions are the redshift weights for each of the signals \(X\):
\[
W^{\nu}(\chi) = b\frac{\tilde{J}_{0}(\chi)}{\chi},
\]
\[
W^{\phi}(\chi) = -\frac{3}{\ell^{2}}\Omega_{m}H_{0}^{2}\chi a \left(\frac{\chi_{*}-\chi}{\chi_{*}}\right).
\]
(14)

Here \(b\) is the DSFG bias that we assume to be redshift independent, \(a\) is the scale factor, \(\tilde{J}_{0}(\chi)\) is the mean CIB emissivity at frequency \(\nu\), as defined in PER, \(\Omega_{m}\) is the matter density today in critical density units and \(H_{0}\) is the Hubble parameter today. We use the Hall et al. (2010) model for the CIB kernel, which treats the CIB emissivity as a Gaussian in redshift:
\[
\tilde{J}_{0}(\chi) \propto a \chi^{2} \exp\left[-(\chi_{*}\epsilon - \chi_{*})^{2}/2\sigma_{\epsilon}^{2}\right] f_{\epsilon(1+z)}
\]
(15)

where we use a modified blackbody frequency dependence
\[
f_{\epsilon(1+z)} \propto \nu^{\beta} B_{\nu}(T_{d}).
\]
(16)

We fix the dust temperature to \(T_{d} = 34\) K, the spectral index to \(\beta = 2\) (Hall et al. 2010), and assume a constant bias \(b\). We include a single normalization parameter for \(\tilde{J}_{0}\), which we marginalize over. Since the normalization and bias parameters are degenerate in Eq. 13, if we were to only use the measured auto- and cross-spectra this approach would be equivalent to marginalizing over a frequency independent bias parameter. However, we will further constrain our model using the FIRAS data, which breaks this degeneracy. We constrain the \(\chi_{*}\) and \(\sigma_{\epsilon}\) parameters at each frequency, giving us a total of 13 free parameters.

For 217–857 GHz, we use the FIRAS measurements of the CIB mean intensity from Lagache et al. (2000) as an additional constraint to our model. The mean intensity is simply
\[
I_{e} = \int d\chi a\tilde{J}_{0}(\chi).
\]
(17)

Using this equation and the measured FIRAS mean and uncertainty we calculate a \(\chi^{2}\) value and add this to the \(\chi^{2}\) in Eq. 11. Since there are no FIRAS constraints at 100 and 143 GHz, as well as no CIB auto-spectra measurements, and noisier cross-spectra measurements at these frequencies, our constraints for the 100 and 143 GHz redshift parameters are weaker than for the other parameters.

The linear bias model considers only linear clustering, and so when fitting the auto-spectra we restrict ourselves to \(\ell < 500\), where non-linear contributions are negligible. Because we do not consider the high-\(\ell\) modes, we also neglect the shot-noise contribution to the auto-spectra. The best-fit model is shown as the coloured dashed lines in Fig. 15, with \(\chi^{2}\) values of 13.4, 16.8, 25.2, 21.8, 9.1, and 9.4 if we break up the \(\chi^{2}\) contribution per frequency from 100 to 857 GHz, leading to an overall \(\chi^{2}\) of 95.7 for \(N_{\text{deg}} = 59\). We see that the model captures some features of the data, but we also have evidence it is significantly missing some as well. This is perhaps not surprising given the simplicity of the model. The two-dimensional marginal distributions of the \(\chi_{*},\sigma_{\epsilon}\) parameters are shown in Fig. 14. Although we allowed for these parameters to be frequency dependent we note that the point \(\chi_{*} = 1\) and \(\sigma_{\epsilon} = 2.2\) is in a region of high probability at all frequencies, and gives a redshift distribution for the emissivity density roughly consistent with our expectations, rising toward \(z = 1\) due to the \(\chi^{2}\) term and then only slowly falling off toward higher redshifts.
6.2.2. An extended halo model based analysis

In this section we use a description of the CIB motivated by the halo model, which has been used successfully to describe the transition between the linear and non-linear clustering regimes for optical galaxies. We use the halo model to attempt to reconstruct the CIB emissivity as a function of redshift. This is an extension of the approach taken in PER, where the modelled CIB emissivity at high redshift was treated as a single bin with the amplitude constrained by the data. The goal of this approach is to isolate the high-redshift contribution to the CIB, which is difficult to probe using observations of individual galaxies, due to their low brightness. The power of such an approach is further demonstrated in PIR.

We replace the linear bias used in Sect. 6.2.1 with a halo model and an HOD prescription that assigns galaxies to host dark matter halos (see PER for references and definitions). It allows a consistent description of the linear and non-linear part of the galaxy power spectrum and its redshift evolution. Because it is built on the clustering of dark matter halos, the halo model allows us to describe the clustering of DSFGs and the gravitational lensing caused by the halos in a consistent way. However, it is important to realise that the HOD prescription was developed to describe stellar mass within dark matter halos – an application for which it has been thoroughly tested – while here we are applying it to star formation within halos. The accuracy of this approach needs to be further quantified. However, it provides a good phenomenological description of our data as well as other CIB measurements, but also of other astrophysical probes of the relation between dark matter and light (e.g., Leauthaud et al. (2012); Hikage et al. (2012)).

Unlike the model presented in PER we use a single HOD to describe our data at all frequencies. This is made possible by allowing for a deviation from the B11 emissivity model. Note however that we will still consider the CIB emissivity to depend only on redshift and not on the galaxy host halo mass, a simplification highlighted in Shang et al. (2012) that will be relaxed in the PIR model. The emissivity of the CIB is inhomogeneous, due to spatial variations in the number density of galaxies:

\[
\frac{\delta j_v}{j_v} (\hat{n}, z) = \frac{\delta n_g (\hat{n}, z)}{n_g(\hat{n}, z)} = \delta (\hat{n}, z).
\]

Here \(j(\hat{n}, z) \) is the CIB emissivity at redshift \(z \) with mean \(j(z) \), \(n_g(\hat{n}, z) \) is the number density of DSFGs with mean \(n_g(z) \), and \(\delta (\hat{n}, z) \) is the DSFG overdensity, with power spectrum \(\langle \delta (k, \hat{n}) \delta (k, \hat{n}) \rangle = (2\pi)^3 \delta (k - k') P_{gg}(k, z) \). We calculate this power spectrum, including the constituent 1 and 2-halo terms, using the procedure described in appendix C of PER, with the constraint \(\alpha_{sat} = 1 \), a theoretically favoured value (Tinker & Wetzel 2010). We remove the relationship between \(M_{sat} \), a characteristic satellite mass scale, and \(M_{min} \), the halo mass at which a halo has a 50% probability of containing a central galaxy that was enforced in PER (i.e., \(M_{sat} = 3.3M_{min} \)), and allow both \(M_{sat} \) and \(M_{min} \) to vary independently.

At redshift \(z < 1 \) we fix the emissivity to the B11 value, but at higher redshift we assume that the emissivity is constant within \(z \)-bins and solve for the amplitude of the bins. Two factors affect the number of bins that we choose. The auto-spectra have a \(j^2 \) dependence, and so if the true value of \(j \) has a strong \(z \) dependence within a bin then the best-fit emissivity in the bin will be difficult to interpret. The best-fit bin values could be significantly different from those that would be obtained by binning the true emissivity. However, as more bins are used and the number of parameters increases, it becomes more difficult to determine the best-fit parameters and the parameters will be highly correlated. After investigation using simulations, we found that three bins was a good compromise, given the expected slow redshift evolution. The bins are defined by: \(1 < z < 1.5; 1.5 < z < 3; \) and \(3 < z < 7 \). As in Sect. 6.2.1 we use the FIRAS results at 217–857 GHz to add an integral constraint on the emissivity. The CIB auto and lensing cross-spectra are (Song et al. 2003):

\[
C_{\ell}^v = \int d\chi \ W^v(\chi) W^\ell(\chi) P_{gg}(k = \ell/\chi, \chi);
\]

\[
C_{\ell}^{\ell} = \int d\chi \ W^v(\chi) W^\ell(\chi) P_{gg}(k = \ell/\chi, \chi).
\]

Since we fix \(j \) at \(z < 1 \), the model spectra consist of a low redshift part that is independent of the emissivity parameters, and a contribution from \(z > 1 \) that is proportional to \(j(z) j_v \) for the auto-spectra and \(j(z) j_v \) for the lensing cross-spectra.

Overall, the halo-based model contains two halo parameters that describe the galaxy clustering and are independent of frequency, and three \(j \) amplitudes at each frequency, giving a total of 20 parameters for the six frequencies of interest to us. The auto and cross-spectra have a total of 120 \(\ell \)-bins, with four additional FIRAS data points. Solving for the likelihood described in Sect. 6.1, gives the best-fit models shown in Figs. 15 and 16 as solid lines. The \(\chi^2 \) values in each panel are the contribution to the total \(\chi^2 \) from the data within the panel.
The combined reduced χ^2 is 102.1 for $N_{\text{dof}} = 104$, indicating a good fit. The constraints we find on M_{sat} and M_{min} are shown in Fig. 17. We force $M_{\text{sat}} \geq M_{\text{min}}$ in the MCMC fitting procedure, with the dashed line in Fig. 17 showing equality. The red cross corresponds to the parameter values that give the minimum χ^2 in the fit, and are $\log_{10} \left(M_{\text{min}}/M_\odot \right) = 12.18$ and $\log_{10} \left(M_{\text{sat}}/M_\odot \right) = 12.76$, which gives $M_{\text{sat}}/M_{\text{min}} = 3.80$. The mean parameter values are $\log_{10} \left(M_{\text{min}}/M_\odot \right) = 10.53 \pm 0.62$ and $\log_{10} \left(M_{\text{sat}}/M_\odot \right) = 10.80 \pm 0.74$. The best-fit value of M_{min} is consistent with those derived in PER at multiple frequencies, even though we now set $\alpha_{\text{sat}} = 1$ and reconstruct the mean emissivity as a function of redshift. The associated mean emissivity parameters are given in Table 3 and displayed in Fig. 18, where we also plot the B11 model for reference. As can be seen in Fig. 18, we remain consistent with the B11 model in most redshift bins.

6.3. Interpreting the reconstructed emissivities

We now illustrate one interesting consequence of this measurement and show how using the constrained emissivities, $j_s(z)$, we can estimate the star formation rate (SFR) density at different redshifts. Following Pénin et al. (2011), we begin by writing the emissivity as an integral over the galaxy flux densities:

$$j_s(z) = \left(\frac{dS}{dz} \right)^{-1} \int S_s \frac{d^2N}{dS_s dz} dS_s . \tag{20}$$

Here S_s is the flux density, and $d^2N/dS_s dz$ is the number of galaxies per flux element and redshift interval. The galaxies contributing to the CIB can be divided into various populations (labelled as p) based on the galaxy SED, e.g., according to galaxy type or dust temperature:

$$j_s(z) = \left(\frac{dS}{dz} \right)^{-1} \sum_p \int S_s \frac{d^2N_p}{dS_s dz} dS_s . \tag{21}$$

If we define S_s as the flux density of an $L_{\text{IR}} = L_\odot$ source with the SED of a given population, i.e., $S_s = s_p L_{\text{IR}}$ (with L_{IR} in units of L_\odot), then we can write Eq. 21 as (Pénin et al. 2011):

$$j_s(z) = \left(\frac{dS}{dz} \right)^{-1} \frac{dV}{dz} \sum_p s_p \int L_{\text{IR}} \frac{d^2N_p}{dL_{\text{IR}} dV} dL_{\text{IR}} . \tag{22}$$

The contribution to the infrared luminosity density from a given population is

$$\rho_{\text{IR},p} = \int L_{\text{IR}} \frac{d^2N_p}{dL_{\text{IR}} dV} dL_{\text{IR}} . \tag{23}$$

We assume a simple conversion between L_{IR} and the star formation rate density, ρ_{SFR}, using the Kennicutt constant K (Kennicutt 1998). Since by definition $\rho_{\text{SFR}} = K \sum_p \rho_{\text{IR},p}$, we can rewrite Eq. 22 as:

$$j_s(z) = (1 + z) \chi^2 \frac{\rho_{\text{SFR}}}{K} \sum_p s_p \rho_{\text{IR},p} . \tag{24}$$

where the final term in brackets is the effective SED of infrared galaxies, which we write as $S_{\text{eff}}(z)$. We derive these SEDs following the evolution model of Béthermin et al. (2012) using Magdis et al. (2012) templates. The construction of these effective SEDs will be explained in detail in future work. Finally, we obtain the conversion factor between mean emissivity and SFR density,

$$\rho_{\text{SFR}}(z) = \frac{K}{(1 + z) \chi^2 S_{\text{eff}}(z)} j_s(z) . \tag{25}$$

Using Eq. 25 we find the coefficients for each of the redshift bins and frequencies used in Table 3.

6.4. Discussion and outlook

In the previous section we described a model that simultaneously fits the CIB auto-spectra and the CIB-lensing cross-spectra, at all frequencies and with a single HOD prescription. Given that we
use an emissivity function that is close to the B11 emissivities (to within our uncertainties), we expect predictions of the galaxy number counts derived from our best-fit emissivity to agree with current estimates (Béthermin et al. 2012). The fact that our measurement is consistent with previous models of the CIB lends support to our current understanding of its origin. For example, the characteristic mass scale at which halos host galaxies, M_{min}, is consistent with values derived in PER, and is consistent with, but slightly higher than, the value derived more recently in Viero et al. (2012), $\log_{10}(M_{\text{min}}/M_\odot) = 9.9 \pm 0.5$ (although a direct comparison could be misleading given the different model assumptions). In particular, it is clear that our model has limitations, some of which have been partially addressed in recent work (Shang et al. 2012; Béthermin et al. 2012; De Bernardis & Cooray 2012; Béthermin et al. 2012; Viero et al. 2012; Addison et al. 2012) and are points of focus in PIR, amongst them the mass independence of the emissivity. Another question worth further investigation is the dependence of our results on the binning scheme chosen for the emissivity, which will be addressed in a future paper.

Given the consistency of our model with the PER results, the information added by our cross-spectrum measurement is worth quantifying. As an example, we show in Fig. 19 the highest redshift emissivity bin in the 353 GHz band. Adding the CIB-lensing cross-spectrum information tightens the constraint on the high-redshift part of the emissivity. This statement also holds for the other frequencies and stems from the fact that the CMB lensing kernel peaks at high redshift, making the cross-correlation more sensitive to the high-redshift CIB signal than the CIB auto-spectrum, as is illustrated in Fig. 1. Although this gain does not translate into a substantial improvement in M_{min}, it leads to interesting constraints on the SFR density, as can be seen in Table 3.

The results at frequencies above 217 GHz each lead to around 2σ evidence for a non-zero SFR density for $1.5 < z < 3$ and for $3 < z < 7$. The values inferred are consistent with other probes of the SFR in these redshift ranges, as compiled for example in Fig. 1 of Hopkins & Beacom (2006). Assuming that each frequency is independent, we obtain SFR densities for the three redshift bins of 0.423 ± 0.123, 0.292 ± 0.138 and 0.226 ± 0.100 M$_\odot$ Mpc$^{-3}$ yr$^{-1}$, respectively where the errors are 68% C.L.. We note that the σ distributions are rather non-Gaussian so that the 95% C.L. become 0.228, 0.246 and 0.191 respectively. This roughly 2σ detection per bin compares very favourably with other published measurements. These constraints clearly illustrate how this particular correlation can be used to better isolate the high redshift component of the CIB and improve our constraints on the star formation rate at high redshift. Such constraints will improve with future measurements, in particular if we can increase the signal-to-noise ratio in our lower frequency channels, where the high redshift contribution is the greatest. This will likely require an accurate removal of the CMB, our dominant source of noise at low frequencies. A more thorough discussion of this possibility will be given in PIR.

To fully utilize the richness of the correlation will require more studies. Future work could involve using more sophisticated halo models specifically designed to model star formation within halos, as well as relaxing some of the assumptions made here, such as the mass independent luminosity function. In addition the use of map-based methods that enable estimates of the galaxy host halo mass by stacking the lensing potential maps is worth pursuing, as is the extension to other data-sets. For illustration purposes, we show in Fig. 20 raw measurements of the correlation between our lensing potential map and the IRIS map at 100 \(\mu\)m that was introduced in Sect. 2.2.2. We use our nominal mask and lens reconstruction, with no H\,I cleaning performed on the IRIS map. We clearly see a strong correlation, whose significance we estimate to be 9σ, ignoring any possible systematic effects. To guide the eye we have added a prediction (not a fit) based on the HOD model presented in Pénin et al. (2011). The full analysis of this signal is beyond the scope of this paper, but it illustrates possible future uses of the lensing potential map. In this case the IRIS wavelength range will help us to isolate the low-redshift contribution to the CIB.

Table 3. Reconstructed emissivity as a function of redshift and associated star formation rate. At each frequency and for each of the three redshift bins the first quantity corresponds to the mean emissivity in the corresponding redshift bin, $\langle j(z) \rangle$, in Jy Mpc$^{-3}$ sr$^{-1}$, while the second corresponds to the SFR density, ρ_{SFR}, in M$_\odot$ Mpc$^{-3}$ yr$^{-1}$.

<table>
<thead>
<tr>
<th>$1 < z \leq 1.5$</th>
<th>$1.5 < z \leq 3$</th>
<th>$3 < z \leq 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle j(z) \rangle$</td>
<td>ρ_{SFR}</td>
<td>ρ_{SFR}</td>
</tr>
<tr>
<td>100 GHz</td>
<td>7.16±5.77</td>
<td>1.96±1.58</td>
</tr>
<tr>
<td>143 GHz</td>
<td>12.7±9.60</td>
<td>3.70±0.96</td>
</tr>
<tr>
<td>217 GHz</td>
<td>11.9±8.33</td>
<td>0.310±0.165</td>
</tr>
<tr>
<td>353 GHz</td>
<td>116±17.1</td>
<td>0.671±0.099</td>
</tr>
<tr>
<td>545 GHz</td>
<td>185±106</td>
<td>0.320±0.183</td>
</tr>
<tr>
<td>857 GHz</td>
<td>193±139</td>
<td>0.144±0.104</td>
</tr>
</tbody>
</table>

Fig. 20. Correlation between the lensing potential and the IRIS map at 100 \(\mu\)m using our nominal lens reconstruction. We clearly see a correlation and estimate the significance to be 9σ, ignoring possible systematic effects. The solid line represents a simple reasonable prediction for this signal.
To conclude, we have presented the first measurement of the correlation between lensing of the CMB and the CIB. Planck’s unprecedented full-sky, multi-frequency, deep survey enables us to make an internal measurement of this correlation. Measurements with high statistical significance are obtained, even after accounting for possible systematic errors. The high degree of correlation that is measured (around 80 %) allows for unprecedented visualization of lensing of the CMB and holds great promise for new CIB and CMB focused science. CMB lensing appears promising as a probe of the origin of the CIB, while the CIB is now established as an ideal tracer of CMB lensing.

Acknowledgements. Based on observations obtained with Planck (http://sxs.esa.int/planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.srce.ing.ac.rs/index.php?project=planck&page=Planck_Collaboration. We acknowledge the use of the IEEAlPix package, and the LAMBDA archive (http://lambda.gsfc.nasa.gov).

References
Hikage, C., Mandelbaum, R., Takada, M., & Spergel, D. N., Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter halos. 2012, arXiv:1211.1009
Kennicutt, R. C., Star Formation in Galaxies along the Hubble Sequence. 1998, ARA&A, 36, 189
Appendix A: Statistical Errors

In this section we compare six different methods to estimate our statistical errors. This comparison is used to validate our claim (presented in the main text) that we can obtain our errors from the naive analytical errors calculated from the data, i.e., method 1 below. The six different methods we compare are:

1. The naive, Gaussian, analytical errors estimated from the data through the measured total power of the T and φ fields, respectively C_{TT}^{ℓ} and $C_{\phi\phi}^{\ell}$ and the model cross-spectrum $C_{T\phi}^{\ell}$.

2. As above but instead of the data maps we use one of our simulations of the CIB and CMB temperature maps described in Sect. 3.4. The lens reconstruction is obtained from the simulated maps using the same procedure that we use for the data.

3. The scatter directly within individual ℓ-bins in the data-determined cross-spectrum.

4. As above but the scatter is measured in each ℓ-bin for each simulation realization, and the errors are averaged over 100 realizations.

5. The scatter of the bins is calculated using the cross-spectra measured from our simulated maps. This is a direct measurement of the statistical error we require (to the extent that our simulations are realistic), and will differ from the scatter within the ℓ-bins, for example due to noise correlations between different multipole subsets of the cross-spectrum.

6. The error in the cross-spectrum of the reconstructed lensing potential in simulated maps with the measured temperature.
maps. This will only give part of the contribution to the error since the temperature maps are fixed, but it is still a useful cross-check.

In Fig. A.1 we show a comparison of the errors found from our six measurement methods. The precision achievable with 100 simulations is indicated by the grey envelope. We show the errors in each ℓ bin from the different methods divided by the data-based analytical estimate. To discuss the implications of these results we shall focus on the 100 GHz panel first. The scatter measured within an ℓ bin is fairly consistent in the simulations (method 4, black solid line) and in the data (method 3, black dashed line) giving us confidence in our simple simulation procedure. This rules out important systematic contributions and shows that our signal is mostly Gaussian, as expected. Note that the consistency with the simulations is not surprising, since at low frequencies we are dominated by CMB and instrumental noise, which are well understood. In addition, the fact that the analytical errors calculated on the simulations (method 2, coloured dashed line) are mostly within the grey shaded region, and are therefore close to the analytical errors calculated from the data (method 1), gives us further confidence in the simulations. To the extent that the simulations are accurate, the scatter of the ℓ-bins in simulations (solid coloured line) is the error that we require. The fact that it is essentially all within the shaded envelope means that this method gives errors that are consistent with the analytical errors measured using the data, justifying our nominal choice for calculating the errors at low frequencies.

However, comparing the black lines with the coloured lines clearly indicates that in the data and simulations obtaining the error bars by measuring the scatter within the ℓ-bins leads to an underestimation of the errors by approximately 20 %. Given the fact that this difference is observed in both the data and the simulations, we exclude any instrumental systematic effect as its cause and explain it as being due to noise correlations within the ℓ-bins. Such a correlation is expected, since most of the lens reconstruction signal in the ℓ-range of interest to us comes from modes in the CMB map within a relatively narrow range at ℓ ≃ 1500, and so multipoles in the lens reconstruction are correlated. We have also checked that the mask induced ℓ-bin coupling is negligible, given the bin width we have chosen, and is always smaller than 2 %.

Fig. A.1. Ratio of various error estimation procedures to the errors obtained with the data-based analytical estimate. At each frequency the numerator is given by: (i) the scatter within an ℓ-bin in simulations (solid black line); (ii) the scatter within an ℓ-bin in the data (solid dashed black line); (iii) the scatter of bins across simulated realizations (solid coloured line); (iv) the analytical errors calculated from the simulations (dashed coloured line); (v) the scatter across realizations for the cross-correlation between the simulated temperature map and the lensing potential reconstructed from the data (coloured dot-dashed line). The grey envelope is the precision of the simulated errors expected from 100 simulations (shown as a spread around unity).

All of these conclusions remain valid up to 353 GHz. However, at 545 and 857 GHz, we see by looking at the errors measured using simulations (solid black for method 4, solid coloured for method 5, and dashed coloured for method 2) that the errors deduced from the analytical estimates measured from the data are substantially higher than those we measure in the simulations. This is easily explained through the fact that we are omitting any foreground emission in our simulations. The relative contribution of Galactic foreground emission is higher at low ℓ, which is expected because the Galactic cirrus emission has a steep power spectrum. Overall, the amplitude of this contribution is also consistent with what is seen in Fig. 5.

Since the scatter within the ℓ-bins measured in simulations (black dashed line) is about 20 % lower than the data-based analytical estimates at all frequencies, we use the data-based analytical estimates as the basis for our statistical errors. We could alternatively scale the scatter-determined errors by 20 % and obtain consistent results. This approach accounts for the foreground emission seen at 545 GHz and 857 GHz, but will in practice neglect the contribution to the errors from the non-Gaussian part of the foregrounds. However, we show in Sect. 5.3.5 that this contribution is small enough that we can ignore it.
The remaining method to discuss is obtained from the cross-spectrum of the reconstructed lensing potential in simulated maps with the data-measured temperature maps (method 6, coloured dashed-dotted line in Fig. A.1). At 545 and 857 GHz the CIB signal is dominant over a large ℓ range, and so the error obtained from this method is equal to the “signal” terms in Eq. 4, which are the orange and green lines in Fig. 5. These two lines make up a significant fraction of the total error and provide a reasonable approximation to the true error at high-ℓ. However, at low-ℓ where Galactic emission is important, and at 100–353 GHz where the CMB and instrumental noise are the largest components, the orange and green curves do not accurately describe the total error. We can see from Fig. A.1 that the errors obtained using this method are close to the errors measured using the other techniques. However, this method will underestimate the true errors, since the scatter in the CMB and noise components is neglected.

Note that the results presented in Fig. A.1 are all computed using the 40 % Galaxy mask, but we have checked that they hold when using the 20 % and 60 % Galaxy masks (which are discussed in detail in Sect. 5.2) and that the results show the appropriate f_{sky} scaling.